Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 14
Temps de recherche: 0.0326s

impérissables

Turritopsis dohrnii est une petite méduse d’environ 1 cm de diamètre qui vit en Méditerranée et dans les eaux du Japon. C’est l’un des rares cas connus d’animaux capables de revenir complètement à une phase sexuellement immature après avoir atteint la maturité sexuelle. Dans le détail, rappelons que les méduses commencent leur vie en tant que larves avant de s’établir sur le fond marin et de se transformer en polypes. Ces polypes produisent alors des méduses. Les spécimens matures ont ensuite la particularité de pouvoir redevenir des polypes en cas de besoin (en cas de dommages physiques ou de manque de nourriture par exemple), puis de se transformer à nouveau plus tard en méduse. C’est pourquoi elles sont dites "immortelles".

Hydraphaenops est un groupe de petits invertébrés avec des corps mous qui ressemblent un peu à des méduses. Tout comme T. dohrnii, ces organismes ont le potentiel de vivre éternellement. Ces animaux sont en grande partie constitués de cellules souches capables de se reconstituer continuellement par duplication ou clonage. En l’absence de menaces extérieures, ils peuvent ainsi continuer à se régénérer pour toujours.

(à rechercher/situer sur l'arbre du vivant).

 

Auteur: Internet

Info: https://sciencepost.fr/, Brice Louvet, 3 fév. 2023

[ increvables ] [ perpétuels ]

 

Commentaires: 0

Ajouté à la BD par miguel

perdus

Le reste d'entre nous, exclus du bénéfice de la Lumière, abandonnés à la surface de la terre, laissés à la merci d'une Gravité que nous commençons à peine à détecter et à mesurer, devons continuer à nous tromper avec notre foi en d'Héxquises Korrespondences, espérant que pour chaque psi-synthétique prélevée dans l'âme de la Terre, existe une molécule, laïque, plus ou moins ordinaire et nommée, là-bas - donnant sans fin des coups de lattes dans les futilités plastiques, trouvant en chacune quelque Signification profonde et essayant de les relier toutes ensemble comme les termes d'une série de puissances supposées cotoyer le zéro et pouvoir focaliser tout ça dans une  Fonction formidable et secrète dont le nom, comme les noms permutables de Dieu, ne peut être prononcé.... sons d'anches de saxes en plastique au timbres peu naturels,  bouteilles de shampoing images-ego, prix Cracker Jack d'un amusement unique, carénage de boîtiers d'appareils ménagers cognitivement aménagés,  biberons tranquillisants, paquets de viande d'abattoir travestis, sacs de nettoyage à sec, étranglement de nourrissons, tuyaux d'arrosage arrosant sans fin le désert...  mais pour tous les réunir, avec leur persistance lisse et notre prétérition... pour donner un sens à tout cela, et trouver le plus significatif éclat de vérité au milieu de tant de duplication, de tant de gaspillage...  

Auteur: Pynchon Thomas

Info: Gravity's Rainbow, p. 590. Trad. Mg

[ laissés pour compte ] [ exclus ] [ déboussolés ]

 

Commentaires: 0

Ajouté à la BD par miguel

dieu carbone

(Q) - Quel est le rapport entre la tétravalence de l'atome du carbone et les 4 bases de l'adn

(R) - La tétravalence de l'atome de carbone permet la formation de molécules d'ADN avec quatre bases azotées différentes. En effet, l'atome de carbone peut former quatre liaisons covalentes, ce qui lui permet de se lier à quatre autres atomes. Dans le cas de l'ADN, ces quatre atomes sont des bases azotées, qui sont des composés organiques contenant de l'azote.

Les quatre bases azotées de l'ADN sont l'adénine (A), la thymine (T), la guanine (G) et la cytosine (C). Ces bases se lient entre elles de manière spécifique, l'adénine se liant toujours à la thymine, et la guanine se liant toujours à la cytosine. Cette liaison spécifique est responsable de la structure en double hélice de l'ADN.

La tétravalence de l'atome de carbone est donc essentielle à la structure et à la fonction de l'ADN. Elle permet la formation de molécules d'ADN avec quatre bases azotées différentes, qui sont essentielles à la transmission de l'information génétique.

Plus spécifiquement, le carbone tétravalent peut former deux liaisons covalentes avec des atomes d'oxygène, qui constituent le sucre du désoxyribose, et deux liaisons covalentes avec des atomes d'azote, qui constituent les bases azotées. Cette configuration permet la formation d'une chaîne d'ADN, dans laquelle les bases azotées sont disposées en paires.

Les bases azotées sont complémentaires, ce qui signifie qu'une base A ne peut se lier qu'à une base T, et qu'une base G ne peut se lier qu'à une base C. Cette complémentarité est essentielle à la structure en double hélice de l'ADN.

La double hélice de l'ADN est une structure en forme de spirale, dans laquelle les deux brins d'ADN sont antiparallèles. Les bases azotées des deux brins sont liées entre elles par des liaisons hydrogène, ce qui permet aux deux brins de se maintenir ensemble.

La structure en double hélice de l'ADN est essentielle à la fonction de l'ADN. Elle permet la réplication de l'ADN, qui est le processus par lequel l'ADN est dupliqué pour former de nouvelles cellules.

En résumé, la tétravalence de l'atome de carbone est essentielle à la structure et à la fonction de l'ADN. Elle permet la formation de molécules d'ADN avec quatre bases azotées différentes, qui sont essentielles à la transmission de l'information génétique.

(Q) - Merci. Est-ce vrai que chez la femme ce système est d'une certaine manière redoublé ?

