Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 506
Temps de recherche: 0.0612s

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Chat GPT ou le perroquet grammairien

L’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur le langage humain et sur ce qu’on appelle parler. Notamment, les IA redonnent naissance à un débat ancien sur la grammaire générative et sur l’innéisme des facultés langagières. Mais les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction, et considérant aussi la façon dont les animaux communiquent.

a capacité de ChatGPT à produire des textes en réponse à n’importe quelle requête a immédiatement attiré l’attention plus ou moins inquiète d’un grand nombre de personnes, les unes animées par une force de curiosité ou de fascination, et les autres, par un intérêt professionnel.

L’intérêt professionnel scientifique que les spécialistes du langage humain peuvent trouver aux Large Language Models ne date pas d’hier : à bien des égards, des outils de traduction automatique comme DeepL posaient déjà des questions fondamentales en des termes assez proches. Mais l’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur ce que les Large Language Models sont susceptibles de nous dire sur le langage humain et sur ce qu’on appelle parler.

L’outil de traduction DeepL (ou les versions récentes de Google Translate) ainsi que les grands modèles de langage reposent sur des techniques d’" apprentissage profond " issues de l’approche " neuronale " de l’Intelligence Artificielle : on travaille ici sur des modèles d’IA qui organisent des entités d’information minimales en les connectant par réseaux ; ces réseaux de connexion sont entraînés sur des jeux de données considérables, permettant aux liaisons " neuronales " de se renforcer en proportion des probabilités de connexion observées dans le jeu de données réelles – c’est ce rôle crucial de l’entraînement sur un grand jeu de données qui vaut aux grands modèles de langage le sobriquet de " perroquets stochastiques ". Ces mécanismes probabilistes sont ce qui permet aussi à l’IA de gagner en fiabilité et en précision au fil de l’usage. Ce modèle est qualifié de " neuronal " car initialement inspiré du fonctionnement des réseaux synaptiques. Dans le cas de données langagières, à partir d’une requête elle-même formulée en langue naturelle, cette technique permet aux agents conversationnels ou aux traducteurs neuronaux de produire très rapidement des textes généralement idiomatiques, qui pour des humains attesteraient d’un bon apprentissage de la langue.

IA neuronales et acquisition du langage humain

Au-delà de l’analogie " neuronale ", ce mécanisme d’entraînement et les résultats qu’il produit reproduisent les théories de l’acquisition du langage fondées sur l’interaction avec le milieu. Selon ces modèles, généralement qualifiés de comportementalistes ou behavioristes car étroitement associés aux théories psychologiques du même nom, l’enfant acquiert le langage par l’exposition aux stimuli linguistiques environnants et par l’interaction (d’abord tâtonnante, puis assurée) avec les autres. Progressivement, la prononciation s’aligne sur la norme majoritaire dans l’environnement individuel de la personne apprenante ; le vocabulaire s’élargit en fonction des stimuli ; l’enfant s’approprie des structures grammaticales de plus en plus contextes ; et en milieu bilingue, les enfants apprennent peu à peu à discriminer les deux ou plusieurs systèmes auxquels ils sont exposés. Cette conception essentiellement probabiliste de l’acquisition va assez spontanément de pair avec des théories grammaticales prenant comme point de départ l’existence de patrons (" constructions ") dont la combinatoire constitue le système. Dans une telle perspective, il n’est pas pertinent qu’un outil comme ChatGPT ne soit pas capable de référer, ou plus exactement qu’il renvoie d’office à un monde possible stochastiquement moyen qui ne coïncide pas forcément avec le monde réel. Cela ne change rien au fait que ChatGPT, DeepL ou autres maîtrisent le langage et que leur production dans une langue puisse être qualifiée de langage : ChatGPT parle.

Mais ce point de vue repose en réalité sur un certain nombre de prémisses en théorie de l’acquisition, et fait intervenir un clivage lancinant au sein des sciences du langage. L’actualité de ces dernières années et surtout de ces derniers mois autour des IA neuronales et génératives redonne à ce clivage une acuité particulière, ainsi qu’une pertinence nouvelle pour l’appréhension de ces outils qui transforment notre rapport au texte et au discours. La polémique, comme souvent (trop souvent ?) quand il est question de théorie du langage et des langues, se cristallise – en partie abusivement – autour de la figure de Noam Chomsky et de la famille de pensée linguistique très hétérogène qui se revendique de son œuvre, généralement qualifiée de " grammaire générative " même si le pluriel (les grammaires génératives) serait plus approprié.

IA générative contre grammaire générative

Chomsky est à la fois l’enfant du structuralisme dans sa variante états-unienne et celui de la philosophie logique rationaliste d’inspiration allemande et autrichienne implantée sur les campus américains après 1933. Chomsky est attaché à une conception forte de la logique mathématisée, perçue comme un outil d’appréhension des lois universelles de la pensée humaine, que la science du langage doit contribuer à éclairer. Ce parti-pris que Chomsky qualifiera lui-même de " cartésien " le conduit à fonder sa linguistique sur quelques postulats psychologiques et philosophiques, dont le plus important est l’innéisme, avec son corollaire, l’universalisme. Selon Chomsky et les courants de la psychologie cognitive influencée par lui, la faculté de langage s’appuie sur un substrat génétique commun à toute l’espèce humaine, qui s’exprime à la fois par un " instinct de langage " mais aussi par l’existence d’invariants grammaticaux, identifiables (via un certain niveau d’abstraction) dans toutes les langues du monde.

La nature de ces universaux fluctue énormément selon quelle période et quelle école du " générativisme " on étudie, et ce double postulat radicalement innéiste et universaliste reste très disputé aujourd’hui. Ces controverses mettent notamment en jeu des conceptions très différentes de l’acquisition du langage et des langues. Le moment fondateur de la théorie chomskyste de l’acquisition dans son lien avec la définition même de la faculté de langage est un violent compte-rendu critique de Verbal Behavior, un ouvrage de synthèse des théories comportementalistes en acquisition du langage signé par le psychologue B.F. Skinner. Dans ce compte-rendu publié en 1959, Chomsky élabore des arguments qui restent structurants jusqu’à aujourd’hui et qui définissent le clivage entre l’innéisme radical et des théories fondées sur l’acquisition progressive du langage par exposition à des stimuli environnementaux. C’est ce clivage qui préside aux polémiques entre linguistes et psycholinguistes confrontés aux Large Language Models.

On comprend dès lors que Noam Chomsky et deux collègues issus de la tradition générativiste, Ian Roberts, professeur de linguistique à Cambridge, et Jeffrey Watumull, chercheur en intelligence artificielle, soient intervenus dans le New York Times dès le 8 mars 2023 pour exposer un point de vue extrêmement critique intitulée " La fausse promesse de ChatGPT ". En laissant ici de côté les arguments éthiques utilisés dans leur tribune, on retiendra surtout l’affirmation selon laquelle la production de ChatGPT en langue naturelle ne pourrait pas être qualifiée de " langage " ; ChatGPT, selon eux, ne parle pas, car ChatGPT ne peut pas avoir acquis la faculté de langage. La raison en est simple : si les Grands Modèles de Langage reposent intégralement sur un modèle behaviouriste de l’acquisition, dès lors que ce modèle, selon eux, est réfuté depuis soixante ans, alors ce que font les Grands Modèles de Langage ne peut être qualifié de " langage ".

Chomsky, trop têtu pour qu’on lui parle ?

Le point de vue de Chomsky, Roberts et Watumull a été instantanément tourné en ridicule du fait d’un choix d’exemple particulièrement malheureux : les trois auteurs avançaient en effet que certaines constructions syntaxiques complexes, impliquant (dans le cadre générativiste, du moins) un certain nombre d’opérations sur plusieurs niveaux, ne peuvent être acquises sur la base de l’exposition à des stimuli environnementaux, car la fréquence relativement faible de ces phénomènes échouerait à contrebalancer des analogies formelles superficielles avec d’autres tournures au sens radicalement différent. Dans la tribune au New York Times, l’exemple pris est l’anglais John is too stubborn to talk to, " John est trop entêté pour qu’on lui parle ", mais en anglais on a littéralement " trop têtu pour parler à " ; la préposition isolée (ou " échouée ") en position finale est le signe qu’un constituant a été supprimé et doit être reconstitué aux vues de la structure syntaxique d’ensemble. Ici, " John est trop têtu pour qu’on parle à [John] " : le complément supprimé en anglais l’a été parce qu’il est identique au sujet de la phrase.

Ce type d’opérations impliquant la reconstruction d’un complément d’objet supprimé car identique au sujet du verbe principal revient dans la plupart des articles de polémique de Chomsky contre la psychologie behaviouriste et contre Skinner dans les années 1950 et 1960. On retrouve même l’exemple exact de 2023 dans un texte du début des années 1980. C’est en réalité un exemple-type au service de l’argument selon lequel l’existence d’opérations minimales universelles prévues par les mécanismes cérébraux humains est nécessaire pour l’acquisition complète du langage. Il a presque valeur de shibboleth permettant de séparer les innéistes et les comportementalistes. Il est donc logique que Chomsky, Roberts et Watumull avancent un tel exemple pour énoncer que le modèle probabiliste de l’IA neuronale est voué à échouer à acquérir complètement le langage.

On l’aura deviné : il suffit de demander à ChatGPT de paraphraser cette phrase pour obtenir un résultat suggérant que l’agent conversationnel a parfaitement " compris " le stimulus. DeepL, quand on lui demande de traduire cette phrase en français, donne deux solutions : " John est trop têtu pour qu’on lui parle " en solution préférée et " John est trop têtu pour parler avec lui " en solution de remplacement. Hors contexte, donc sans qu’on sache qui est " lui ", cette seconde solution n’est guère satisfaisante. La première, en revanche, fait totalement l’affaire.

Le détour par DeepL nous montre toutefois la limite de ce petit test qui a pourtant réfuté Chomsky, Roberts et Watumull : comprendre, ici, ne veut rien dire d’autre que " fournir une paraphrase équivalente ", dans la même langue (dans le cas de l’objection qui a immédiatement été faite aux trois auteurs) ou dans une autre (avec DeepL), le problème étant que les deux équivalents fournis par DeepL ne sont justement pas équivalents entre eux, puisque l’un est non-ambigu référentiellement et correct, tandis que l’autre est potentiellement ambigu référentiellement, selon comment on comprend " lui ". Or l’argument de Chomsky, Roberts et Watumull est justement celui de l’opacité du complément d’objet… Les trois auteurs ont bien sûr été pris à défaut ; reste que le test employé, précisément parce qu’il est typiquement behaviouriste (observer extérieurement l’adéquation d’une réaction à un stimulus), laisse ouverte une question de taille et pourtant peu présente dans les discussions entre linguistes : y a-t-il une sémantique des énoncés produits par ChatGPT, et si oui, laquelle ? Chomsky et ses co-auteurs ne disent pas que ChatGPT " comprend " ou " ne comprend pas " le stimulus, mais qu’il en " prédit le sens " (bien ou mal). La question de la référence, présente dans la discussion philosophique sur ChatGPT mais peu mise en avant dans le débat linguistique, n’est pas si loin.

Syntaxe et sémantique de ChatGPT

ChatGPT a une syntaxe et une sémantique : sa syntaxe est homologue aux modèles proposés pour le langage naturel invoquant des patrons formels quantitativement observables. Dans ce champ des " grammaires de construction ", le recours aux données quantitatives est aujourd’hui standard, en particulier en utilisant les ressources fournies par les " grand corpus " de plusieurs dizaines de millions voire milliards de mots (quinze milliards de mots pour le corpus TenTen francophone, cinquante-deux milliards pour son équivalent anglophone). D’un certain point de vue, ChatGPT ne fait que répéter la démarche des modèles constructionalistes les plus radicaux, qui partent de co-occurrences statistiques dans les grands corpus pour isoler des patrons, et il la reproduit en sens inverse, en produisant des données à partir de ces patrons.

Corrélativement, ChatGPT a aussi une sémantique, puisque ces théories de la syntaxe sont majoritairement adossées à des modèles sémantiques dits " des cadres " (frame semantics), dont l’un des inspirateurs n’est autre que Marvin Minsky, pionnier de l’intelligence artificielle s’il en est : la circulation entre linguistique et intelligence artificielle s’inscrit donc sur le temps long et n’est pas unilatérale. Là encore, la question est plutôt celle de la référence : la sémantique en question est très largement notionnelle et ne permet de construire un énoncé susceptible d’être vrai ou faux qu’en l’actualisant par des opérations de repérage (ne serait-ce que temporel) impliquant de saturer grammaticalement ou contextuellement un certain nombre de variables " déictiques ", c’est-à-dire qui ne se chargent de sens que mises en relation à un moi-ici-maintenant dans le discours.

On touche ici à un problème transversal aux clivages dessinés précédemment : les modèles " constructionnalistes " sont plus enclins à ménager des places à la variation contextuelle, mais sous la forme de variables situationnelles dont l’intégration à la description ne fait pas consensus ; les grammaires génératives ont très longtemps évacué ces questions hors de leur sphère d’intérêt, mais les considérations pragmatiques y fleurissent depuis une vingtaine d’années, au prix d’une convocation croissante du moi-ici-maintenant dans l’analyse grammaticale, du moins dans certains courants. De ce fait, l’inscription ou non des enjeux référentiels et déictiques dans la définition même du langage comme faculté humaine représente un clivage en grande partie indépendant de celui qui prévaut en matière de théorie de l’acquisition.

À l’école du perroquet

La bonne question, en tout cas la plus féconde pour la comparaison entre les productions langagières humaines et les productions des grands modèles de langage, n’est sans doute pas de savoir si " ChatGPT parle " ni si les performances de l’IA neuronale valident ou invalident en bloc tel ou tel cadre théorique. Une piste plus intéressante, du point de vue de l’étude de la cognition et du langage humains, consiste à comparer ces productions sur plusieurs niveaux : les mécanismes d’acquisition ; les régularités sémantiques dans leur diversité, sans les réduire aux questions de référence et faisant par exemple intervenir la conceptualisation métaphorique des entités et situations désignées ; la capacité à naviguer entre les registres et les variétés d’une même langue, qui fait partie intégrante de la maîtrise d’un système ; l’adaptation à des ontologies spécifiques ou à des contraintes communicatives circonstancielles… La formule du " perroquet stochastique ", prise au pied de la lettre, indique un modèle de ce que peut être une comparaison scientifique du langage des IA et du langage humain.

Il existe en effet depuis plusieurs décennies maintenant une linguistique, une psycholinguistique et une pragmatique de la communication animale, qui inclut des recherches comparant l’humain et l’animal. Les progrès de l’étude de la communication animale ont permis d’affiner la compréhension de la faculté de langage, des modules qui la composent, de ses prérequis cognitifs et physiologiques. Ces travaux ne nous disent pas si " les animaux parlent ", pas plus qu’ils ne nous disent si la communication des corbeaux est plus proche de celle des humains que celle des perroquets. En revanche ils nous disent comment diverses caractéristiques éthologiques, génétiques et cognitives sont distribuées entre espèces et comment leur agencement produit des modes de communication spécifiques. Ces travaux nous renseignent, en nous offrant un terrain d’expérimentation inédit, sur ce qui fait toujours système et sur ce qui peut être disjoint dans la faculté de langage. Loin des " fausses promesses ", les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction. 



 

Auteur: Modicom Pierre-Yves

Info: https://aoc.media/ 14 nov 2023

[ onomasiologie bayésienne ] [ sémiose homme-animal ] [ machine-homme ] [ tiercités hors-sol ] [ signes fixés externalisables ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Le processus d’encéphalisation
Parmi l’ensemble des animaux non-humains, les dauphins sont dotés du quotient encéphalique le plus élevé au monde, soit à peu près celui de l’être humain.
A ce petit jeu, d’ailleurs, le cachalot nous dépasse tous largement !
Une telle augmentation du volume cérébral, bien au-delà des simples besoins de la motricité ou de la sensorialité, est qualifiée "d’encéphalisation structurelle".
Ce phénomène n’est pas rare. Il semble que dès le Jurassique, des dinosauriens bipèdes de taille moyenne aient commencé à augmenter de manière encore timide leurs capacités cérébrales.
Au Tertiaire, les ancêtres des éléphants et des cétacés se sont lancés à leur tour dans la course au gros cerveau mais ce n’est qu’au Quaternaire, il y a de cela de trois à six millions d’années, que certains primates hominoïdes développent une boîte crânienne de type néoténique à fontanelles non suturées durant les premiers temps de l’enfance, afin de permettre une croissance ultérieure de l’un des cerveaux les plus puissants du monde.
Ce processus d’encéphalisation apparaît également chez certains oiseaux – corvidés, psittacidés – à peu près vers la même époque. A chaque fois, bien sûr, des comportements très élaborés sont toujours associés à un accroissement spectaculaire du tissu cérébral.
Une si curieuse convergence de formes, la survenance simultanée ou successive de tous ces "grands fronts", pose bien évidemment question en termes darwiniens.
Le ptérodactyle, la mouche, le colibri, la chauve-souris ont des ailes pour voler, la truite, l’ichtyosaure, le marsouin ont un corps fait pour nager, le grillon fouisseur et la taupe ont des pattes en forme de pelles pour creuser, etc.
Mais à quoi rime dès lors un vaste crâne et à quelle fonction est-il dévolu ?
Essentiellement à comprendre le monde et ceux qui le composent, en ce compris les membres de sa propre espèce, avec lesquels il faut sans cesse gérer une relation équilibrée.
Même les gros cerveaux les plus solitaires vivent en fait en société : tigres, baleines bleues, panthères, orangs-outans gardent des liens étroits, bien que distants ou différés, avec leur fratrie et leurs partenaires.
L’intelligence est à coup sûr l’arme suprême contre les aléas du monde, ses mutations incessantes, puisqu’elle permet notamment de gérer un groupe comme un seul corps mais aussi de pénétrer les lois subtiles qui sont à la base du mouvement des choses.
En augmentant d’un degré supérieur ces facultés par le moyen du langage, lequel conserve le savoir des générations mortes, l’homme et le cétacé ont sans doute franchi un nouveau pas vers une plus grande adaptabilité.
Le problème de l’humain, mais nous n’y reviendrons pas davantage, c’est qu’il ne s’est servi jusqu’à ce jour que d’une partie de son intelligence et qu’il se laisse ensevelir vivants dans ses propres déchets, et avec lui les reste du monde, pour n’avoir pas su contrôler sa propre reproduction ni la saine gestion de son environnement.
Intelligents ou non ? (Le point de vue de Ken Levasseur)
Dans un courrier CFN posté en avril 2003 relatif à l’utilisation de dauphins militaires en Irak, Ken Levasseur, l’un des meilleurs spécialistes actuels de cette question, a tenu à faire le point à propos de l’intelligence réelle ou supposée de ces mammifères marins. Aux questions que lui avait adressées un étudiant sur ce thème, Ken répond ici de manière définitive, sur la base de de son expérience et de ses intimes convictions.
Eu égard aux remarquables recherches menées par Ken depuis des années et au fait qu’il a travaillé longtemps aux côtés du professeur Louis Hermann, son point de vue n’est évidemment pas négligeable ni ses opinions sans fondements. On lira d’ailleurs sur ce site même son article en anglais relatif au cerveau du dauphin
Inutile de dire que le gestionnaire de ce site partage totalement le point de vue de Ken Levasseur, dont les travaux l’inspirent depuis de nombreuses années, au même titre que ceux de Wade Doak ou de Jim Nollman : tous ont en commun d’affirmer que les dauphins ne sont pas des animaux au sens strict mais bien l’équivalent marin de l’humanité terrestre.
Q- A quel niveau d’intelligence réelle les dauphins se situent-ils ? A celui du chien ? Du grand singe ? D’un être humain ?
R- Mon meilleur pronostic est qu’un jour prochain, nous pourrons prouver que la plupart des espèces de cétacés disposent d’une intelligence équivalente ou supérieure à celle d’un humain adulte.
Q- Quelles sont les preuves nous permettant d’affirmer que les dauphins sont intelligents ?
R- Il a été démontré depuis longtemps que les dauphins peuvent développer des capacités cognitives qui équivalent ou excèdent les possibilités mentales de l’être humain. Aujourd’hui, nous sommes à même de définir exactement en quoi consiste l’intelligence humaine. Une fois que nous parviendrons à définir l’intelligence d’une manière strictement objective et valable pour toutes les autres espèces, on permettra enfin aux cétacés de faire la preuve de la leur.
Q- Quelles preuves avons-nous que les dauphins ne sont PAS intelligents ?
R- Il n’y a aucune preuve scientifique qui tendrait à prouver que l’intelligence du dauphin serait située entre celle du chien et celle du chimpanzé (comme l’affirment les delphinariums et la marine américaine) .
Q- Est-ce que les dauphins possèdent un langage propre ?
R- La définition d’une "langue", comme celle de l’intelligence, repose sur des bases subjectives définies pour et par les humains. Une fois que nous pourrons disposer d’une définition plus objective de ce qu’est un langage, et que les recherches sur la communication des dauphins ne seront plus "classifiée" par les américains, il est fort probable que les chercheurs puissent enfin conduire les recherches appropriées et qu’ils reconnaissent que les dauphins disposent de langages naturels.
Q- Est-ce leur capacité à apprendre et à exécuter des tours complexes qui les rend plus intelligents ou non ?
R- La capacité du dauphin à apprendre à exécuter des tours complexes est surtout une indication de l’existence d’un niveau élevé des capacités mentales, interprétées comme synonymes d’une intelligence élevée.
Q- Jusqu’à quel point ont été menées les recherches sur les dauphins et leur intelligence ? Que savent vraiment les scientifiques à leur propos ?
R- La US Navy a "classifié" ses recherches sur les dauphins en 1967, au moment où l’acousticien Wayne Batteau est parvenu à développer des moyens efficaces pour communiquer avec des dauphins dressés. La communication et l’intelligence des dauphins constituent donc désormais des données militaires secrètes, qui ne peuvent plus être divulguées au public.
Q- Est-ce que les dauphins disposent d’un langage propre ? Y a t-il des recherches qui le prouvent ?
R- Vladimir Markov et V. M. Ostrovskaya en ont fourni la preuve en 1990 en utilisant la "théorie des jeux" pour analyser la communication des dauphins dans un environnement contrôlé et à l’aide de moyens efficaces. Il est donc très probable que les dauphins aient une langue naturelle.
Q- Les capacités tout à fait spéciales des dauphins en matière d’écholocation ont-elles quelque chose à voir avec leurs modes de communication?
R- A mon sens, les recherches futures fourniront la preuve que le langage naturel des cétacés est fondé sur les propriétés physiques de l’écholocation, de la même manière que les langues humaines se basent sur des bruits et des représentations.
Q- Quelle est VOTRE opinion à propos de l’intelligence des dauphins ?
R- Pendant deux ans, j’ai vécu à quinze pieds (1 Pied : 30 cm 48) d’un dauphin et à trente-cinq pieds d’un autre. À mon avis, les dauphins possèdent une intelligence équivalente à celle d’un être humain. Ils devraient bénéficier dès lors de droits similaires aux Droits de l’Homme et se trouver protégé des incursions humaines dans son cadre de vie.
Q- La ressemblance entre les humains et les dauphins a-t-elle quelque chose à voir avec leur intelligence commune ?
R- Les dauphins sont très éloignés des humains à de nombreux niveaux mais les ressemblances que nous pouvons noter sont en effet fondées sur le fait que les dauphins possèdent des capacités mentales plus élevées (que la plupart des autres animaux) et sont à ce titre interprétés en tant qu’intelligence de type humain.
Q- La grande taille de leur cerveau, relativement à celle de leur corps, est-elle un indicateur de leur haute intelligence ?
R- Le volume absolu d’un cerveau ne constitue pas une preuve d’intelligence élevée. Le coefficient encéphalique (taille du cerveau par rapport à la taille de corps) n’en est pas une non plus. Néanmoins, on pourrait dire que la taille absolue du cerveau d’une espèce donnée par rapport au volume global du corps constitue un bon indicateur pour comparer les capacités mentales de différentes espèces. Souvenons-nous par ailleurs que les cétacés ne pèsent rien dans l’eau, puisqu’ils flottent et qu’une grande part de leur masse se compose simplement de la graisse. Cette masse de graisse ne devrait pas être incluse dans l’équation entre le poids du cerveau et le poids du corps car cette graisse n’est traversée par aucun nerf ni muscle et n’a donc aucune relation de cause à effet avec le volume du cerveau.
Q- Est-ce que la capacité des dauphins à traiter des clics écholocatoires à une vitesse inouïe nous laisse-t-elle à penser qu’ils sont extrêmement intelligents ?
R- On a pu montrer que les dauphins disposaient, et de loin, des cerveaux les plus rapides du monde. Lorsqu’ils les observent, les humains leur semblent se mouvoir avec une extrême lenteur en émettant des sons extrêmement bas. Un cerveau rapide ne peut forcément disposer que de capacités mentales très avancées.
Q- Pensez-vous des scientifiques comprendront un jour complètement les dauphins?
R- Est-ce que nos scientifiques comprennent bien les humains? Si tout va bien, à l’avenir, les dauphins devraient être compris comme les humains se comprennent entre eux.
Q- Le fait que les dauphins possèdent une signature sifflée est-elle une preuve de l’existence de leur langage ?
R- Non. Cette notion de signature sifflée est actuellement mal comprise et son existence même est sujette à caution.
Q- Les dauphins font plein de choses très intelligentes et nous ressemblent fort. Est-ce parce qu’ils sont vraiment intelligents ou simplement très attractifs ?
R- La réponse à votre question est une question d’expérience et d’opinion. Ce n’est une question qui appelle une réponse scientifique, chacun a son opinion personnelle sur ce point.
Q- Pouvons-nous vraiment émettre des conclusions au sujet de l’intelligence des dauphins, alors que nous savons si peu à leur propos et qu’ils vivent dans un environnement si différent du nôtre ?
R- Jusqu’à présent, ce genre de difficultés n’a jamais arrêté personne. Chacun tire ses propres conclusions. Les scientifiques ne se prononcent que sur la base de ce qu’ils savent vrai en fonction des données expérimentales qu’ils recueillent.
Q- Est-ce que nous pourrons-nous jamais communiquer avec les dauphins ou même converser avec eux ?
R- Oui, si tout va bien, et ce seront des conversations d’adulte à adulte, rien de moins.
II. DAUPHIN : CERVEAU ET MONDE MENTAL
"Parmi l’ensemble des animaux non-humains, les dauphins disposent d’un cerveau de grande taille très bien développé, dont le coefficient encéphalique, le volume du néocortex, les zones dites silencieuses (non motrices et non sensorielles) et d’autres indices d’intelligence sont extrêmement proches de ceux du cerveau humain" déclare d’emblée le chercheur russe Vladimir Markov.
Lorsque l’on compare le cerveau des cétacés avec celui des grands primates et de l’homme en particulier, on constate en effet de nombreux points communs mais également des différences importantes :
– Le poids moyen d’un cerveau de Tursiops est de 1587 grammes.
Son coefficient encéphalique est de l’ordre de 5.0, soit à peu près le double de celui de n’importe quel singe. Chez les cachalots et les orques, ce même coefficient est de cinq fois supérieur à celui de l’homme.
– Les circonvolutions du cortex cervical sont plus nombreuses que celles d’un être humain. L’indice de "pliure" (index of folding) est ainsi de 2.86 pour l’homme et de 4.47 pour un cerveau de dauphin de taille globalement similaire.
Selon Sam Ridgway, chercheur "réductionniste de la vieille école", l’épaisseur de ce même cortex est de 2.9 mm en moyenne chez l’homme et de 1.60 à 1.76 mm chez le dauphin. En conséquence, continue-t-il, on peut conclure que le volume moyen du cortex delphinien (560cc) se situe à peu près à 80 % du volume cortical humain. Ce calcul est évidemment contestable puisqu’il ne tient pas compte de l’organisation très particulière du cerveau delphinien, mieux intégré, plus homogène et moins segmenté en zones historiquement distinctes que le nôtre.
Le fait que les cétacés possèdent la plus large surface corticale et le plus haut indice de circonvolution cérébral au monde joue également, comme on s’en doute, un rôle majeur dans le développement de leurs capacités cérébrales.
D’autres scientifiques, décidément troublés par le coefficient cérébral du dauphin, tentent aujourd’hui de prouver qu’un tel développement n’aurait pas d’autre usage que d’assurer l’écholocation. Voici ce que leur répond le neurologue H. Jerison : "La chauve-souris dispose à peu de choses près des mêmes capacités que le dauphin en matière d’écholocation, mais son cerveau est gros comme une noisette. L’outillage écholocatoire en tant que tel ne pèse en effet pas lourd. En revanche, le TRAITEMENT de cette même information "sonar" par les zones associatives prolongeant les zones auditives, voilà qui pourrait expliquer le formidable développement de cette masse cérébrale. Les poissons et tous les autres êtres vivants qui vivent dans l’océan, cétacés mis à part, se passent très bien d’un gros cerveau pour survivre et même le plus gros d’entre eux, le requin-baleine, ne dépasse pas l’intelligence d’une souris…"
La croissance du cerveau d’un cétacé est plus rapide et la maturité est atteinte plus rapidement que chez l’homme.
Un delphineau de trois ans se comporte, toutes proportions gardées, comme un enfant humain de huit ans. Cette caractéristique apparemment "primitive" est paradoxalement contredite par une enfance extrêmement longue, toute dévolue à l’apprentissage. Trente années chez le cachalot, vingt chez l’homme, douze à quinze chez le dauphin et environ cinq ans chez le chimpanzé.
Les temps de vie sont du même ordre : 200 ans en moyenne chez la baleine franche, 100 ans chez le cachalot, 80 chez l’orque, 78 ans chez l’homme, 60 chez le dauphin, sous réserve bien sûr des variations favorables ou défavorables de l’environnement.
Pourquoi un gros cerveau ?
"Nous devons nous souvenir que le monde mental du dauphin est élaboré par l’un des systèmes de traitement de l’information parmi les plus vastes qui ait jamais existé parmi les mammifères" déclare H.Jerison, insistant sur le fait que "développer un gros cerveau est extrêmement coûteux en énergie et en oxygène. Cet investissement a donc une raison d’être en terme d’évolution darwinienne. Nous devons dès lors considérer la manière dont ces masses importantes de tissu cérébral ont été investies dans le contrôle du comportement et de l’expérimentation du monde, ceci en comparaison avec l’usage qu’en font les petites masses cérébrales".
Un cerveau est par essence un organe chargé de traiter l’information en provenance du monde extérieur.
Les grands cerveaux exécutent cette tâche en tant qu’ensemble élaborés de systèmes de traitement, alors que le cerveau de la grenouille ou de l’insecte, par exemple, se contente de modules moins nombreux, dont la finesse d’analyse est comparativement plus simple.
Cela ne nous empêche pas cependant de retrouver des structures neuronales étonnamment semblables d’un animal à l’autre : lorsqu’un promeneur tombe nez à nez avec un crotale, c’est le même plancher sub-thalamique dévolue à la peur qui s’allume chez l’une et l’autre des ces créatures. Quant un chien ou un humain se voient soulagés de leurs angoisses par le même produit tranquillisant, ce sont évidemment les mêmes neuromédiateurs qui agissent sur les mêmes récepteurs neuronaux qui sont la cause du phénomène.
A un très haut niveau de cette hiérarchie, le traitement en question prend la forme d’une représentation ou d’un modèle du monde (Craik, 1943, 1967, Jerison, 1973) et l’activité neuronale se concentre en "paquets d’informations" (chunks) à propos du temps et de l’espace et à propos d’objets, en ce compris les autres individus et soi-même.
" Puisque le modèle du monde qui est construit de la sorte" insiste H.Jerison, "se trouve fondé sur des variables physiquement définies issues directement du monde externe et puisque ces informations sont traitées par des cellules nerveuses et des réseaux neuronaux structurellement semblables chez tous les mammifères supérieurs, les modèles du monde construits par différents individus d’une même espèce ou même chez des individus d’espèces différentes, ont de bonnes chances d’être également similaires".
Et à tout le moins compréhensibles l’un pour l’autre.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

évolution technologique

Intelligence artificielle ou stupidité réelle ?

Bien que le battage médiatique augmente la sensibilisation à l'IA, il facilite également certaines activités assez stupides et peut distraire les gens de la plupart des progrès réels qui sont réalisés.
Distinguer la réalité des manchettes plus dramatiques promet d'offrir des avantages importants aux investisseurs, aux entrepreneurs et aux consommateurs.

L'intelligence artificielle a acquis sa notoriété récente en grande partie grâce à des succès très médiatisés tels que la victoire d'IBM Watson à Jeopardy et celle de Google AlphaGo qui a battu le champion du monde au jeu "Go". Waymo, Tesla et d'autres ont également fait de grands progrès avec les véhicules auto-propulsés. Richard Waters a rendu compte de l'étendue des applications de l'IA dans le Financial Times : "S'il y a un message unificateur qui sous-tend la technologie grand public exposée [au Consumer Electronics Show] .... c'est : "L'IA partout."

Les succès retentissants de l'IA ont également capturé l'imagination des gens à un tel point que cela a suscité d'autres efforts d'envergure. Un exemple instructif a été documenté par Thomas H. Davenport et Rajeev Ronanki dans le Harvard Business Review. Ils écrirent, "En 2013, le MD Anderson Cancer Center a lancé un projet ""Moon shot " : diagnostiquer et recommander des plans de traitement pour certaines formes de cancer en utilisant le système cognitif Watson d'IBM". Malheureusement, ce système n'a pas fonctionné et en 2017 le projet fut mis en veilleuse après avoir coûté plus de 62 millions de dollars sans avoir été utilisé pour les patients.

Waters a également abordé un autre message, celui des attentes modérées. En ce qui concerne les "assistants personnels à commande vocale", note-t-elle, "on ne sait pas encore si la technologie est capable de remplacer le smartphone pour naviguer dans le monde numérique autrement autrement que pour écouter de la musique ou vérifier les nouvelles et la météo".

D'autres exemples de prévisions modérées abondent. Generva Allen du Baylor College of Medicine et de l'Université Rice a avertit , "Je ne ferais pas confiance à une très grande partie des découvertes actuellement faites qui utilisent des techniques de machine learning appliquées à de grands ensembles de données". Le problème, c'est que bon nombre des techniques sont conçues pour fournir des réponses précises et que la recherche comporte des incertitudes. Elle a précisé : "Parfois, il serait beaucoup plus utile qu'ils reconnaissent que certains sont vraiment consolidés, mais qu'on est pas sûr pour beaucoup d'autres".

Pire encore, dans les cas extrêmes, l'IA n'est pas seulement sous-performante ; elle n'a même pas encore été mise en œuvre. Le FT rapporte, "Quatre jeunes entreprises européennes sur dix n'utilisent aucun programme d'intelligence artificielle dans leurs produits, selon un rapport qui souligne le battage publicitaire autour de cette technologie.

Les cycles d'attentes excessives suivies de vagues de déception ne sont pas surprenants pour ceux qui ont côtoyé l'intelligence artificielle pendant un certain temps. Ils savent que ce n'est pas le premier rodéo de l'IA. En effet, une grande partie du travail conceptuel date des années 1950. D'ailleurs, en passant en revue certaines de mes notes récentes je suis tombé sur une pièce qui explorait les réseaux neuronaux dans le but de choisir des actions - datant de 1993.

La meilleure façon d'avoir une perspective sur l'IA est d'aller directement à la source et Martin Ford nous en donne l'occasion dans son livre, Architects of Intelligence. Organisé sous la forme d'une succession d'entrevues avec des chercheurs, des universitaires et des entrepreneurs de premier plan de l'industrie, le livre présente un historique utile de l'IA et met en lumière les principaux courants de pensée.

Deux perspectives importantes se dégagent de ce livre.

La première est qu'en dépit des origines et des personnalités disparates des personnes interrogées, il existe un large consensus sur des sujets importants.

L'autre est qu'un grand nombre des priorités et des préoccupations des principales recherches sur l'IA sont bien différentes de celles exprimées dans les médias grand public.

Prenons par exemple le concept d'intelligence générale artificielle (AGI). Qui est étroitement lié à la notion de "singularité" ce point où l'IA rejoindra celle de l'homme - avant un dépassement massif de cette dernière. Cette idée et d'autres ont suscité des préoccupations au sujet de l'IA, tout comme les pertes massives d'emplois, les drones tueurs et une foule d'autres manifestations alarmantes.

Les principaux chercheurs en AI ont des points de vue très différents ; ils ne sont pas du tout perturbés par l'AGI et autres alarmismes.

Geoffrey Hinton, professeur d'informatique à l'Université de Toronto et vice-président et chercheur chez Google, dit : "Si votre question est : Quand allons-nous obtenir un commandant-docteur Data (comme dans Star Trek ) je ne crois pas que ce sera comme çà que ça va se faire. Je ne pense pas qu'on aura des programmes uniques et généralistes comme ça."

Yoshua Bengio, professeur d'informatique et de recherche opérationnelle à l'Université de Montréal, nous dit qu'il y a des problèmes très difficiles et que nous sommes très loin de l'IA au niveau humain. Il ajoute : "Nous sommes tous excités parce que nous avons fait beaucoup de progrès dans cette ascension, mais en nous approchant du sommet, nous apercevons d'autres collines qui s'élèvent devant nous au fur et à mesure".

Barbara Grosz, professeur de sciences naturelles à l'Université de Harvard : "Je ne pense pas que l'AGI soit la bonne direction à prendre". Elle soutient que la poursuite de l'AGI (et la gestion de ses conséquences) sont si loin dans l'avenir qu'elles ne sont que "distraction".

Un autre fil conducteur des recherches sur l'IA est la croyance que l'IA devrait être utilisée pour améliorer le travail humain plutôt que le remplacer.

Cynthia Breazeal, directrice du groupe de robots personnels du laboratoire de médias du MIT, aborde la question : "La question est de savoir quelle est la synergie, quelle est la complémentarité, quelle est l'amélioration qui permet d'étendre nos capacités humaines en termes d'objectifs, ce qui nous permet d'avoir vraiment un plus grand impact dans le monde, avec l'IA."

Fei-Fei Li, professeur d'informatique à Stanford et scientifique en chef pour Google Cloud dit lui : "L'IA en tant que technologie a énormément de potentiel pour valoriser et améliorer le travail, sans le remplacer".

James Manyika, président du conseil et directeur du McKinsey Global Institute, fait remarquer que puisque 60 % des professions ont environ un tiers de leurs activités qui sont automatisables et que seulement environ 10 % des professions ont plus de 90 % automatisables, "beaucoup plus de professions seront complétées ou augmentées par des technologies qu'elles ne seront remplacées".

De plus, l'IA ne peut améliorer le travail humain que si elle peut travailler efficacement de concert avec lui.

Barbara Grosz fait remarquer : "J'ai dit à un moment donné que 'les systèmes d'IA sont meilleurs s'ils sont conçus en pensant aux gens'". Je recommande que nous visions à construire un système qui soit un bon partenaire d'équipe et qui fonctionne si bien avec nous que nous ne nous rendions pas compte qu'il n'est pas humain".

David Ferrucci, fondateur d'Elemental Cognition et directeur d'IA appliquée chez Bridgewater Associates, déclare : " L'avenir que nous envisageons chez Elemental Cognition repose sur une collaboration étroite et fluide entre l'intelligence humaine et la machine. "Nous pensons que c'est un partenariat de pensée." Yoshua Bengio nous rappelle cependant les défis à relever pour former un tel partenariat : "Il ne s'agit pas seulement de la précision [avec l'IA], il s'agit de comprendre le contexte humain, et les ordinateurs n'ont absolument aucun indice à ce sujet."

Il est intéressant de constater qu'il y a beaucoup de consensus sur des idées clés telles que l'AGI n'est pas un objectif particulièrement utile en ce moment, l'IA devrait être utilisée pour améliorer et non remplacer le travail et l'IA devrait fonctionner en collaboration avec des personnes. Il est également intéressant de constater que ces mêmes leçons sont confirmées par l'expérience des entreprises.

Richard Waters décrit comment les implémentations de l'intelligence artificielle en sont encore à un stade assez rudimentaire.

Éliminez les recherches qui monopolisent les gros titres (un ordinateur qui peut battre les humains au Go !) et la technologie demeure à un stade très primaire .

Mais au-delà de cette "consumérisation" de l'IT, qui a mis davantage d'outils faciles à utiliser entre les mains, la refonte des systèmes et processus internes dans une entreprise demande beaucoup de travail.

Ce gros travail prend du temps et peu d'entreprises semblent présentes sur le terrain. Ginni Rometty, responsable d'IBM, qualifie les applications de ses clients d'"actes aléatoires du numérique" et qualifie nombre de projets de "hit and miss". (ratages). Andrew Moore, responsable de l'intelligence artificielle pour les activités de Google Cloud business, la décrit comme "intelligence artificielle artisanale". Rometty explique : "Ils ont tendance à partir d'un ensemble de données isolé ou d'un cas d'utilisation - comme la rationalisation des interactions avec un groupe particulier de clients. Tout ceci n'est pas lié aux systèmes, données ou flux de travail plus profonds d'une entreprise, ce qui limite leur impact."

Bien que le cas HBR du MD Anderson Cancer Center soit un bon exemple d'un projet d'IA "au clair de lune "qui a probablement dépassé les bornes, cela fournit également une excellente indication des types de travail que l'IA peut améliorer de façon significative. En même temps que le centre essayait d'appliquer l'IA au traitement du cancer, son "groupe informatique expérimentait l'utilisation des technologies cognitives pour des tâches beaucoup moins ambitieuses, telles que faire des recommandations d'hôtels et de restaurants pour les familles des patients, déterminer quels patients avaient besoin d'aide pour payer leurs factures, et résoudre les problèmes informatiques du personnel".

Dans cette entreprise, le centre a eu de bien meilleures expériences : "Les nouveaux systèmes ont contribué à accroître la satisfaction des patients, à améliorer le rendement financier et à réduire le temps consacré à la saisie fastidieuse des données par les gestionnaires de soins de l'hôpital. De telles fonctions banales ne sont peut-être pas exactement du ressort de Terminator, mais elles sont quand même importantes.

Optimiser l'IA dans le but d'augmenter le travail en collaborant avec les humains était également le point central d'une pièce de H. James Wilson et Paul R. Daugherty "HBRpiece". Ils soulignent : "Certes, de nombreuses entreprises ont utilisé l'intelligence artificielle pour automatiser leurs processus, mais celles qui l'utilisent principalement pour déplacer leurs employés ne verront que des gains de productivité à court terme. Grâce à cette intelligence collaborative, l'homme et l'IA renforcent activement les forces complémentaires de l'autre : le leadership, le travail d'équipe, la créativité et les compétences sociales de la première, la rapidité, l'évolutivité et les capacités quantitatives de la seconde".

Wilson et Daugherty précisent : "Pour tirer pleinement parti de cette collaboration, les entreprises doivent comprendre comment les humains peuvent le plus efficacement augmenter les machines, comment les machines peuvent améliorer ce que les humains font le mieux, et comment redéfinir les processus commerciaux pour soutenir le partenariat". Cela demande beaucoup de travail et cela va bien au-delà du simple fait de balancer un système d'IA dans un environnement de travail préexistant.

Les idées des principaux chercheurs en intelligence artificielle, combinées aux réalités des applications du monde réel, offrent des implications utiles. La première est que l'IA est une arme à double tranchant : le battage médiatique peut causer des distractions et une mauvaise attribution, mais les capacités sont trop importantes pour les ignorer.

Ben Hunt discute des rôles de la propriété intellectuelle (PI) et de l'intelligence artificielle dans le secteur des investissements, et ses commentaires sont largement pertinents pour d'autres secteurs. Il note : "L'utilité de la propriété intellectuelle pour préserver le pouvoir de fixation des prix est beaucoup moins fonction de la meilleure stratégie que la PI vous aide à établir, et beaucoup plus fonction de la façon dont la propriété intellectuelle s'intègre dans le l'esprit du temps (Zeitgeist) dominant dans votre secteur.

Il poursuit en expliquant que le "POURQUOI" de votre PI doit "répondre aux attentes de vos clients quant au fonctionnement de la PI" afin de protéger votre produit. Si vous ne correspondez pas à l'esprit du temps, personne ne croira que les murs de votre château existent, même si c'est le cas". Dans le domaine de l'investissement (et bien d'autres encore), "PERSONNE ne considère plus le cerveau humain comme une propriété intellectuelle défendable. Personne." En d'autres termes, si vous n'utilisez pas l'IA, vous n'obtiendrez pas de pouvoir de fixation des prix, quels que soient les résultats réels.

Cela fait allusion à un problème encore plus grave avec l'IA : trop de gens ne sont tout simplement pas prêts à y faire face.

Daniela Rus, directrice du laboratoire d'informatique et d'intelligence artificielle (CSAIL) du MIT déclare : "Je veux être une optimiste technologique. Je tiens à dire que je vois la technologie comme quelque chose qui a le potentiel énorme d'unir les gens plutôt que les diviser, et de les autonomiser plutôt que de les désolidariser. Mais pour y parvenir, nous devons faire progresser la science et l'ingénierie afin de rendre la technologie plus performante et plus utilisable." Nous devons revoir notre façon d'éduquer les gens afin de nous assurer que tous ont les outils et les compétences nécessaires pour tirer parti de la technologie.

Yann Lecun ajoute : "Nous n'aurons pas de large diffusion de la technologie de l'IA à moins qu'une proportion importante de la population ne soit formée pour en tirer parti ".

Cynthia Breazeal répéte : "Dans une société de plus en plus alimentée par l'IA, nous avons besoin d'une société alphabétisée à l'IA."

Ce ne sont pas non plus des déclarations creuses ; il existe une vaste gamme de matériel d'apprentissage gratuit pour l'IA disponible en ligne pour encourager la participation sur le terrain.

Si la société ne rattrape pas la réalité de l'IA, il y aura des conséquences.

Brezeal note : "Les craintes des gens à propos de l'IA peuvent être manipulées parce qu'ils ne la comprennent pas."

Lecun souligne : " Il y a une concentration du pouvoir. À l'heure actuelle, la recherche sur l'IA est très publique et ouverte, mais à l'heure actuelle, elle est largement déployée par un nombre relativement restreint d'entreprises. Il faudra un certain temps avant que ce ne soit utilisé par une plus grande partie de l'économie et c'est une redistribution des cartes du pouvoir."

Hinton souligne une autre conséquence : "Le problème se situe au niveau des systèmes sociaux et la question de savoir si nous allons avoir un système social qui partage équitablement... Tout cela n'a rien à voir avec la technologie".

À bien des égards, l'IA est donc un signal d'alarme. En raison de l'interrelation unique de l'IA avec l'humanité, l'IA a tendance à faire ressortir ses meilleurs et ses pires éléments. Certes, des progrès considérables sont réalisés sur le plan technologique, ce qui promet de fournir des outils toujours plus puissants pour résoudre des problèmes difficiles. Cependant, ces promesses sont également limitées par la capacité des gens, et de la société dans son ensemble, d'adopter les outils d'IA et de les déployer de manière efficace.

Des preuves récentes suggèrent que nous avons du pain sur la planche pour nous préparer à une société améliorée par l'IA. Dans un cas rapporté par le FT, UBS a créé des "algorithmes de recommandation" (tels que ceux utilisés par Netflix pour les films) afin de proposer des transactions pour ses clients. Bien que la technologie existe, il est difficile de comprendre en quoi cette application est utile à la société, même de loin.

Dans un autre cas, Richard Waters nous rappelle : "Cela fait presque dix ans, par exemple, que Google a fait trembler le monde de l'automobile avec son premier prototype de voiture autopropulsée". Il continue : "La première vague de la technologie des voitures sans conducteur est presque prête à faire son entrée sur le marché, mais certains constructeurs automobiles et sociétés de technologie ne semblent plus aussi désireux de faire le grand saut. Bref, ils sont menacés parce que la technologie actuelle est à "un niveau d'autonomie qui fait peur aux constructeurs automobiles, mais qui fait aussi peur aux législateurs et aux régulateurs".

En résumé, que vous soyez investisseur, homme d'affaires, employé ou consommateur, l'IA a le potentiel de rendre les choses bien meilleures - et bien pires. Afin de tirer le meilleur parti de cette opportunité, un effort actif axé sur l'éducation est un excellent point de départ. Pour que les promesses d'AI se concrétisent, il faudra aussi déployer beaucoup d'efforts pour mettre en place des infrastructures de systèmes et cartographier les forces complémentaires. En d'autres termes, il est préférable de considérer l'IA comme un long voyage plutôt que comme une destination à court terme.

Auteur: Internet

Info: Zero Hedge, Ven, 03/15/2019 - 21:10

[ prospective ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Opinion: Pourquoi la science a besoin de la philosophe

Malgré les liens historiques étroits entre la science et la philosophie, les scientifiques d'aujourd'hui perçoivent souvent la philosophie comme complètement différente, voire antagoniste, de la science. Nous soutenons ici que, au contraire, la philosophie peut avoir un impact important et productif sur la science.

Nous illustrons notre propos par trois exemples tirés de divers domaines des sciences de la vie contemporaines. Chacun d'entre eux concerne la recherche scientifique de pointe, et chacun ayant été explicitement reconnu par les chercheurs en exercice comme une contribution utile à la science. Ces exemples, et d'autres, montrent que la contribution de la philosophie peut prendre au moins quatre formes : la clarification des concepts scientifiques, l'évaluation critique des hypothèses ou des méthodes scientifiques, la formulation de nouveaux concepts et de nouvelles théories, et la promotion du dialogue entre les différentes sciences, ainsi qu'entre la science et la société.

Clarification conceptuelle et cellules souches.

Tout d'abord, la philosophie offre une clarification conceptuelle. Les clarifications conceptuelles améliorent non seulement la précision et l'utilité des termes scientifiques, mais conduisent également à de nouvelles recherches expérimentales, car le choix d'un cadre conceptuel donné contraint fortement la façon dont les expériences sont conçues.

La définition des cellules souches (stem cells) en est un excellent exemple. La philosophie a une longue tradition d'étude des propriétés, et les outils utilisés dans cette tradition ont récemment été appliqués pour décrire la "souche", propriété qui définit les cellules souches. L'un d'entre nous a montré que quatre types de propriétés différentes existent sous cette dénomination de souche (stemness) au vu des connaissances scientifiques actuelles. Selon le type de tissu, la stemness peut être une propriété catégorielle (propriété intrinsèque de la cellule souche, indépendante de son environnement), une propriété dispositionnelle (propriété intrinsèque de la cellule souche qui est contrôlée par le micro-environnement), une propriété relationnelle (propriété extrinsèque qui peut être conférée aux cellules non souches par le microenvironnement), ou une propriété systémique (propriété qui est maintenue et contrôlée au niveau de la population cellulaire entière).

Hans Clevers, chercheur en biologie des cellules souches et du cancer, note que cette analyse philosophique met en lumière d'importants problèmes sémantiques et conceptuels en oncologie et en biologie des cellules souches ; il suggère également que cette analyse soit facilement applicable à l'expérimentation. En effet, au-delà de la clarification conceptuelle, ce travail philosophique a des applications dans le monde réel, comme l'illustre le cas des cellules souches cancéreuses en oncologie.

Les recherches visant à développer des médicaments ciblant soit les cellules souches cancéreuses, soit leur microenvironnement, reposent en fait sur différents types de souches et sont donc susceptibles d'avoir des taux de réussite différents selon le type de cancer. En outre, elles pourraient ne pas couvrir tous les types de cancer, car les stratégies thérapeutiques actuelles ne tiennent pas compte de la définition systémique de la souche. Déterminer le type de souche présent dans chaque tissu et chaque cancer est donc utile pour orienter le développement et le choix des thérapies anticancéreuses. Dans la pratique, ce cadre a conduit à la recherche de thérapies anticancéreuses qui combinent le ciblage des propriétés intrinsèques des cellules souches cancéreuses, de leur microenvironnement et des points de contrôle immunitaires afin de couvrir tous les types possibles de souches.

En outre, ce cadre philosophique a récemment été appliqué à un autre domaine, l'étude des organoïdes (tissus en 3D dérivés de cellules souches, sont capables de s'auto-organiser et de reproduire certaines fonctions d'un organe.). Dans une revue systémique des données expérimentales sur les organoïdes provenant de diverses sources, Picollet-D'hahan et al. ont caractérisé la capacité à former des organoïdes comme une propriété dispositionnelle. Ils ont pu alors affirmer que pour accroître l'efficacité et la reproductibilité de la production d'organoïdes, actuellement un défi majeur dans le domaine, les chercheurs doivent mieux comprendre la partie intrinsèque de la propriété dispositionnelle qui est influencée par le microenvironnement. Pour distinguer les caractéristiques intrinsèques des cellules qui ont une telle disposition, ce groupe développe actuellement des méthodes de génomique fonctionnelle à haut débit, permettant d'étudier le rôle de pratiquement tous les gènes humains dans la formation des organoïdes.

Immunogénicité et microbiome.

En complément de son rôle dans la clarification conceptuelle, la philosophie peut contribuer à la critique des hypothèses scientifiques et peut même être proactive dans la formulation de théories nouvelles, testables et prédictives qui aident à définir de nouvelles voies pour la recherche empirique.

Par exemple, une critique philosophique du cadre du cadre immunitaire du soi et du non-soi a conduit à deux contributions scientifiques importantes. Tout d'abord, elle a servi de base à la formulation d'un nouveau cadre théorique, la théorie de la discontinuité de l'immunité, qui complète les modèles antérieurs du non-soi et du danger en proposant que le système immunitaire réagisse aux modifications soudaines des motifs antigéniques. Cette théorie éclaire de nombreux phénomènes immunologiques importants, notamment les maladies auto-immunes, les réponses immunitaires aux tumeurs et la tolérance immunologique à des ligands exprimés de façon chronique. La théorie de la discontinuité a été appliquée à une multitude de questions, aidant à explorer les effets des agents chimiothérapeutiques sur l'immunomodulation dans le cancer et expliquant comment les cellules tueuses naturelles modifient constamment leur phénotype et leurs fonctions grâce à leurs interactions avec leurs ligands** d'une manière qui assure la tolérance aux constituants corporels. La théorie permet également d'expliquer les conséquences des vaccinations répétées chez les personnes immunodéprimées et propose des modèles mathématiques dynamiques de l'activation immunitaire. Collectivement, ces diverses évaluations empiriques illustrent comment des propositions d'inspiration philosophique peuvent conduire à des expériences inédites, ouvrant ainsi de nouvelles voies de recherche.

Deuxièmement, la critique philosophique a contribué, avec d'autres approches philosophiques, à la notion selon laquelle tout organisme, loin d'être un soi génétiquement homogène, est une communauté symbiotique abritant et tolérant de multiples éléments étrangers (notamment des bactéries et des virus), qui sont reconnus mais non éliminés par son système immunitaire. La recherche sur l'intégration symbiotique et la tolérance immunitaire a des conséquences considérables sur notre conception de ce qui constitue un organisme individuel, qui est de plus en plus conceptualisé comme un écosystème complexe dont les fonctions clés, du développement à la défense, la réparation et la cognition, sont affectées par les interactions avec les microbes.

Influence sur les sciences cognitives.

L'étude de la cognition et des neurosciences cognitives offre une illustration frappante de l'influence profonde et durable de la philosophie sur la science. Comme pour l'immunologie, les philosophes ont formulé des théories et des expériences influentes, aidé à lancer des programmes de recherche spécifiques et contribué à des changements de paradigme. Mais l'ampleur de cette influence est bien plus importante que dans le cas de l'immunologie. La philosophie a joué un rôle dans le passage du behaviorisme au cognitivisme et au computationnalisme dans les années 1960. La théorie de la modularité de l'esprit, proposée par le philosophe Jerry Fodor, a peut-être été la plus visible. Son influence sur les théories de l'architecture cognitive peut difficilement être dépassée. Dans un hommage rendu après le décès de Fodor en 2017, l'éminent psychologue cognitif James Russell a parlé dans le magazine de la British Psychological Society de "psychologie cognitive du développement BF (avant Fodor) et AF (après Fodor) ".

La modularité renvoie à l'idée que les phénomènes mentaux résultent du fonctionnement de multiples processus distincts, et non d'un seul processus indifférencié. Inspiré par les résultats de la psychologie expérimentale, par la linguistique chomskienne et par les nouvelles théories computationnelles de la philosophie de l'esprit, Fodor a théorisé que la cognition humaine est structurée en un ensemble de modules spécialisés de bas niveau, spécifiques à un domaine et encapsulés sur le plan informationnel, et en un système central de plus haut niveau, général à un domaine, pour le raisonnement abductif, l'information ne circulant que verticalement vers le haut, et non vers le bas ou horizontalement (c'est-à-dire entre les modules). Il a également formulé des critères stricts de modularité. Aujourd'hui encore, la proposition de Fodor définit les termes d'une grande partie de la recherche empirique et de la théorie dans de nombreux domaines des sciences cognitives et des neurosciences, y compris le développement cognitif, la psychologie de l'évolution, l'intelligence artificielle et l'anthropologie cognitive. Bien que sa théorie ait été révisée et remise en question, les chercheurs continuent d'utiliser, de peaufiner et de débattre de son approche et de sa boîte à outils conceptuelle de base.

La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de rigueur, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes.

La tâche des fausses croyances constitue un autre exemple clé de l'impact de la philosophie sur les sciences cognitives. Le philosophe Daniel Dennett a été le premier à concevoir la logique de base de cette expérience comme une révision d'un test utilisé pour évaluer la théorie de l'esprit, la capacité d'attribuer des états mentaux à soi-même et aux autres. Cette tâche teste la capacité d'attribuer à autrui des croyances que l'on considère comme fausses, l'idée clé étant que le raisonnement sur les croyances fausses d'autrui, par opposition aux croyances vraies, exige de concevoir les autres personnes comme ayant des représentations mentales qui divergent des siennes et de la façon dont le monde est réellement. Sa première application empirique remonte à 1983 , dans un article dont le titre, "Beliefs About Beliefs : Representation and Constraining Function of Wrong Beliefs in Young Children's Understanding of Deception", est en soi un hommage direct à la contribution de Dennett.

La tâche des fausses croyances représente une expérience marquante dans divers domaines des sciences cognitives et des neurosciences, avec de vastes applications et implications. Il s'agit notamment de tester les stades du développement cognitif chez les enfants, de débattre de l'architecture de la cognition humaine et de ses capacités distinctes, d'évaluer les capacités de la théorie de l'esprit chez les grands singes, de développer des théories de l'autisme en tant que cécité de l'esprit (selon lesquelles les difficultés à réussir la tâche des fausses croyances sont associées à cette maladie), et de déterminer quelles régions particulières du cerveau sont associées à la capacité de raisonner sur le contenu de l'esprit d'une autre personne .

La philosophie a également aidé le domaine des sciences cognitives à éliminer les hypothèses problématiques ou dépassées, contribuant ainsi à l'évolution de la science. Les concepts de l'esprit, de l'intelligence, de la conscience et de l'émotion sont utilisés de manière omniprésente dans différents domaines, avec souvent peu d'accord sur leur signification. L'ingénierie de l'intelligence artificielle, la construction de théories psychologiques des variables de l'état mental et l'utilisation d'outils neuroscientifiques pour étudier la conscience et l'émotion nécessitent des outils conceptuels pour l'autocritique et le dialogue interdisciplinaire - précisément les outils que la philosophie peut fournir.

La philosophie - parfois représentée par la lettre grecque phi - peut contribuer à faire progresser tous les niveaux de l'entreprise scientifique, de la théorie à l'expérience. Parmi les exemples récents, citons les contributions à la biologie des cellules souches, à l'immunologie, à la symbiose et aux sciences cognitives.  

La philosophie et la connaissance scientifique.

Les exemples ci-dessus sont loin d'être les seuls : dans les sciences de la vie, la réflexion philosophique a joué un rôle important dans des questions aussi diverses que l'altruisme évolutif , le débat sur les unités de sélection, la construction d'un "arbre de vie", la prédominance des microbes dans la biosphère, la définition du gène et l'examen critique du concept d'innéité. De même, en physique, des questions fondamentales comme la définition du temps ont été enrichies par les travaux des philosophes. Par exemple, l'analyse de l'irréversibilité temporelle par Huw Price et les courbes temporelles fermées par David Lewis ont contribué à dissiper la confusion conceptuelle en physique.

Inspirés par ces exemples et bien d'autres, nous considérons que la philosophie et la science se situent sur un continuum. La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de minutie, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes. Les philosophes possédant les connaissances scientifiques pertinentes peuvent alors contribuer de manière significative à l'avancement de la science à tous les niveaux de l'entreprise scientifique, de la théorie à l'expérimentation, comme le montrent les exemples ci-dessus.

Mais comment, en pratique, faciliter la coopération entre chercheurs et philosophes ? À première vue, la solution pourrait sembler évidente : chaque communauté devrait faire un pas vers l'autre. Pourtant, ce serait une erreur de considérer cette tâche comme facile. Les obstacles sont nombreux. Actuellement, un nombre important de philosophes dédaignent la science ou ne voient pas la pertinence de la science pour leur travail. Même parmi les philosophes qui privilégient le dialogue avec les chercheurs, rares sont ceux qui ont une bonne connaissance de la science la plus récente. À l'inverse, peu de chercheurs perçoivent les avantages que peuvent leur apporter les idées philosophiques. Dans le contexte scientifique actuel, dominé par une spécialisation croissante et des demandes de financement et de résultats de plus en plus importantes, seul un nombre très limité de chercheurs a le temps et l'opportunité d'être au courant des travaux produits par les philosophes sur la science, et encore moins de les lire.

 Pour surmonter ces difficultés, nous pensons qu'une série de recommandations simples, assez facile à mettre en œuvre, peuvent aider à combler le fossé entre la science et la philosophie. La reconnexion entre la philosophie et la science est à la fois hautement souhaitable et plus réalisable en pratique que ne le suggèrent les décennies d'éloignement qui les séparent.

1) Laisser plus de place à la philosophie dans les conférences scientifiques. Il s'agit d'un mécanisme très simple permettant aux chercheurs d'évaluer l'utilité potentielle des idées des philosophes pour leurs propres recherches. Réciproquement, davantage de chercheurs pourraient participer à des conférences de philosophie, en développant les efforts d'organisations telles que l'International Society for the History, Philosophy, and Social Studies of Biology, la Philosophy of Science Association et la Society for Philosophy of Science in Practice.

2) Accueillir des philosophes dans des laboratoires et des départements scientifiques. Il s'agit d'un moyen efficace (déjà exploré par certains des auteurs et d'autres) pour les philosophes d'apprendre la science et de fournir des analyses plus appropriées et bien fondées, et pour les chercheurs de bénéficier d'apports philosophiques et de s'acclimater à la philosophie en général. C'est peut-être le moyen le plus efficace d'aider la philosophie à avoir un impact rapide et concret sur la science.

3) Co-superviser des doctorants. La co-supervision de doctorants par un chercheur et un philosophe est une excellente occasion de rendre possible l'enrichissement mutuel des deux domaines. Elle facilite la production de thèses qui sont à la fois riches sur le plan expérimental et rigoureuses sur le plan conceptuel et, ce faisant, elle forme la prochaine génération de philosophes-scientifiques.

4) Créer des programmes d'études équilibrés en science et en philosophie qui favorisent un véritable dialogue entre elles. De tels programmes existent déjà dans certains pays, mais leur développement devrait être une priorité absolue. Ils peuvent offrir aux étudiants en sciences une perspective qui les rend plus aptes à relever les défis conceptuels de la science moderne et fournir aux philosophes une base solide de connaissances scientifiques qui maximisera leur impact sur la science. Les programmes d'enseignement des sciences peuvent inclure un cours d'histoire des sciences et de philosophie des sciences. Les programmes de philosophie pourraient inclure un module de sciences.

5) Lire science et philosophie. La lecture des sciences est indispensable à la pratique de la philosophie des sciences, mais la lecture de la philosophie peut également constituer une grande source d'inspiration pour les chercheurs, comme l'illustrent certains des exemples ci-dessus. Par exemple, les clubs de lecture où les contributions scientifiques et philosophiques sont discutées constituent un moyen efficace d'intégrer la philosophie et la science.

6) Ouvrir de nouvelles sections consacrées aux questions philosophiques et conceptuelles dans les revues scientifiques. Cette stratégie serait un moyen approprié et convaincant de suggérer que le travail philosophique et conceptuel est continu avec le travail expérimental, dans la mesure où il est inspiré par celui-ci, et peut l'inspirer en retour. Cela rendrait également les réflexions philosophiques sur un domaine scientifique particulier beaucoup plus visibles pour la communauté scientifique concernée que lorsqu'elles sont publiées dans des revues de philosophie, qui sont rarement lues par les scientifiques.

Nous espérons que les mesures pratiques exposées ci-dessus encourageront une renaissance de l'intégration de la science et de la philosophie. En outre, nous soutenons que le maintien d'une allégeance étroite à la philosophie renforcera la vitalité de la science. La science moderne sans la philosophie se heurtera à un mur : le déluge de données dans chaque domaine rendra l'interprétation de plus en plus difficile, négligence et ampleur ampleur de l'histoire risquent de séparer davantage les sous-disciplines scientifiques, et l'accent mis sur les méthodes et les résultats empiriques entraînera une formation de moins en moins approfondie des étudiants. Comme l'a écrit Carl Woese : "une société qui permet à la biologie de devenir une discipline d'ingénierie, qui permet à la science de se glisser dans le rôle de modifier le monde vivant sans essayer de le comprendre, est un danger pour elle-même." Nous avons besoin d'une revigoration de la science à tous les niveaux, une revigoration qui nous rende les bénéfices de liens étroits avec la philosophie.

Auteur: Internet

Info: https://hal.archives-ouvertes.fr/hal-02269657/document. " janvier 2020. Publication collective de Lucie Laplane, Paolo Mantovani, Ralph Adolphs, Hasok Chang, Alberto Mantovani, Margaret McFall-Ngai, Carlo Rovelli, Elliott Sober, et Thomas Pradeua. Trad Mg

[ mécanisme ] [ état des lieux ] [ corps-esprit ] [ tétravalences ] [ tour d'horizon ]

 

Commentaires: 0

Ajouté à la BD par miguel

big brother consumériste

Nulle part où se cacher : Les collecteurs de données sont venus pour capter votre vie privée - et ils l'ont trouvée

La manière dont vos données sont stockées et partagées évolue et votre activité en ligne peut être utilisée pour vous catégoriser d'une manière qui modifie radicalement votre vie. Il existe des moyens de reprendre le contrôle.

Un vendredi de 2021, je suis entré dans un hôtel d'Exeter, au Royaume-Uni, à 17:57:35. Le lendemain matin, j'ai fait 9 minutes de route pour me rendre à l'hôpital le plus proche. J'y suis resté trois jours. Le trajet de retour, qui dure normalement 1 heure 15 minutes, a duré 1 heure 40 minutes. La raison de cette lenteur : mon tout nouveau bébé dormait à l'arrière.

Ce ne sont pas les détails d'un journal. Il s'agit plutôt de ce que Google sait de la naissance de ma fille, sur la base de mon seul historique de localisation.

Un aperçu des données de ce week-end révèle que ce n'est pas tout ce que les entreprises savent de moi. Netflix se souvient que j'ai regardé toute une série d'émissions de bien-être, dont Gilmore Girls et How to Lose a Guy in 10 Days (Comment perdre un homme en 10 jours). Instagram a enregistré que j'ai "aimé" un post sur l'induction du travail, puis que je ne me suis pas reconnectée pendant une semaine.

Et alors ? Nous savons tous maintenant que nous sommes suivis en ligne et que les données collectées sur nous sont à la fois granulaires et constantes. Peut-être aimez-vous que Netflix et Instagram connaissent si bien vos goûts en matière de cinéma et de mode.

Mais un nombre croissant d'enquêtes et de poursuites judiciaires révèlent un nouveau paysage du suivi en ligne dans lequel la portée des entreprises qui collectent des données est plus insidieuse que beaucoup d'entre nous ne le pensent. En y regardant de plus près, j'ai découvert que mes données personnelles pouvaient avoir une incidence sur tout, depuis mes perspectives d'emploi et mes demandes de prêt jusqu'à mon accès aux soins de santé. En d'autres termes, elles peuvent façonner ma vie quotidienne d'une manière dont je n'avais pas conscience. "Le problème est énorme et il y a toujours de nouvelles horreurs", déclare Reuben Binns, de l'université d'Oxford.

On pourrait vous pardonner de penser qu'avec l'introduction d'une législation comme le règlement général sur la protection des données (RGPD) - des règles de l'Union européenne mises en œuvre en 2018 qui donnent aux gens un meilleur accès aux données que les entreprises détiennent sur eux et limitent ce que les entreprises peuvent en faire - la confidentialité des données n'est plus un vrai problème. Vous pouvez toujours refuser les cookies si vous ne voulez pas être suivi, n'est-ce pas ? Mais lorsque je dis cela à Pam Dixon, du groupe de recherche à but non lucratif World Privacy Forum, elle se met à rire d'incrédulité. "Tu y crois vraiment ?" me dit-elle.

Les gratteurs de données

Des centaines d'amendes ont été infligées pour violation du GDPR, notamment à Google, British Airways et Amazon. Mais les experts en données affirment qu'il ne s'agit là que de la partie émergée de l'iceberg. Une étude réalisée l'année dernière par David Basin de l'ETH Zurich, en Suisse, a révélé que 95 % des sites web pourraient enfreindre les règles du GDPR. Même l'objectif de la législation visant à faciliter la compréhension des données que nous acceptons de fournir n'a pas été atteint. Depuis l'entrée en vigueur de la législation, les recherches montrent que les accords de confidentialité sont devenus plus compliqués, rein de moins. Et si vous pensiez que les bloqueurs de publicité et les réseaux privés virtuels (VPN) - qui masquent l'adresse IP de votre ordinateur - vous protégeaient, détrompez-vous. Bon nombre de ces services vendent également vos données.

Nous commençons à peine à saisir l'ampleur et la complexité du paysage de la traque en ligne. Quelques grands noms - Google, Meta, Amazon et Microsoft - détiennent l'essentiel du pouvoir, explique Isabel Wagner, professeur associé de cybersécurité à l'université de Bâle, en Suisse. Mais derrière ces grands acteurs, un écosystème diversifié de milliers, voire de millions, d'acheteurs, de vendeurs, de serveurs, de traqueurs et d'analyseurs partagent nos données personnelles.

Qu'est-ce que tout cela signifie pour l'utilisateur lambda que je suis ? Pour le savoir, je me suis rendu chez HestiaLabs à Lausanne, en Suisse, une start-up fondée par Paul-Olivier Dehaye, mathématicien et lanceur d'alerte clé dans le scandale de l'utilisation des données de Facebook par la société de conseil politique Cambridge Analytica. Cette société a utilisé des données personnelles pour influencer l'élection de Donald Trump à la présidence des États-Unis en 2016. L'enquête de Dehaye sur Cambridge Analytica a montré de manière frappante à quel point l'influence des entreprises qui achètent et vendent des données est profonde. Il a créé HestiaLabs pour changer cette situation.

(Photo : Votre téléphone suit votre position même si les données mobiles sont désactivées)

Avant d'arriver, j'ai demandé mes données personnelles à diverses entreprises, un processus plus compliqué qu'il ne devrait l'être à l'ère du RGPD. Je rencontre Charles Foucault-Dumas, le chef de projet de HestiaLabs, au siège de l'entreprise - un modeste espace de co-working situé en face de la gare de Lausanne. Nous nous asseyons et téléchargeons mes fichiers dans son portail sur mesure.

Mes données s'étalent devant moi, visualisées sous la forme d'une carte de tous les endroits où je suis allé, de tous les posts que j'ai aimés et de toutes les applications qui ont contacté un annonceur. Dans les lieux que je fréquente régulièrement, comme la crèche de ma fille, des centaines de points de données se transforment en taches semblables à de la peinture. À l'adresse de mon domicile, il y a une énorme cible impossible à manquer. C'est fascinant. Et un peu terrifiant.

L'une des plus grandes surprises est de savoir quelles applications de mon téléphone contactent des entreprises tierces en mon nom. Au cours de la semaine écoulée, c'est un navigateur web que j'utilise parce qu'il se décrit comme "le respect de la vie privée avant tout" qui a été le plus grand contrevenant, en contactant 29 entreprises. Mais pratiquement toutes les applications de mon téléphone, du service d'épicerie au bloc-notes virtuel, étaient occupées à contacter d'autres entreprises pendant que je vaquais à mes occupations.

En règle générale, une entreprise qui souhaite vendre un produit ou un service s'adresse à une agence de publicité, qui se met en relation avec des plates-formes chargées de la diffusion des publicités, qui utilisent des échanges publicitaires, lesquels sont reliés à des plates-formes d'approvisionnement, qui placent les publicités sur les sites web des éditeurs. Chaque fois que vous ouvrez un site web ou que vous survolez momentanément un message sur un média social, cette machine - dont la valeur est estimée à 150 milliards de livres sterling par an - se met en marche.

Que partageaient exactement ces entreprises à mon sujet ? Pour le savoir, il faudrait que je fasse des demandes auprès de chacune d'entre elles. Et même avec celles que j'ai contactées avec l'aide de HestiaLabs, ce n'est pas toujours clair.

Prenons l'exemple d'Instagram. Il m'a fourni des données montrant qu'il a enregistré 333 "intérêts" en mon nom. Certains d'entre eux sont très éloignés de la réalité : le rugby, le festival Burning Man, la promotion immobilière, et même "femme à chats". Lecteur, je n'ai jamais eu de chat. Mais d'autres sont plus précis, et un certain nombre d'entre eux, sans surprise, sont liés au fait que je suis devenue parent, qu'il s'agisse de marques telles que Huggies et Peppa Pig ou de sujets tels que les berceaux et le sevrage pour bébés.

Je me demande comment ces données ont pu affecter non seulement mes achats, mais aussi la vie de ma fille. Son amour pour le cochon rose de dessin animé est-il vraiment organique, ou ces vidéos nous ont-elles été "servies" en raison des informations qu'Instagram a transmises à mon sujet ? Est-ce que les posts sur le sevrage dirigé par les bébés se sont retrouvés partout dans mon fil d'actualité - et ont donc influencé la façon dont ma fille a été initiée à la nourriture - par hasard, ou parce que j'avais été ciblée ? Je n'ai pas accès à cette chaîne de causes et d'effets, et je ne sais pas non plus comment ces divers "intérêts" ont pu me catégoriser pour d'éventuels spécialistes du marketing.

Il est pratiquement impossible de démêler l'écheveau complexe des transactions de données dans l'ombre. Les données personnelles sont souvent reproduites, divisées, puis introduites dans des algorithmes et des systèmes d'apprentissage automatique. En conséquence, explique M. Dixon, même avec une législation comme le GDPR, nous n'avons pas accès à toutes nos données personnelles. "Nous avons affaire à deux strates de données. Il y a celles qui peuvent être trouvées", dit-elle. "Mais il y a une autre strate que vous ne pouvez pas voir, que vous n'avez pas le droit légal de voir - aucun d'entre nous ne l'a."

Profilage personnel

Des rapports récents donnent un aperçu de la situation. En juin, une enquête de The Markup a révélé que ce type de données cachées est utilisé par les publicitaires pour nous classer en fonction de nos convictions politiques, de notre état de santé et de notre profil psychologique. Pourrais-je être considérée comme une "mère accro au portable", une "indulgente", une "facilement dégonflée" ou une "éveillée" ? Je n'en ai aucune idée, mais je sais qu'il s'agit là de catégories utilisées par les plateformes publicitaires en ligne.

Il est troublant de penser que je suis stéréotypée d'une manière inconnue. Une autre partie de moi se demande si cela a vraiment de l'importance. Je comprends l'intérêt d'une publicité qui tient compte de mes préférences, ou de l'ouverture de mon application de cartographie qui met en évidence des restaurants et des musées qui pourraient m'intéresser ou que j'ai déjà visités. Mais croyez-moi, il y a peu de façons de faire grimacer un expert en données plus rapidement qu'avec la désinvolture de ce compromis.

D'une part, l'utilisation de ces données va bien au-delà de la vente de publicité, explique M. Dixon. Quelque chose d'apparemment anodin comme le fait de faire des achats dans des magasins discount (signe d'un revenu inférieur) ou d'acheter des articles de sport (signe que vous faites de l'exercice) peut avoir une incidence sur tout, de l'attrait de votre candidature à l'université au montant de votre assurance maladie. "Il ne s'agit pas d'une simple publicité", précise M. Dixon. "Il s'agit de la vie réelle.

Une législation récente aux États-Unis a contraint certaines de ces entreprises à entrer dans la lumière. Le Vermont's 2018 Data Broker Act, par exemple, a révélé que les courtiers en données enregistrés dans l'État - mais qui sont également actifs ailleurs - vendent des informations personnelles à des propriétaires et des employeurs potentiels, souvent par l'intermédiaire de tierces parties. En juillet, le Bureau américain de protection financière des consommateurs a appris que cette deuxième strate cachée de données comprenait également des informations utilisées pour établir un "score de consommation", employé de la même manière qu'un score de crédit. "Les choses que vous avez faites, les sites web que vous avez visités, les applications que vous utilisez, tout cela peut alimenter des services qui vérifient si vous êtes un locataire convenable ou décident des conditions à vous offrir pour un prêt ou une hypothèque", explique M. Binns.

À HestiaLabs, je me rends compte que j'ai moi aussi été concrètement affectée, non seulement par les publicités que je vois, mais aussi par la façon dont les algorithmes ont digéré mes données. Dans les "inférences" de LinkedIn, je suis identifiée à la fois comme "n'étant pas un leader humain" et "n'étant pas un leader senior". Et ce, bien que j'aie dirigé une équipe de 20 personnes à la BBC et que j'aie été rédacteur en chef de plusieurs sites de la BBC auparavant - des informations que j'ai moi-même introduites dans LinkedIn. Comment cela peut-il affecter mes opportunités de carrière ? Lorsque j'ai posé la question à LinkedIn, un porte-parole m'a répondu que ces déductions n'étaient pas utilisées "de quelque manière que ce soit pour informer les suggestions de recherche d'emploi".

Malgré cela, nous savons, grâce à des poursuites judiciaires, que des données ont été utilisées pour exclure les femmes des annonces d'emploi dans le secteur de la technologie sur Facebook. En conséquence, le propriétaire de la plateforme, Meta, a cessé d'offrir cette option aux annonceurs en 2019. Mais les experts en données affirment qu'il existe de nombreuses solutions de contournement, comme le fait de ne cibler que les personnes ayant des intérêts stéréotypés masculins. "Ces préjudices ne sont pas visibles pour les utilisateurs individuels à ce moment-là. Ils sont souvent très abstraits et peuvent se produire longtemps après", explique M. Wagner.

À mesure que les données collectées sur notre vie quotidienne prolifèrent, la liste des préjudices signalés par les journaux ne cesse de s'allonger. Des applications de suivi de l'ovulation - ainsi que des messages textuels, des courriels et des recherches sur le web - ont été utilisés pour poursuivre des femmes ayant avorté aux États-Unis depuis que l'arrêt Roe v Wade a été annulé l'année dernière. Des prêtres ont été démasqués pour avoir utilisé l'application de rencontres gay Grindr. Un officier militaire russe a même été traqué et tué lors de sa course matinale, prétendument grâce à des données accessibles au public provenant de l'application de fitness Strava. La protection des données est censée prévenir bon nombre de ces préjudices. "Mais il y a manifestement une énorme lacune dans l'application de la loi", déclare M. Binns.

Le problème réside en partie d'un manque de transparence. De nombreuses entreprises s'orientent vers des modèles "préservant la vie privée", qui divisent les points de données d'un utilisateur individuel et les dispersent sur de nombreux serveurs informatiques, ou les cryptent localement. Paradoxalement, il est alors plus difficile d'accéder à ses propres données et d'essayer de comprendre comment elles ont été utilisées.

Pour sa part, M. Dehaye, de HestiaLabs, est convaincu que ces entreprises peuvent et doivent nous rendre le contrôle. "Si vous allez consulter un site web en ce moment même, en quelques centaines de millisecondes, de nombreux acteurs sauront qui vous êtes et sur quel site vous avez mis des chaussures dans un panier d'achat il y a deux semaines. Lorsque l'objectif est de vous montrer une publicité pourrie, ils sont en mesure de résoudre tous ces problèmes", explique-t-il. Mais lorsque vous faites une demande de protection de la vie privée, ils se disent : "Oh, merde, comment on fait ça ?".

Il ajoute : "Mais il y a un moyen d'utiliser cette force du capitalisme qui a résolu un problème dans une industrie de plusieurs milliards de dollars pour vous - pas pour eux".

J'espère qu'il a raison. En marchant dans Lausanne après avoir quitté HestiaLabs, je vois un homme qui s'attarde devant un magasin de couteaux, son téléphone rangé dans sa poche. Une femme élégante porte un sac Zara dans une main, son téléphone dans l'autre. Un homme devant le poste de police parle avec enthousiasme dans son appareil.

Pour moi, et probablement pour eux, ce sont des moments brefs et oubliables. Mais pour les entreprises qui récoltent les données, ce sont des opportunités. Ce sont des signes de dollars. Et ce sont des points de données qui ne disparaîtront peut-être jamais.

Reprendre le contrôle

Grâce aux conseils de M. Dehaye et des autres experts que j'ai interrogés, lorsque je rentre chez moi, je vérifie mes applications et je supprime celles que je n'utilise pas. Je supprime également certaines de celles que j'utilise mais qui sont particulièrement désireuses de contacter des entreprises, en prévoyant de ne les utiliser que sur mon ordinateur portable. (J'ai utilisé une plateforme appelée TC Slim pour me dire quelles entreprises mes applications contactent). J'installe également un nouveau navigateur qui (semble-t-il) accorde la priorité à la protection de la vie privée. Selon M. Wagner, les applications et les navigateurs open source et à but non lucratif peuvent constituer des choix plus sûrs, car ils ne sont guère incités à collecter vos données.

Je commence également à éteindre mon téléphone plus souvent lorsque je ne l'utilise pas. En effet, votre téléphone suit généralement votre position même lorsque les données mobiles et le Wi-Fi sont désactivés ou que le mode avion est activé. De plus, en me connectant à mes préférences Google, je refuse d'enregistrer l'historique de mes positions, même si la nostalgie - pour l'instant - m'empêche de demander que toutes mes données antérieures soient supprimées.

Nous pouvons également réinitialiser notre relation avec le suivi en ligne en changeant notre façon de payer, explique Mme Dixon. Elle suggère d'utiliser plusieurs cartes de crédit et d'être "très prudent" quant au portefeuille numérique que nous utilisons. Pour les achats susceptibles de créer un signal "négatif", comme ceux effectués dans un magasin discount, il est préférable d'utiliser de l'argent liquide, si possible. M. Dixon conseille également de ne pas utiliser d'applications ou de sites web liés à la santé, si possible. "Ce n'est tout simplement pas un espace clair et sûr", dit-elle.

En réalité, quelles que soient les mesures que vous prenez, les entreprises trouveront toujours de nouveaux moyens de contourner le problème. "C'est un jeu où l'on ne peut que perdre", affirme M. Dehaye. C'est pourquoi la solution ne dépend pas des individus. "Il s'agit d'un véritable changement de société.

En réunissant suffisamment de voix individuelles, M. Dehaye pense que nous pouvons changer le système - et que tout commence par le fait que vous demandiez vos données. Dites aux entreprises : "Si vous vous dérobez, notre confiance est perdue"", déclare-t-il. "Et dans ce monde de données, si les gens ne font pas confiance à votre entreprise, vous êtes mort.

Auteur: Ruggeri Amanda

Info: https://blog.shiningscience.com/2023/08/nowhere-to-hide-data-harvesters-came.html, 26 août 2023

[ idiosyncrasie numérique ] [ capitalisme de surveillance ] [ internet marchand ]

 

Commentaires: 0

Ajouté à la BD par miguel