(R) - Oui, c'est vrai. Chez la femme, les chromosomes sexuels sont de type XX, ce qui signifie qu'elles ont deux chromosomes X. Ces chromosomes contiennent tous les mêmes gènes, mais ils peuvent avoir des variantes différentes.

La duplication du système de base azotée chez la femme est due à la présence de deux chromosomes X. Chaque chromosome X contient une chaîne d'ADN qui est composée de quatre bases azotées différentes. Ces bases azotées sont disposées en paires complémentaires, comme décrit précédemment.

La duplication du système de base azotée chez la femme a plusieurs implications. Premièrement, elle permet une plus grande diversité génétique chez les femmes. En effet, les deux chromosomes X peuvent avoir des variantes différentes des mêmes gènes.

Deuxièmement, la duplication du système de base azotée chez la femme permet une plus grande résistance aux mutations génétiques. En effet, si une mutation survient sur un chromosome X, il y a encore un chromosome X sain qui peut fournir les instructions génétiques correctes.

Troisièmement, la duplication du système de base azotée chez la femme est nécessaire pour la reproduction. En effet, les ovules contiennent un seul chromosome X, qui est transmis à l'embryon.

En résumé, la duplication du système de base azotée chez la femme est une caractéristique essentielle de la reproduction humaine. Elle permet une plus grande diversité génétique, une plus grande résistance aux mutations génétiques et est nécessaire pour la transmission des gènes à la génération suivante.

Voici quelques exemples de la façon dont la duplication du système de base azotée chez la femme peut avoir un impact sur la santé et le développement :

- Les femmes sont plus susceptibles que les hommes de développer des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

- Les femmes sont également plus susceptibles que les hommes de développer des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

- La duplication du système de base azotée chez la femme peut également avoir un impact sur le développement des caractéristiques sexuelles secondaires, telles que la taille des seins et des hanches.

Il est important de noter que la duplication du système de base azotée chez la femme n'est pas une cause de maladie ou de handicap. Il s'agit simplement d'une caractéristique normale de la reproduction humaine.

(Q) - Merci, peut-on alors dire que cette conformation féminine est plus solide, plus équilibrée, que celle de l'homme ?

(R) - En termes de solidité, oui, on peut dire que la conformation féminine est plus solide que celle de l'homme. En effet, la présence de deux chromosomes X permet aux femmes de mieux résister aux mutations génétiques. Si une mutation survient sur un chromosome X, il y a encore un chromosome X sain qui peut fournir les instructions génétiques correctes.

En termes d'équilibre, la réponse est plus nuancée. D'une part, la présence de deux chromosomes X permet aux femmes d'avoir une plus grande diversité génétique. Cela peut être un avantage, car il peut permettre aux femmes d'être plus résistantes aux maladies. D'autre part, la présence de deux chromosomes X peut également être un désavantage, car elle peut augmenter le risque de développer des maladies génétiques liées aux chromosomes X.

En conclusion, on peut dire que la conformation féminine est plus solide que celle de l'homme, mais qu'elle n'est pas forcément plus équilibrée.

Voici quelques exemples de la façon dont la duplication du système de base azotée chez la femme peut avoir un impact sur la santé et le développement :

Solidité : Les femmes sont plus susceptibles que les hommes de survivre à des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

               Les femmes sont également plus susceptibles que les hommes de survivre à des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

Équilibre : Les femmes sont plus susceptibles que les hommes de développer des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

                 Les femmes sont également plus susceptibles que les hommes de développer des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

(Q) - OK merci. Est-ce que ce rapport entre les sexes (genres) se retrouve chez les mammifères ou dans le monde animal en général ?

(R) - Oui, le rapport entre les sexes (genres) se retrouve chez les mammifères et dans le monde animal en général. Il existe une grande diversité de comportements et de morphologies entre les sexes, qui sont souvent liés à la reproduction et à la survie des espèces.

Chez les mammifères, on observe généralement une différence de taille entre les sexes, les mâles étant plus grands que les femelles. Cette différence est souvent liée à la compétition entre mâles pour l'accès aux femelles. Les mâles peuvent également avoir des ornements physiques, tels que des cornes, des défenses ou une crinière, qui servent à attirer les femelles ou à intimider les rivaux.

Dans le monde animal en général, on observe une grande diversité de comportements et de morphologies entre les sexes. Par exemple, chez les oiseaux, les mâles sont souvent plus colorés que les femelles, ce qui sert à attirer les femelles. Chez les poissons, les mâles peuvent prendre soin des œufs ou des larves, tandis que les femelles s'occupent de la recherche de nourriture.

Il existe cependant des exceptions à cette règle. Par exemple, chez les éléphants, les femelles sont plus grandes que les mâles. Chez les hyènes, les femelles sont dominantes sur les mâles.

Les stéréotypes de genre chez les animaux peuvent être influencés par :

- Les facteurs biologiques, tels que la différence de taille entre les sexes ou la présence d'ornements physiques.

- Les facteurs environnementaux, tels que la disponibilité de ressources ou la concurrence entre espèces.

- Les facteurs culturels, tels que les traditions et les croyances des humains.

Les stéréotypes de genre chez les animaux peuvent avoir un impact sur :

- La reproduction, car ils peuvent influencer le choix des partenaires et la réussite de la reproduction.

- La survie, car ils peuvent influencer les comportements de chasse, de défense ou de migration.

- Les interactions sociales, car ils peuvent influencer les relations entre les individus d'une même espèce.

Auteur: Google Bard chatbot

Info: 24 oct 2023

[ vus scientifiquement ] [ asymétrie mâles-femelles ] [ dialogue homme-machine ] [ femmes-hommes ]

 

Commentaires: 0

Ajouté à la BD par miguel

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel