Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 66
Temps de recherche: 0.0777s

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

mental aveugle

Aphantasie - Hors de la vue, hors de l'esprit.

Fermez les yeux et imaginez que vous regardez la maison de votre enfance depuis la rue. Si vous pouvez en voir une représentation visuelle avec une certaine fidélité d'esprit, vous faites partie des 98 % de personnes qui peuvent visualiser. Si, comme moi, vous ne voyez que du noir, vous faites partie des 2 % de gens atteints d'une maladie appelée Aphantasie.

Quand je ferme les yeux, il n'y a pas d'images, de formes, de couleurs, de taches, de flous, de bouts. Rien. Je n'ai jamais vu un seul mouton sauter par-dessus une clôture. Toute ma vie, j'ai pensé que lorsque les gens disaient qu'ils pouvaient penser en images et visualiser des images, c'était métaphorique.

En tant que designer, c'est une révélation. Personnellement, ça change vraiment la donne.

Plutôt que de penser que je n'en avais pas la capacité, j'ai toujours supposé que personne ne voyait vraiment les moutons, ils pensaient juste à eux comme moi. Je me rappelle combien il était ridicule d'essayer de compter les moutons que je ne voyais pas.

L'apprentissage de l'aphantasie (un nouveau "machin" qui n'a pas encore d'entrée dans le dictionnaire) m'a obligé à me demander quels sont mes processus internes et comment je peux obtenir à peu près les mêmes résultats que quelqu'un qui peut visualiser. Tant de choses ont un sens maintenant, mais il y en a encore tant à comprendre. Avant d'entrer dans les détails, voici quelques symptômes de ce syndrome : 

-  Il n'y a aucun souvenir visuel pour quoi que ce soit, que ce soit un visage, un mot, l'endroit où j'ai laissé mes clés, un beau moment, l'enfance.

- Tout comme le passé ne peut être rappelé, je ne peux pas visualiser les événements futurs. Toutes ces techniques de visualisation du développement personnel que j'ai essayées au fil des ans et que je croyais inutiles...

- Il n'y a pas d'endroit agréable où aller. Quand on souffre, c'est un peu comme dans la scène de Chemical Burn du Fight Club, il faut juste rester avec la douleur. 

- Je rêve en images mais jamais avec une quelconque clarté. Même quand je me souviens des rêves, je ne peux pas me les remémorer. Je ne sais pas si la fidélité de mes rêves correspond à celle de quelqu'un qui n'a pas ma condition.

- Quand je rêve le jour, j'imagine des scénarios dans des détails abstraits et des nuages de pensées, ce qui est très difficile à comprendre et encore moins à expliquer.

- Les histoires fictives sont inutiles et n'ont aucun lien viscéral. Même enfant, je n'ai jamais pu me plonger dans des aventures de fiction. Je n'aurais pas été bon à l'école du dimanche.

- C'est une bénédiction de ne pas avoir de flashbacks d'événements traumatisants, mais ;

- C'est une malédiction de ne pas pouvoir évoquer des images d'êtres chers disparus. 

Il y a une myriade d'exemples qui peuvent être ajoutés à cette liste, mais vous avez compris. Mes paupières se ferment et le monde devient noir, ce qui m'a toujours semblé logique - c'est à cela que servent les paupières. Voir des images lorsque les yeux sont fermés ressemble à un super pouvoir qui devrait être pour une minorité exceptionnelle, et non l'inverse.

La voix de l'esprit

Depuis cette découverte, j'ai pu mettre certains points sur les i. Il y a quelques années, je me suis intéressé à la programmation neuro-linguistique (PNL), dont une partie consiste à comprendre les modalités sensorielles. Lorsque je me suis appliqué à moi-même ces techniques, le résultat fut que j'étais auditif. Bien sûr, étant donné que toute ma vie professionnelle avait été en tant que designer, je m'attendais à être visuel.

Alors comment une personne atteinte d'aphantasie peut-elle traiter des données et anticiper les résultats ? Pour moi, j'ai découvert que j'entends les résultats, mais que je ne les vois pas

Par exemple, j'ai eu un combat de boxe professionnelle il y a quelques années. J'ai toujours été en faveur du développement personnel et j'avais lu et entendu si souvent qu'il faut visualiser un résultat réussi que l'on veut atteindre. En l'occurrence, me voir victorieux avec les mains levées et sortir du ring en vainqueur. Rétrospectivement, je n'ai jamais rien vu, mais j'ai tout entendu.

En visualisant le combat, j'écoutais vraiment la foule, j'entendais mes entraîneurs me dire à quel point je m'en sortais bien entre les rounds, et surtout j'écoutais mes propres commentaires et affirmations internes pendant que je jouais mentalement l'événement. Lorsque je visualisais la victoire, je ne voyais rien, mais j'entendais ma propre voix mentale célébrer la victoire.

Oreilles visuelles

La mémoire et la capacité à se souvenir d'un moment, d'un événement ou d'une action sont cruciales. Lorsque quelqu'un d'autre a égaré ses clés, il peut voir où il les a laissées comme un souvenir à rappeler. Pour ce faire, je me souviens de ma voix mentale qui disait à l'époque " tes clés sont sur le bureau " lorsque je les y pose. Et quand j'ai besoin de les retrouver, je reviens à la dernière phrase de mes clés. Les fragments de langage sont un moyen de cloisonner les actions que j'ai prises et celles que je dois prendre.

Si j'assiste à un magnifique coucher de soleil, je ne puis en capturer un instantané mental, c'est plutôt comme un extrait sonore, et c'est surtout mon bavardage interne qui essaie d'enregistrer le moment et de le verbaliser via les détails. Je suis à la limite de l'obsession des couchers de soleil, ce qui frustre tous ceux avec qui je suis si l'un d'entre eux se trouve à proximité, car je dois me rendre à un point d'observation. "On les a tous vus..." mais comme je ne m'en souviens pas, j'ai besoin de les voir encore et encore.

Je suis un fervent iPhoneographe, ce qui n'est pas unique, mais pour moi, c'est une façon de gérer mon incapacité à capturer des images mentales. Lorsque je pars en voyage avec un partenaire, c'est inévitablement frustrant pour lui, car je dois m'arrêter si souvent pour saisir les moments. "Pourquoi ne pouvez-vous pas simplement profiter de l'instant présent ?", ce que je fais, mais si je ne le capture pas, je ne pourrai généralement plus jamais revoir cet endroit. Si je conduis et qu'une scène qui vaut la peine d'être capturée apparaît, ce ne sont pas mes yeux qui m'encouragent à m'arrêter, j'entends "Ce serait une super photo", alors j'ai appris à faire confiance à ma voix au-dessus de mes yeux, même pour les choses visuelles, et j'ai une vision de 20/20.

Le dilemme du designer

Je suis un designer qui est intrinsèquement visuel. J'ai commencé dans le design visuel et j'ai évolué vers le design de l'expérience utilisateur qui, je crois maintenant, est un artefact d'Aphantasia. Lorsque je parle à mes collègues designers, je n'arrive pas à croire qu'ils voient dans leur esprit à l'avance ce qu'ils exécutent ensuite dans Photoshop. Ils disposent d'un canevas mental sur lequel ils peuvent appliquer leurs visualisations. Cela va dans le sens de l'hyperphantasie.

Un collègue peut voir 20 versions du même graphique et être capable de les filtrer dans sa tête pour créer les 5 versions qu'il fera physiquement comme options de révision. Un autre collègue peut évoquer une seule instance d'un graphique mais être capable d'animer et de déplacer les éléments jusqu'à ce qu'il se arrête  la version qu'il va concevoir.

Mais la question est, que fait un Aphantasique ?.

Lorsque j'essaie de résoudre un problème d' expérience-design, je pense que c'est la réalité. Ce n'est pas une bonne description car il n'y a pas de vraie bonne manière d'articuler ce processus. Mais je le verbalise aussi en interne, et cela se fait en grande partie en jouant le rôle de l'utilisateur et en écoutant ce qu'il entendrait de son propre bavardage interne s'il faisait l'expérience du voyage que j'essaie de résoudre pour lui. Par exemple, s'ils rencontrent un problème pendant que je joue leur expérience de la conception, je les entends dire "ça ne marche pas" mais je ne vois pas comment, je dois le traduire de mon point de vue de concepteur puis le manifester à l'écran, sur papier ou autre.

J'ai toujours été un bon collaborateur dans le domaine du design, parce que j'ai eu besoin de l'être. Très souvent, les solutions aux problèmes viennent de moi, qui en parle et qui peint une image mentale d'un problème de ce que je "vois" pendant qu'un collègue crée cette image mentale et qu'ensemble, cela devient une solution. Une véritable conception collaborative, où le partage des connaissances conduit à une compréhension collective et à la résolution des problèmes.

Imagine que

On m'a interrogé sur mon imagination ? Je suis un vrai rêveur, mais une fois "hors fèeries", je ne suis pas vraiment sûr de ce qui se passe. C'est la chose la plus difficile à expliquer parce que je ne peux pas encore vraiment expliquer ce qui se passe quand je suis "loin". La meilleure description est que je sens les choses se passer dans ma tête. Les événements se déroulent et je ne suis pas mentalement vide, mais visuellement noir. Tout cela est assez étrange. Je ressens toujours les rêves comme des images, il semble donc que le conscient ait un filtre sur ce que l'inconscient peut faire passer en douce pendant le sommeil.

Bénédiction ou malédiction

L'un des aspects les plus troublants est de ne pas pouvoir voir ses proches. Mon frère a récemment quitté ce monde et malgré tous mes efforts, je ne puis voir son visage. Je ne peux même pas visualiser une photo de son visage, ou une représentation floue. Depuis, j'en ai parlé à ma mère, qui se couche tous les soirs avec une ou plusieurs photos de lui et peut s'en servir pour se souvenir de lui.

Je peux avoir un sentiment pour une personne et je peux décrire mon frère à quelqu'un. La façon dont il marchait par exemple, je peux la reproduire, mais c'est de mémoire. Parfois, je me sense dissonant au plan émotionnel, comme en vivant un  événement traumatisant comme une rupture. J'ai l'impression d'avancer rapidement et je me demande maintenant si c'est un cas de "loin des yeux, loin du cœur". Cette citation aide à résumer beaucoup de choses pour moi et mon expérience du monde.

Un avantage, cependant, est que les expériences négatives ne peuvent pas être revécues. Des images visuelles horribles, comme un récent accident de moto, ne reviennent jamais nous hanter. Une fois la chose vue, elle est automatiquement invisible.

Voir, c'est croire

Il existe de nombreux exemples de personnes dont un sens est diminué ou inexistant, ce qui encourage d'autres à se renforcer. Le savant qui pense aux nombres comme à des images et qui peut résoudre des équations mathématiques par l'image. Je n'ai pas encore appris exactement comment traiter et traduire l'information, mais je suis maintenant sur cette voie pour comprendre comment je fonctionne et pour développer cette capacité, tout en travaillant à supprimer le filtre et à ouvrir un tout nouveau monde à l'œil de l'esprit.

Auteur: Kappler Benny

Info: 9 janvier 2017. https://medium.com/@bennykappler/aphantasia-out-of-sight-out-of-mind-f2b1b4e5cc23. Trad Mg

[ imagination non-voyante ]

 

Commentaires: 0

Ajouté à la BD par miguel

manipulation des masses

De l'hégémonie du dollar au réchauffement climatique : mondialisation, glyphosate et doctrine du consentement.

Depuis l'abandon des accords de Bretton Woods en 1971, il y a eu un changement tectonique continu en Occident. Qui s'est accéléré lorsque l'URSS a pris fin et a abouti à la " mondialisation néolibérale " que nous connaissons aujourd'hui.

Dans le même temps, une campagne sans précédent a été menée pour réinventer le consensus social en Occident. Une partie de cette stratégie consistant à amener les populations des pays occidentaux à se focaliser sur le "réchauffement climatique", l'"équité entre les sexes" et l'"antiracisme". Les effets dévastateurs et les injustices causés par le capitalisme mondialisé et le militarisme qui en découle restant largement inexprimé pour la masse des gens.

Tel est l'argument présenté par Denis Rancourt, chercheur à l'Ontario Civil Liberties Association, dans un nouveau rapport. M. Rancourt est un ancien professeur titulaire de physique à l'Université d'Ottawa au Canada et auteur de : "La géoéconomie et la géo-politique conduisent à des époques successives de mondialisation prédatrice et d'ingénierie sociale : Historical emergence of climate change, gender equity, and antiracism as state doctrines' (avril 2019)."

Dans ce rapport, Rancourt fait référence au livre de Michael Hudson de 1972 intitulé "Super Imperialism" : The Economic Strategy of American Empire" pour aider à expliquer le rôle clé du maintien de l'hégémonie du dollar et l'importance du pétrodollar dans la domination mondiale des États-Unis. Outre l'importance du pétrole, M. Rancourt soutient que les États-Unis ont un intérêt existentiel à faire en sorte que les opioïdes soient commercialisés en dollars américains, un autre grand produit mondial. Ce qui explique en partie l'occupation américaine de l'Afghanistan. Il souligne également l'importance de l'agro-industrie et de l'industrie de l'armement américaines pour la réalisation des objectifs géostratégiques des États-Unis.

Depuis la chute de l'URSS en 1991, M. Rancourt indique que les campagnes de guerre américaines ont, entre autres, protégé le dollar américain de l'abandon, détruit des nations en quête de souveraineté contre la domination américaine, assuré le commerce de l'opium, renforcé leur contrôle du pétrole et entravé l'intégration eurasiatique. En outre, nous avons vu certains pays faire face à un bombardement de sanctions et d'hostilité dans une tentative de détruire des centres de production d'énergie que les États-Unis ne contrôlent pas, notamment la Russie.

Il souligne également les impacts dans les pays occidentaux, y compris : la perte relative systématique du rang économique de la classe moyenne, la montée du sans-abrisme urbain, la décimation de la classe ouvrière industrielle, les méga-fusions des entreprises, la montée des inégalités, le démantèlement du bien-être, la spéculation financière, les salaires qui stagnent, les dettes, la dérégulation et les privatisation. De plus, l'assouplissement accru de la réglementation des aliments et des médicaments a entraîné une augmentation spectaculaire de l'utilisation de l'herbicide glyphosate, qui s'est accompagnée d'une recrudescence de nombreuses maladies et affections chroniques.

Face à cette dévastation, les pays occidentaux ont dû obtenir le maintien du consentement de leurs propres populations. Pour aider à expliquer comment cela a été réalisé, Rancourt se concentre sur l'équité entre les sexes, l'antiracisme et le réchauffement climatique en tant que doctrines d'État qui ont été utilisées pour détourner l'attention des machinations de l'empire américain (et aussi pour empêcher la prise de conscience de classe). J'ai récemment interrogé Denis Rancourt sur cet aspect de son rapport.

CT : Pouvez-vous nous en dire un peu plus sur vous et sur la façon dont vous avez produit ce rapport ? Quel est son objectif ?

DR : Ancien professeur de physique, scientifique de l'environnement et défenseur des droits civils, je travaille actuellement comme chercheur pour l'Ontario Civil Liberties Association (ocla.ca). Au cours d'une conversation que j'ai eue avec le directeur exécutif de l'OCLA au sujet des droits civils, nous avons identifié plusieurs phénomènes sociaux et économiques importants qui semblaient liés au début des années 1990. J'ai donc fini par m'installer pour faire ce "gros boulot", du point de vue de la recherche.

Bien que nous ne manquions pas d'intellectuels et d'experts engagés pour guider notre perception à tort, mes recherches démontrent qu'il existe un lien entre la montée en flèche de la répression et de l'exploitation à grande échelle des populations nationales et l'accélération d'une mondialisation agressive et abusive.

CT : Dans votre rapport, vous avez décrit les conséquences de l'abandon de Bretton Woods et de la dissolution de l'URSS en termes d'hégémonie du dollar, du militarisme américain et des effets dévastateurs de la "mondialisation néolibérale" tant pour les États nations que pour les citoyens.

Il ne fait guère de doute que les analystes russes et chinois comprennent bien ce que j'ai exposé dans mon rapport. Par exemple, en prévision de la guerre commerciale de Trump, le discours prononcé en avril 2015 par le major-général Qiao Liang de l'Armée populaire de libération du peuple devant le Comité central et le bureau du gouvernement du Parti communiste chinois, comprenait ce qui suit :

"Depuis ce jour [dissolution de Bretton Woods], un véritable empire financier a émergé, l'hégémonie du dollar américain s'est établie, et nous sommes entrés dans une véritable ère de monnaie de papier. Il n'y a pas de métal précieux derrière le dollar américain. Le crédit du gouvernement est le seul soutien du dollar américain. Les États-Unis tirent profit du monde entier. Cela signifie que les Américains peuvent obtenir des richesses matérielles du monde entier en imprimant un morceau de papier vert. (...) Si nous reconnaissons [maintenant] qu'il existe un cycle de l'indice du dollar américain [ponctué de crises machinées, dont la guerre] et que les Américains utilisent ce cycle pour faire la récolte dans les autres pays, alors nous pouvons conclure que le moment était venu pour eux d'en faire autant en Chine..."

CT : Vous discutez de la nécessité pour les États d'obtenir le consentement : la nécessité de pacifier, d'hypnotiser et d'aligner les populations pour poursuivre la mondialisation ; plus précisément, la nécessité de détourner l'attention de la violence structurelle des politiques économiques et de la violence réelle du militarisme. Pouvez-vous nous dire comment la question du réchauffement climatique est liée à cela ?

DR : Que la soi-disant "crise climatique" soit réelle, exagérée ou fabriquée de toutes pièces, il est clair, d'après les données de mon rapport, que l'éthique du réchauffement climatique a été conçue et manipulée à l'échelle mondiale et qu'elle bénéficie aux exploiteurs de l'économie du carbone et, plus indirectement, à l'État.

Par exemple, l'une des études que j'ai passées en revue montre qu'une multiplication des reportages sur le réchauffement climatique dans les médias grand public s'est soudainement produite au milieu des années 2000, dans tous les grands médias, au moment même où les financiers et leurs acolytes, comme Al Gore, ont décidé de créer et de gérer une économie mondiale du carbone. Cette campagne médiatique s'est poursuivie depuis lors et l'éthique du réchauffement climatique a été institutionnalisée.

Les programmes de piégeage du carbone ont dévasté les communautés locales sur tous les continents occupés. En fait, les programmes de réduction des émissions de carbone - des parcs éoliens à la récolte de biocarburants, en passant par la production industrielle de batteries, les installations de panneaux solaires, l'extraction de l'uranium, la construction de méga barrages hydroélectriques, etc. on accéléré les destructions d'habitats.

Pendant ce temps, la guerre économique et militaire fait rage, le glyphosate est déversé dans l'écosphère à un rythme sans précédent (déversé sur des cultures mercantiles résistant aux phytocides GM), des génocides actifs sont en cours (Yémen), les États-Unis se désistent de façon unilatérale et imposent une course aux armes aux machines nucléaires et aux armes nucléaires de prochaine génération ; des prêts extortionnels sont accordés par les Etats-Unis qui ont transformé l'usage de leurs terres au plan national, et des enfants scolarisés développent des crises psychotiques afin de faire "bouger les gouvernements" pour qu'ils "agissent" contre le climat.

Au début des années 1990, une conférence mondiale sur l'environnementalisme climatique fut une réponse expresse à la dissolution de l'Union soviétique. Cela faisait partie d'un projet de propagande globale visant à masquer la nouvelle vague de mondialisation accélérée et prédatrice qui se déchaînait alors que l'URSS était définitivement sortie du droit chemin.

CT : Que pensez-vous de Greta Thunberg et du mouvement qui l'entoure ?

DR : C'est triste et pathétique. Ce mouvement témoigne du succès du projet mondial de propagande que je décris dans mon rapport. Le mouvement est aussi un indicateur du degré d'enracinement du totalitarisme dans les sociétés occidentales, où les individus, les associations et les institutions perdent leur capacité de pensée indépendante pour détourner la société des des desseins d'une élite d'occupation. Les individus (et leurs parents) deviennent la police de la moralité au service de cet "environnementalisme".

CT : Vous parlez aussi de l'émergence de l'égalité des sexes (féminisme de la troisième vague) et de l'antiracisme comme doctrines d'État. Pouvez-vous dire quelque chose à ce sujet ?

DR : Dans mon rapport, j'utilise des documents institutionnels historiques et des données sociétales pour démontrer qu'une triade de "religions d'État" a été engendrée à l'échelle mondiale et qu'elle est apparue au moment opportun après la dissolution de l'Union soviétique. Cette triade se compose d'alarmisme climatique, d'une vision tunnel exagérée de l'équité entre les sexes et d'une campagne antiraciste machinée axée sur les pensées, le langage et les attitudes.

Ces idéologies étatiques ont été conçues et propulsées via les efforts de l'ONU et les protocoles signés qui en ont résulté. Le milieu universitaire de l'Ouest a adopté et institutionnalisé le programme avec enthousiasme. Les médias grand public ont fait la promotion religieuse de l'ethos nouvellement créé. Les partis politiques ont largement appliqué des quotas accrus de représentants élus par sexe et par race.

Ces processus et ces idées ont servi à apaiser, à assouplir, rassembler et à occuper l'esprit occidental, en particulier chez les classes moyennes supérieures, professionnelles et de gestion et les élites des territoires économiquement occupés, mais n'ont rien fait pour atténuer les formes de racisme et de misogynie les plus violentes et répandues dans le monde en raison de la mondialisation prédatrice et du militarisme.

Ironiquement, les atteintes globales à la dignité humaine, à la santé humaine et à l'environnement ont été proportionnelles aux appels systématiques et parfois criards à l'équité entre les sexes, à la lutte contre le racisme et à l'"action" climatique. Tout l'édifice de ces "religions d'Etat" ne laisse aucune place aux conflits de classes nécessaires et sape expressément toute remise en cause des mécanismes et des conséquences de la mondialisation.

CT : Pouvez-vous nous parler des Gilets Jaunes, de Brexit et du phénomène électoral Trump ?

DR : Combiner une mondialisation agressive, une prédation financière constante, l'éviscération des classes ouvrières et moyennes occidentales et un discours désinvolte sur le changement climatique, l'antiracisme et l'équité entre les sexes fait quelque chose ne peut qu'arriver. Le géographe français Christophe Guilluy a prédit ces réactions de façon assez détaillée, ce qui n'est pas difficile à comprendre. Ce n'est pas un hasard si les classes populaires et moyennes qui se révoltent critiquent les récits de la crise climatique, de l'antiracisme et de l'équité entre les sexes, d'autant que les médias grand public les présentent comme racistes, misogynes et ignorants des sciences.

Il semble que toute classe qui s'oppose à sa propre destruction soit accusée d'être peuplée de gens racistes et ignorants qui ne voient pas que le salut réside dans un monde géré par le carbone et globalisé. Il devient donc impératif de fermer tous les lieux où un tel "lot d'ignorants" pourrait communiquer ses vues, tenter de s'organiser et ainsi menacer l'ordre social dominant.

Auteur: Todhunter Colin

Info: Counterpunch.org. Trad Mg

[ géopolitique ] [ ingénierie sociale ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde verrouillé

Comment un tour de passe-passe mathématique a sauvé la physique des particules

La renormalisation est peut-être l'avancée la plus importante de la physique théorique depuis 50 ans. 

Dans les années 1940, certains physiciens avant-gardistes tombèrent sur une nouvelle couche de la réalité. Les particules n'existaient plus et les champs - entités expansives et ondulantes qui remplissent l'espace comme un océan - étaient dedans. Une ondulation dans un champ était un électron, une autre un photon, et leurs interactions semblaient expliquer tous les événements électromagnétiques.

Il n'y avait qu'un seul problème : la théorie était constituée d'espoirs et de prières. Ce n'est qu'en utilisant une technique appelée "renormalisation", qui consiste à occulter soigneusement des quantités infinies, que les chercheurs purent éviter les prédictions erronées. Le processus fonctionnait, mais même ceux qui développaient la théorie soupçonnaient qu'il s'agissait d'un château de cartes reposant sur un tour de passe-passe mathématique tortueux.

"C'est ce que j'appellerais un processus divertissant", écrira plus tard Richard Feynman. "Le fait de devoir recourir à de tels tours de passe-passe nous a empêchés de prouver que la théorie de l'électrodynamique quantique est mathématiquement cohérente.

La justification vint des décennies plus tard, d'une branche de la physique apparemment sans rapport. Les chercheurs qui étudiaient la magnétisation découvrirent que la renormalisation ne concernait aucunement les infinis. Elle évoquait plutôt la séparation de l'univers en domaines de tailles distinctes, point de vue qui guide aujourd'hui de nombreux domaines de la physique.

La renormalisation, écrit David Tong, théoricien à l'université de Cambridge, est "sans doute l'avancée la plus importante de ces 50 dernières années dans le domaine de la physique théorique".

L'histoire de deux charges

Selon certains critères, les théories des champs sont les théories les plus fructueuses de toute la science. La théorie de l'électrodynamique quantique (QED), qui constitue l'un des piliers du modèle standard de la physique des particules, a permis de faire des prédictions théoriques qui correspondent aux résultats expérimentaux avec une précision d'un sur un milliard.

Mais dans les années 1930 et 1940, l'avenir de la théorie était loin d'être assuré. L'approximation du comportement complexe des champs donnait souvent des réponses absurdes et infinies, ce qui amena certains théoriciens à penser que les théories des champs étaient peut-être une impasse.

Feynman et d'autres cherchèrent de toutes nouvelles perspectives - éventuellement même susceptibles de ramener les particules sur le devant de la scène - mais ils finirent par trouver un moyen de contourner l'obstacle. Ils constatèrent que les équations QED  permettaient d'obtenir des prédictions respectables, à condition qu'elles soient corrigées par la procédure impénétrable de renormalisation.

L'exercice est le suivant. Lorsqu'un calcul QED conduit à une somme infinie, il faut l'abréger. Mettez la partie qui tend vers l'infini dans un coefficient - un nombre fixe - placé devant la somme. Remplacez ce coefficient par une mesure finie provenant du laboratoire. Enfin, laissez la somme nouvellement apprivoisée retourner à l'infini.

Pour certains, cette méthode s'apparente à un jeu de dupes. "Ce ne sont tout simplement pas des mathématiques raisonnables", écrivit Paul Dirac, théoricien quantique novateur.

Le cœur du problème - germe de sa solution éventuelle - se trouve dans la manière dont les physiciens ont traité la charge de l'électron.

Dans ce schéma la charge électrique provient du coefficient - la valeur qui engloutit l'infini au cours du brassage mathématique. Pour les théoriciens qui s'interrogeaient sur la signification physique de la renormalisation, la théorie QED laissait entendre que l'électron avait deux charges : une charge théorique, qui était infinie, et la charge mesurée, qui ne l'était pas. Peut-être que le noyau de l'électron contenait une charge infinie. Mais dans la pratique, les effets de champ quantique (qu'on peut visualiser comme un nuage virtuel de particules positives) masquaient l'électron, de sorte que les expérimentateurs ne mesuraient qu'une charge nette modeste.

Deux physiciens, Murray Gell-Mann et Francis Low, concrétisèrent cette idée en 1954. Ils ont relié les deux charges des électrons à une charge "effective" qui varie en fonction de la distance. Plus on se rapproche (et plus on pénètre le manteau positif de l'électron), plus la charge est importante.

Leurs travaux furent les premiers à lier la renormalisation à l'idée d'échelle. Ils laissaient entendre que les physiciens quantiques avaient trouvé la bonne réponse à la mauvaise question. Plutôt que de se préoccuper des infinis, ils auraient dû s'attacher à relier le minuscule à l'énorme.

La renormalisation est "la version mathématique d'un microscope", a déclaré Astrid Eichhorn, physicienne à l'université du Danemark du Sud, qui utilise la renormalisation pour ses recherches en théorie de la gravité quantique. "Et inversement, vous pouvez commencer par le système microscopique et faire un zoom arrière. C'est une combinaison de microscope et de télescope".

La renormalisation capture la tendance de la nature à se subdiviser en mondes essentiellement indépendants.

Les aimants sauvent la mise

Un deuxième indice apparut dans le monde de la matière condensée, ici les physiciens s'interrogeaient sur la manière dont un modèle magnétique grossier parvenait à saisir les détails de certaines transformations. Le modèle d'Ising n'était guère plus qu'une grille de flèches atomiques qui ne pouvaient pointer que vers le haut ou vers le bas, mais il prédisait les comportements d'aimants réels avec une perfection improbable.

À basse température, la plupart des atomes s'alignent, ce qui magnétise le matériau. À haute température, ils deviennent désordonnés et le réseau se démagnétise. Mais à un point de transition critique, des îlots d'atomes alignés de toutes tailles coexistent. Il est essentiel de noter que la manière dont certaines quantités varient autour de ce "point critique" semble identique dans le modèle d'Ising, dans les aimants réels de différents matériaux et même dans des systèmes sans rapport, tels que la transition à haute pression où l'eau devient indiscernable de la vapeur d'eau. La découverte de ce phénomène, que les théoriciens ont appelé universalité, était aussi bizarre que de découvrir que les éléphants et les aigrettes se déplacent exactement à la même vitesse de pointe.

Les physiciens n'ont pas pour habitude de s'occuper d'objets de tailles différentes en même temps. Mais ce comportement universel autour des points critiques les obligea à tenir compte de toutes les échelles de longueur à la fois.

Leo Kadanoff, chercheur dans le domaine de la matière condensée, a compris comment procéder en 1966. Il a mis au point une technique de "spin par blocs", en décomposant une grille d'Ising trop complexe pour être abordée de front, en blocs modestes comportant quelques flèches par côté. Il calcula l'orientation moyenne d'un groupe de flèches et  remplaça tout le bloc par cette valeur. En répétant le processus, il lissa les détails fins du réseau, faisant un zoom arrière pour comprendre le comportement global du système.

Enfin, Ken Wilson -  ancien étudiant de Gell-Mann qui avait les pieds tant dans le monde de la physique des particules et de la matière condensée -  réunit les idées de Gell-Mann et de Low avec celles de Kadanoff. Son "groupe de renormalisation", qu'il décrivit pour la première fois en 1971, justifiait les calculs tortueux de la QED et a fourni une échelle permettant de gravir les échelons des systèmes universels. Ce travail a valu à Wilson un prix Nobel et a changé la physique pour toujours.

Selon Paul Fendley, théoricien de la matière condensée à l'université d'Oxford, la meilleure façon de conceptualiser le groupe de renormalisation de Wilson est de le considérer comme une "théorie des théories" reliant le microscopique au macroscopique.

Considérons la grille magnétique. Au niveau microscopique, il est facile d'écrire une équation reliant deux flèches voisines. Mais extrapoler cette simple formule à des trillions de particules est en fait impossible. Vous raisonnez à la mauvaise échelle.

Le groupe de renormalisation de Wilson décrit la transformation d'une théorie des éléments constitutifs en une théorie des structures. On commence avec une théorie de petits éléments, par exemple les atomes d'une boule de billard. On tourne la manivelle mathématique de Wilson et on obtient une théorie connexe décrivant des groupes de éléments, par exemple les molécules d'une boule de billard. En continuant de tourner la manivelle, on obtient des groupes de plus en plus grands - grappes de molécules de boules de billard, secteurs de boules de billard, et ainsi de suite. Finalement, vous voilà en mesure de calculer quelque chose d'intéressant, comme la trajectoire d'une boule de billard entière.

Telle est la magie du groupe de renormalisation : Il permet d'identifier les quantités à grande échelle qu'il est utile de mesurer et les détails microscopiques alambiqués qui peuvent être ignorés. Un surfeur s'intéresse à la hauteur des vagues, et non à la bousculade des molécules d'eau. De même, en physique subatomique, la renormalisation indique aux physiciens quand ils peuvent s'occuper d'un proton relativement simple plutôt que de son enchevêtrement de quarks intérieurs.

Le groupe de renormalisation de Wilson suggère également que les malheurs de Feynman et de ses contemporains venaient du fait qu'ils essayaient de comprendre l'électron d'infiniment près. "Nous ne nous attendons pas à ce que  ces théories soient valables jusqu'à des échelles [de distance] arbitrairement petites", a déclaré James Fraser, philosophe de la physique à l'université de Durham, au Royaume-Uni. Ajoutant : "La coupure absorbe notre ignorance de ce qui se passe aux niveaux inférieurs".

En d'autres termes, la QED et le modèle standard ne peuvent tout simplement pas dire quelle est la charge nue de l'électron à une distance de zéro nanomètre. Il s'agit de ce que les physiciens appellent des théories "effectives". Elles fonctionnent mieux sur des distances bien définies. L'un des principaux objectifs de la physique des hautes énergies étant de découvrir ce qui se passe exactement lorsque les particules deviennent encore plus proches.

Du grand au petit

Aujourd'hui, le "dippy process" de Feynman est devenu aussi omniprésent en physique que le calcul, et ses mécanismes révèlent les raisons de certains des plus grands succès de la discipline et de ses défis actuels. Avec la renormalisation, les câpres submicroscopiques compliqués ont tendance à disparaître. Ils sont peut-être réels, mais ils n'ont pas d'incidence sur le tableau d'ensemble. "La simplicité est une vertu", a déclaré M. Fendley. "Il y a un dieu là-dedans.

Ce fait mathématique illustre la tendance de la nature à se diviser en mondes essentiellement indépendants. Lorsque les ingénieurs conçoivent un gratte-ciel, ils ignorent les molécules individuelles de l'acier. Les chimistes analysent les liaisons moléculaires mais ignorent superbement les quarks et les gluons. La séparation des phénomènes par longueur, quantifiée par le groupe de renormalisation, a permis aux scientifiques de passer progressivement du grand au petit au cours des siècles, plutôt que briser toutes les échelles en même temps.

En même temps, l'hostilité de la renormalisation à l'égard des détails microscopiques va à l'encontre des efforts des physiciens modernes, avides de signes du domaine immédiatement inférieur. La séparation des échelles suggère qu'ils devront creuser en profondeur pour surmonter le penchant de la nature à dissimuler ses points les plus fins à des géants curieux comme nous.

"La renormalisation nous aide à simplifier le problème", explique Nathan Seiberg, physicien théoricien à l'Institute for Advanced Study de Princeton, dans le New Jersey. Mais "elle cache aussi ce qui se passe à très courte distance. On ne peut pas avoir le beurre et l'argent du beurre".


Auteur: Internet

Info: https://www.quantamagazine.org/. Charlie Wood, september 17, 2020

 

Commentaires: 0

Ajouté à la BD par miguel

bêtise bipolaire

Il ne fait aucun doute que les IA sont biaisées. Mais beaucoup déclarent que ces problématiques de l'IA existent parce que nous humains sommes imparfaits, plus que les machines. "Les machines sont-elles condamnées à hériter des préjugés humains ?", titrent les journaux. "Les préjugés humains sont un énorme problème pour l'IA. Voilà comment on va arranger ça." Mais ces récits perpétuent une dangereuse erreur algorithmique qu'il faut éviter.

Oui, les humains sont subjectifs. Oui, malgré les efforts conscients et inconscients de ne pas l'être, nous faisons de la discrimination, nous stéréotypons et portons toutes sortes de jugements de valeur sur les gens, les produits et la politique. Mais nos préjugés ne sont pas correctement mesurés ou modélisés par les machines. Non, les tendances machine sont dues à la logique même de la collecte des données : le système binaire.

Le système binaire est la chaîne de 0 et 1 à la base de tous les systèmes informatiques. Cette méthode mathématique permet de réduire et de calculer efficacement les grands nombres et, deuxièmement, elle permet la conversion de l'alphabet et de la ponctuation en ASCII (American Standard Code for Information Interchange).

Mais ne vous laissez pas berner : Ces 0 et 1 ne signifient pas que la machine comprend le monde et les langages comme nous le faisons : "La plupart d'entre nous, la plupart du temps, suivons des instructions qui nous sont données par ordinateur plutôt que l'inverse ", explique l'historien des technologies George Dyson. Afin de pouvoir communiquer avec les ordinateurs, nous sommes ajustés et orientés vers leur logique, et non vers la nôtre.

Le système binaire réduit tout à des 0 et des 1 insignifiants, quand la vie et l'intelligence font fonctionner XY en tandem. lui rend la lecture et le traitement des données quantitatives plus pratiques, plus efficaces et plus rentables pour les machines. Mais c'est au détriment des nuances, de la richesse, du contexte, des dimensions et de la dynamique de nos langues, cultures, valeurs et expériences.

Il ne faut pas accabler ici les développeurs de la Silicon Valley pour ce système binaire biaisé - mais plutôt Aristote.

Le parti pris binaire d'Aristote
Si vous pensez à Aristote, vous pensez probablement au philosophe grec antique comme à un des pères fondateurs de la démocratie, et non comme l'ancêtre de siècles de logique mécanique et de méthodes scientifiques erronées. C'est cependant sa théorie du "dualisme", selon laquelle quelque chose est soit vrai soit faux, logique ou illogique, qui nous a mis dans cette situation délicate en premier lieu.

Vers 350 av. J.-C., Aristote voulut réduire et structurer la complexité du monde. Pour ce faire, il fit des emprunts à la Table des Opposés de Pythagore, dans laquelle deux éléments sont comparés :

fini, infini... impair, pair... un, beaucoup... droite, gauche... repos, mouvement... droit, tordu... etc.

Mais au lieu d'appliquer ce dualisme à la géométrie neutre comme l'avait fait Pythagore, Aristote l'appliqua aux personnes, aux animaux et à la société. Ce faisant, il conçut un patriarcat hiérarchique social polarisé clivant, enraciné dans ses valeurs internes et ses préjugés : Les objets qu'il ordonnait avoir plus de valeur devinrent des 1, et ceux de moindre importance des 0. En ce qui concerne les femmes, par exemple, il écrivit : "La relation de l'homme à la femme est par nature une relation de supérieur à inférieur et de souverain à gouverné."

Hélas, le système de classification hiérarchique d'Aristote a été implémenté dans l'IA, la pondérant en faveur d'hommes comme lui. Le système même sur lequel toute la technologie moderne est construite contient les artefacts du sexisme d'il y a 2 000 ans.

1 = vrai = rationnel = droit = masculin
0 = faux = émotionnel = gauche = féminin
Si Aristote avait créé la démocratie - et la démocratie est censée être une véritable représentation - femmes et gens de couleur auraient dû avoir un accès égal à l'éducation, avoir voix au chapitre dans les forums et avoir le droit de vote en 350 av. JC. Il n'aurait pas été nécessaire de se battre jusqu'en 1920 pour que le vote féminin soit ratifié aux Etats-Unis. Il n'y aurait pas eu d'esclavage et pas besoin du mouvement pour les droits civiques. Tout le monde aurait été classé et considéré comme égal dès le départ.

Le classement biaisé d'Aristote est maintenant verrouillé et renforcé par plus de 15 millions d'ingénieurs.
Aristote aurait dû lire les notes de son prédécesseur, Socrate. Selon les souvenirs de Platon, Socrate considérait les oracles féminins de Delphes comme "un guide essentiel du développement personnel et de l'état". De plus, dans le Symposium de Platon, Socrate se souvient de l'époque où il était l'élève de Diotima de Mantinea, une femme philosophe dont il tenait en haute estime l'intelligence. Dans le livre V, Socrate est crédité d'avoir suggéré que les femmes sont également qualifiées pour diriger et gouverner : "Il n'y a pas de pratique des gouverneurs d'une ville qui appartient à une femme parce qu'elle est une femme, ou à un homme parce qu'il est un homme."

Mais au lieu que les idées de Socrate sur l'égalité enracinent les idées occidentales sur l'intelligence, nous nous sommes retrouvés avec la logique d'Aristote et son classement biaisé sans être conscients de ses origines binaires et anti-démocratiques.

Mais ne blâmons pas seulement Aristote. Deux autres coquins ont contribué à ces problèmes sociaux et scientifiques : Descartes et Leibniz.

Descartes - philosophe français du XVIIe siècle qui a inventé l'expression "je pense, donc je suis" -, a implanté l'idée qu'un sujet n'a ni matière ni valeur autre que ce que le visiteur attribue et déduit. (S'il avait dit "Nous pensons, donc nous sommes", cela aurait mieux reflété comment nous sommes symbiotiquement informés par les perceptions les uns et des autres.)

En outre, Descartes a proposé une plus grande séparation de l'esprit du corps et des émotions dans son traité de 1641, Méditations sur la Première Philosophie. Il a soutenu que nos esprits sont dans le domaine du spirituel tandis que nos corps et nos émotions sont dans le domaine du physique, et que les deux royaumes ne peuvent pas s'influencer mutuellement. Ce qui a causé des problèmes en IA parce que maintenant nous empilons des unités d'émotions sur des couches de classification binaires d'une manière artificielle et non intégrée. Encore du binaire.

La logique déductive-inductive de Descartes, qu'il explora dans son discours sur la méthode de 1637, fut créée parce qu'il était désabusé par les méthodes non systématiques des scientifiques de son temps. Il fit valoir que les mathématiques ont été construites sur une "base solide", et a donc cherché à établir un nouveau système de vérité fondée sur Aristote 1 = vrai = valide, et 0 = faux = invalide. La différence étant qu'il a mis les lignes de la logique syllogistique d'Aristote au sein d'une structure arborescente. Structures arborescentes qui sont maintenant utilisées dans les réseaux neuronaux récurrents du NLP (Natural Language Processing)

Vint ensuite Leibniz, le philosophe et avocat allemand inventa le calcul indépendamment de son contemporain, Newton. Il créa le système binaire entre 1697 et 1701 afin d'obtenir des verdicts "oui/non" plus rapides et ainsi réduire les grands nombres en unités plus faciles à gérer de 0 et 1.

Contrairement aux autres, Leibniz était sinophile. En 1703, le prêtre jésuite Bouvet lui avait envoyé une copie du Yi King (le Livre des Changements), artefact culturel chinois dont l'origine remonte à 5.000 ans. Il était fasciné par les similitudes apparentes entre les lignes horizontales et les intervalles des hexagrammes du Yi King et les 0 et 1 des lignes verticales de son système binaire. Il interpréta faussement ces intervalles comme étant du vide (donc zéro) croyant (à tort) que les hexagrammes confirmaient que son système binaire était la bonne base pour un système logique universel.

Leibniz fit trois autres erreurs majeures. Tout d'abord, il a fit pivoter les hexagrammes de leurs positions horizontales naturelles vers les positions verticales pour les faire correspondre à ses lignes binaires. Deuxièmement, il les sépara du contexte des symboles chinois et des chiffres correspondants. Troisièmement, puisqu'il n'était pas chinois et qu'il ne comprenait pas l'héritage philosophique ou la langue, il supposa que les hexagrammes représentaient les nombres 0 et 1 lorsqu'ils représentent des énergies négatives et positives, Yin Yang, homme et femme. Erreurs qui signifient que Leibniz perdit beaucoup d'informations et de connaissances venant des codes du Yi King et de la vraie signification de ses hexagrammes.

Au lieu de créer un système universel cohérent, le système binaire de Leibniz renforça les modèles de pensée occidentale de Descartes amplifiant la base biaisée d'Aristote, nous verrouillant davantage, nous et les machines que nous avons créées, vers une logique non naturelle.

Le système binaire dans l'informatique moderne
Les classifications binaires d'Aristote sont donc maintenant évidentes dans tous les systèmes de données d'aujourd'hui, servant, préservant, propageant et amplifiant les biais partout dans les couches d'apprentissage machine.

Exemples de biais binaires dans les front-end utilisateur et le traitement des données :

glissement à droite = 1, glissement à gauche = 0
cliquer sur "like" sur Facebook = 1, pas cliquer sur like = 0
nos émotions complexes étant attribuées grossièrement comme positives = 1, négatives = 0 dans les cadres du NPL
convertir des paires d'objets comparés et leurs caractéristiques en 0 ou 1, par exemple pomme = 1, orange = 0, ou lisse = 1, bosselé = 0
lignes et colonnes pleines de 0 et de 1 dans des graphes géants "big data"
Mais le problème de la logique binaire est qu'elle ne permet pas de comprendre et de modéliser pourquoi et comment les gens ont choisi une option plutôt qu'une autre. Les machines enregistrent simplement que les gens ont fait un choix, et qu'il y a un résultat

Les machines sont donc étalonnées à partir de ces biais binaires, pas à partir des nôtres. Bien sûr, nous sommes remplis de nos propres défauts et faiblesses très humains, mais les cadres conceptuels informatiques existants sont incapables de corriger ces erreurs (et les ingénieurs n'écrivent que du code qui correspond aux limites de l'ancienne logique).

Heureusement, il existe une alternative. Les philosophies occidentales d'Aristote, de Descartes et de Leibniz sont opposées aux philosophies orientales, elles fondées sur l'équilibre naturel, la cohérence et l'intégration. Le concept chinois de Yin Yang, par exemple, met l'accent sur la dynamique égale et symbiotique du masculin et du féminin en nous et dans l'univers. Ces idées décrites dans le Yi King, que Leibniz n'a pas reconnues.

La nature rejette également le binaire. Des milliards d'années avant que le parti pris d'Aristote ne s'imprime dans la logique informatique occidentale, la nature codifiait l'intelligence comme la coexistence entrelacée de la femme X et de l'homme Y dans notre ADN. De plus, la recherche quantique a montré que les particules peuvent avoir des états de superposition enchevêtrés où elles sont à la fois 0 et 1 en même temps, tout comme le Yin Yang. La nature ne fonctionne pas en binaire, pas même avec les pigeons. Alors pourquoi le faisons-nous en informatique ?

Nous ne classons et ne qualifions pas nécessairement le monde qui nous entoure avec les préjugés hiérarchiques binaires d'Aristote. Mais la façon dont les données sont recueillies est noir (0) et blanc (1), avec des nuances de gris fournies par des pourcentages de ces données, alors que la nature et les philosophies orientales montrent que nos perceptions ne sont que vagues de couleurs mélangées ou arc-en-ciel.

Tant que nous n'aurons pas conçu des modes de catégorisation non binaires et plus holistiques en IA, les ordinateurs ne seront pas en mesure de modéliser l'image animée en technicolor de notre intelligence. Ce n'est qu'alors que les machines représenteront nos divers langages, raisonnements, valeurs, cultures, qualités et comportements humains.

Auteur: Twain Liu

Info: https://qz.com/1515889/aristotles-binary-philosophies-created-todays-ai-bias/?utm_source=facebook&utm_medium=partner-share&utm_campaign=partner-bbc

[ rationalisme occidental ] [ logique formelle ] [ intelligence artificielle ] [ Asie ] [ sciences ]

 
Commentaires: 1
Ajouté à la BD par miguel

legos protéiques

De nouveaux outils d’IA prédisent comment les blocs de construction de la vie s’assemblent

AlphaFold3 de Google DeepMind et d'autres algorithmes d'apprentissage profond peuvent désormais prédire la forme des complexes en interaction de protéines, d'ADN, d'ARN et d'autres molécules, capturant ainsi mieux les paysages biologiques des cellules.

Les protéines sont les machines moléculaires qui soutiennent chaque cellule et chaque organisme, et savoir à quoi elles ressemblent sera essentiel pour comprendre comment elles fonctionnent normalement et fonctionnent mal en cas de maladie. Aujourd’hui, les chercheurs ont fait un grand pas en avant vers cet objectif grâce au développement de nouveaux algorithmes d’apprentissage automatique capables de prédire les formes rdéployées et repliées non seulement des protéines mais aussi d’autres biomolécules avec une précision sans précédent.

Dans un article publié aujourd'hui dans Nature , Google DeepMind et sa société dérivée Isomorphic Labs ont annoncé la dernière itération de leur programme AlphaFold, AlphaFold3, capable de prédire les structures des protéines, de l'ADN, de l'ARN, des ligands et d'autres biomolécules, seuls ou liés ensemble dans différentes configurations. Les résultats font suite à une mise à jour similaire d'un autre algorithme de prédiction de structure d'apprentissage profond, appelé RoseTTAFold All-Atom, publié en mars dans Science .

Même si les versions précédentes de ces algorithmes pouvaient prédire la structure des protéines – une réussite remarquable en soi – elles ne sont pas allées assez loin pour dissiper les mystères des processus biologiques, car les protéines agissent rarement seules. "Chaque fois que je donnais une conférence AlphaFold2, je pouvais presque deviner quelles seraient les questions", a déclaré John Jumper, qui dirige l'équipe AlphaFold chez Google DeepMind. "Quelqu'un allait lever la main et dire : 'Oui, mais ma protéine interagit avec l'ADN.' Pouvez-vous me dire comment ?' " Jumper devrait bien admettre qu'AlphaFold2 ne connaissait pas la réponse.

Mais AlphaFold3 pourrait le faire. Avec d’autres algorithmes d’apprentissage profond émergents, il va au-delà des protéines et s’étend sur un paysage biologique plus complexe et plus pertinent qui comprend une bien plus grande diversité de molécules interagissant dans les cellules.

" On découvre désormais toutes les interactions complexes qui comptent en biologie ", a déclaré Brenda Rubenstein , professeure agrégée de chimie et de physique à l'Université Brown, qui n'a participé à aucune des deux études. " On commence à avoir une vision plus large."

Comprendre ces interactions est " fondamental pour la fonction biologique ", a déclaré Paul Adams , biophysicien moléculaire au Lawrence Berkeley National Laboratory qui n’a également participé à aucune des deux études. " Les deux groupes ont fait des progrès significatifs pour résoudre ce problème. "

Les deux algorithmes ont leurs limites, mais ils ont le potentiel d’évoluer vers des outils de prédiction encore plus puissants. Dans les mois à venir, les scientifiques commenceront à les tester et, ce faisant, ils révéleront à quel point ces algorithmes pourraient être utiles.

Progrès de l’IA en biologie

L’apprentissage profond est une variante de l’apprentissage automatique vaguement inspirée du cerveau humain. Ces algorithmes informatiques sont construits à l’aide de réseaux complexes de nœuds d’information (appelés neurones) qui forment des connexions en couches les unes avec les autres. Les chercheurs fournissent au réseau d’apprentissage profond des données d’entraînement, que l’algorithme utilise pour ajuster les forces relatives des connexions entre les neurones afin de produire des résultats toujours plus proches des exemples d’entraînement. Dans le cas des systèmes d'intelligence artificielle protéique, ce processus amène le réseau à produire de meilleures prédictions des formes des protéines sur la base de leurs données de séquence d'acides aminés.

AlphaFold2, sorti en 2021, a constitué une avancée majeure dans l’apprentissage profond en biologie. Il a ouvert la voie à un monde immense de structures protéiques jusque-là inconnues et est déjà devenu un outil utile pour les chercheurs qui cherchent à tout comprendre, depuis les structures cellulaires jusqu'à la tuberculose. Cela a également inspiré le développement d’outils supplémentaires d’apprentissage biologique profond. Plus particulièrement, le biochimiste David Baker et son équipe de l’Université de Washington ont développé en 2021 un algorithme concurrent appelé RoseTTAFold , qui, comme AlphaFold2, prédit les structures protéiques à partir de séquences de données.

Depuis, les deux algorithmes ont été mis à jour avec de nouvelles fonctionnalités. RoseTTAFold Diffusion pourrait être utilisé pour concevoir de nouvelles protéines qui n’existent pas dans la nature. AlphaFold Multimer pourrait étudier l’interaction de plusieurs protéines. " Mais ce que nous avons laissé sans réponse ", a déclaré Jumper, " était : comment les protéines communiquent-elles avec le reste de la cellule ? "

Le succès des premières itérations d'algorithmes d'apprentissage profond de prédiction des protéines reposait sur la disponibilité de bonnes données d'entraînement : environ 140 000 structures protéiques validées qui avaient été déposées pendant 50 ans dans la banque de données sur les protéines. De plus en plus, les biologistes ont également déposé les structures de petites molécules, d'ADN, d'ARN et leurs combinaisons. Dans cette expansion de l'algorithme d'AlphaFold pour inclure davantage de biomolécules, " la plus grande inconnue ", a déclaré Jumper, "est de savoir s'il y aurait suffisamment de données pour permettre à l'algorithme de prédire avec précision les complexes de protéines avec ces autres molécules."

Apparemment oui. Fin 2023, Baker puis Jumper ont publié les versions préliminaires de leurs nouveaux outils d’IA, et depuis, ils soumettent leurs algorithmes à un examen par les pairs.

Les deux systèmes d'IA répondent à la même question, mais les architectures sous-jacentes de leurs méthodes d'apprentissage profond diffèrent, a déclaré Mohammed AlQuraishi , biologiste des systèmes à l'Université de Columbia qui n'est impliqué dans aucun des deux systèmes. L'équipe de Jumper a utilisé un processus appelé diffusion – technologie qui alimente la plupart des systèmes d'IA génératifs non basés sur du texte, tels que Midjourney et DALL·E, qui génèrent des œuvres d'art basées sur des invites textuelles, a expliqué AlQuraishi. Au lieu de prédire directement la structure moléculaire puis de l’améliorer, ce type de modèle produit d’abord une image floue et l’affine de manière itérative.

D'un point de vue technique, il n'y a pas de grand saut entre RoseTTAFold et RoseTTAFold All-Atom, a déclaré AlQuraishi. Baker n'a pas modifié massivement l'architecture sous-jacente de RoseTTAFold, mais l'a mise à jour pour inclure les règles connues des interactions biochimiques. L'algorithme n'utilise pas la diffusion pour prédire les structures biomoléculaires. Cependant, l'IA de Baker pour la conception de protéines le fait. La dernière itération de ce programme, connue sous le nom de RoseTTAFold Diffusion All-Atom, permet de concevoir de nouvelles biomolécules en plus des protéines.

" Le type de dividendes qui pourraient découler de la possibilité d'appliquer les technologies d'IA générative aux biomolécules n'est que partiellement réalisé grâce à la conception de protéines", a déclaré AlQuraishi. "Si nous pouvions faire aussi bien avec de petites molécules, ce serait incroyable." 

Évaluer la concurrence

Côte à côte, AlphaFold3 semble être plus précis que RoseTTAFold All-Atom. Par exemple, dans leur analyse dans Nature , l'équipe de Google a constaté que leur outil est précis à environ 76 % pour prédire les structures des protéines interagissant avec de petites molécules appelées ligands, contre une précision d'environ 42 % pour RoseTTAFold All-Atom et 52 % pour le meilleur. outils alternatifs disponibles.

Les performances de prédiction de structure d'AlphaFold3 sont " très impressionnantes ", a déclaré Baker, " et meilleures que celles de RoseTTAFold All-Atom ".

Toutefois, ces chiffres sont basés sur un ensemble de données limité qui n'est pas très performant, a expliqué AlQuraishi. Il ne s’attend pas à ce que toutes les prédictions concernant les complexes protéiques obtiennent un score aussi élevé. Et il est certain que les nouveaux outils d’IA ne sont pas encore assez puissants pour soutenir à eux seuls un programme robuste de découverte de médicaments, car cela nécessite que les chercheurs comprennent des interactions biomoléculaires complexes. Pourtant, " c'est vraiment prometteur ", a-t-il déclaré, et nettement meilleur que ce qui existait auparavant.

Adams est d'accord. "Si quelqu'un prétend pouvoir utiliser cela demain pour développer des médicaments avec précision, je n'y crois pas", a-t-il déclaré. " Les deux méthodes sont encore limitées dans leur précision, [mais] les deux constituent des améliorations spectaculaires par rapport à ce qui était possible. "

(Image gif, tournante, en 3D : AlphaFold3 peut prédire la forme de complexes biomoléculaires, comme cette protéine de pointe provenant d'un virus du rhume. Les structures prédites de deux protéines sont visualisées en bleu et vert, tandis que les petites molécules (ligands) liées aux protéines sont représentées en jaune. La structure expérimentale connue de la protéine est encadrée en gris.)

Ils seront particulièrement utiles pour créer des prédictions approximatives qui pourront ensuite être testées informatiquement ou expérimentalement. Le biochimiste Frank Uhlmann a eu l'occasion de pré-tester AlphaFold3 après avoir croisé un employé de Google dans un couloir du Francis Crick Institute de Londres, où il travaille. Il a décidé de rechercher une interaction protéine-ADN qui était " vraiment déroutante pour nous ", a-t-il déclaré. AlphaFold3 a craché une prédiction qu'ils testent actuellement expérimentalement en laboratoire. "Nous avons déjà de nouvelles idées qui pourraient vraiment fonctionner", a déclaré Uhlmann. " C'est un formidable outil de découverte. "

Il reste néanmoins beaucoup à améliorer. Lorsque RoseTTAFold All-Atom prédit les structures de complexes de protéines et de petites molécules, il place parfois les molécules dans la bonne poche d'une protéine mais pas dans la bonne orientation. AlphaFold3 prédit parfois de manière incorrecte la chiralité d'une molécule – l'orientation géométrique distincte " gauche " ou " droite " de sa structure. Parfois, il hallucine ou crée des structures inexactes.

Et les deux algorithmes produisent toujours des images statiques des protéines et de leurs complexes. Dans une cellule, les protéines sont dynamiques et peuvent changer en fonction de leur environnement : elles se déplacent, tournent et passent par différentes conformations. Il sera difficile de résoudre ce problème, a déclaré Adams, principalement en raison du manque de données de formation. " Ce serait formidable de déployer des efforts concertés pour collecter des données expérimentales conçues pour éclairer ces défis ", a-t-il déclaré.

Un changement majeur dans le nouveau produit de Google est qu'il ne sera pas open source. Lorsque l’équipe a publié AlphaFold2, elle a publié le code sous-jacent, qui a permis aux biologistes de reproduire et de jouer avec l’algorithme dans leurs propres laboratoires. Mais le code d'AlphaFold3 ne sera pas accessible au public.

 " Ils semblent décrire la méthode en détail. Mais pour le moment, au moins, personne ne peut l’exécuter et l’utiliser comme il l’a fait avec [AlphaFold2] ", a déclaré AlQuraishi. C’est " un grand pas en arrière. Nous essaierons bien sûr de le reproduire."

Google a cependant annoncé qu'il prenait des mesures pour rendre le produit accessible en proposant un nouveau serveur AlphaFold aux biologistes exécutant AlphaFold3. Prédire les structures biomoléculaires nécessite une tonne de puissance de calcul : même dans un laboratoire comme Francis Crick, qui héberge des clusters informatiques hautes performances, il faut environ une semaine pour produire un résultat, a déclaré Uhlmann. En comparaison, les serveurs plus puissants de Google peuvent faire une prédiction en 10 minutes, a-t-il déclaré, et les scientifiques du monde entier pourront les utiliser. "Cela va démocratiser complètement la recherche sur la prédiction des protéines", a déclaré Uhlmann.

Le véritable impact de ces outils ne sera pas connu avant des mois ou des années, alors que les biologistes commenceront à les tester et à les utiliser dans la recherche. Et ils continueront à évoluer. La prochaine étape de l'apprentissage profond en biologie moléculaire consiste à " gravir l'échelle de la complexité biologique ", a déclaré Baker, au-delà même des complexes biomoléculaires prédits par AlphaFold3 et RoseTTAFold All-Atom. Mais si l’histoire de l’IA en matière de structure protéique peut prédire l’avenir, alors ces modèles d’apprentissage profond de nouvelle génération continueront d’aider les scientifiques à révéler les interactions complexes qui font que la vie se réalise.

" Il y a tellement plus à comprendre ", a déclaré Jumper. "C'est juste le début."

Auteur: Internet

Info: https://www.quantamagazine.org/new-ai-tools-predict-how-lifes-building-blocks-assemble-20240508/ - Yasemin Saplakoglu, 8 mai 2024

[ briques du vivant ] [ texte-image ] [ modélisation mobiles ] [ nano mécanismes du vivant ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

monde covidien

Paniques anticomplotistes

Si Hold-up n’avait pas existé, les anticomplotistes l’auraient inventé. C’est le produit parfait, le bloc de complotisme-étalon en platine iridié, déposé au Pavillon de Breteuil à Sèvres.(...)

Le torrent de commentaires qu’a immédiatement suscité la diffusion du documentaire est sans doute le premier signe qui trahit la fébrilité — du temps a passé depuis le mépris et les ricanements. Si encore il n’y avait que la quantité. Mais il faut voir la "qualité". C’est peut-être là le trait le plus caractéristique de l’épisode "Hold-up" que toutes les réactions médiatiques ou expertes suscitée par le documentaire ne font que reconduire les causes qui l’ont rendu possible. Les fortes analyses reprises à peu près partout ont d’abord fait assaut de savoirs professionnels par des professionnels : "la musique" — inquiétante (la musique complotiste est toujours inquiétante), le format "interviews d’experts sur fond sombre" (le complotisme est sombre), "le montage" (le montage… monte ?). C’est-à-dire, en fait, les ficelles ordinaires, et grossières, de tous les reportages de M6, TF1, LCI, BFM, France 2, etc. Et c’est bien parce que l’habitude de la bouillie de pensée a été installée de très longue date par ces formats médiatiques que les spectateurs de documentaires complotistes ne souffrent d’aucun dépaysement, se trouvent d’emblée en terrain formel connu, parfaitement réceptifs... et auront du mal à comprendre que ce qui est standard professionnel ici devienne honteuse manipulation là.

Complotistes ou décrypteurs ?

Mais les médias ont passé ce point d’inquiétude où l’on sent bien qu’on ne peut plus se contenter de la stigmatisation des cinglés. L’urgence maintenant c’est de comprendre — hélas en partant de si loin, et avec si peu de moyens. Alors la science médiatique-complotologique pioche pour refaire son retard, et tout y passe. Il y a d’abord, nous dit très sérieusement Nicolas Celnik dans Libération (lui aussi a compris qu’il ne fallait plus se moquer, alors il écrit une "Lettre à (son) ami complotiste"), que l’un des ressorts positifs des adeptes de complots vient de "l’impression d’avoir découvert ce qui devait rester caché". Mais Nicolas Celnik sait-il que le vocable princeps de l’idéologie journalistique est "décrypter", ce qui, si l’on suit bien l’étymologie, signifie, précisément, mettre à découvert ce qui était caché. Il n’est pas un organe de presse qui ne s’enorgueillisse de ses "décryptages". (...)

Le décryptage autorisé a toujours consisté en cette forme particulière de recryptage, mais ici tout à fait inconsciente

Ici le parallélisme manifestement inaperçu entre les îlotes tentant de "découvrir ce qui devrait rester caché" et l’aristocratie des "décrypteurs" se complique de ce que le décryptage autorisé n’a jamais rien décrypté, qu’il a même toujours consisté en cette forme particulière de recryptage, mais ici tout à fait inconsciente, en quoi consiste le catéchisme néolibéral. Il suffit d’écouter un "décrypteur" livrer aux masses abruties qu’il a la bonté d’éclairer le sens profond de la suppression de l’ISF, de la réduction de la dette publique ou du démantèlement du code du travail pour être au clair sur ce que "décrypter" signifie réellement — à savoir voiler dans les catégories de la pensée néolibérale. "Décrypter", c’est avoir admis que les gueux ne se contentent plus d’une simple injonction, et entreprendre de leur en donner les bonnes raisons. Par exemple : "il faut supprimer l’ISF sinon les cerveaux partiront" — là c’est décrypté ; "il faut réduire la fiscalité du capital pour financer nos entreprises" (tout est clair) ; "il faut fermer des lits pour que l’hôpital soit agile" (décryptage de qualité : qui voudrait d’un hôpital podagre ou arthritique ? on comprend) ; "il faut réduire les dépenses publiques pour ne pas laisser la dette à nos enfants" (clarté économique, clarté morale), etc.

C’est très exaltant pour un journaliste de décrypter, ça donne un grand sentiment d’utilité sociale, c’est comme une charité démocratique. Les gueux ne pouvaient pas apercevoir tout ça, ça leur restait donc crypté — du coup on le leur décrypte. Décrypter, c’est faire comprendre aux intéressés ce qu’on va leur faire, pourquoi c’est nécessaire, et pourquoi c’est bon pour eux. (...)

Les complotistes en tout cas ont parfaitement reçu le message du "décryptage", à ceci près qu’à force de s’entendre administrer par d’autres un sens inaperçu du monde qui les bousille en leur expliquant qu’il est le meilleur possible, ils ont entrepris de s’en chercher un autre par eux-mêmes. Ça ne donne sans doute pas des résultats bien fameux — mais à décrypteur, décrypteur et demi. C’est le "décryptage" lui-même qui, pour permettre aux journalistes de faire les entendus, a installé l’idée qu’il y avait quelque chose à aller chercher dessous. Les complotistes les prennent au mot, à ceci près que le quelque chose des décrypteurs étant toujours la même chose, eux se mettent en devoir d’aller chercher autre chose.

Cérébroscopie des complotistes

Alors on va chercher pourquoi l’autodécryptage des gueux décrypte de travers. Ici la science complotologique est à son meilleur. Comme les sciences les plus avancées, elle isole des "effets". Par exemple la physique connaît "l’effet Compton", "l’effet Doppler", "l’effet Einstein". La complotologie, pour sa part dispose de l’effet "millefeuille argumentatif". Impossible d’ouvrir un article sur Hold-up sans avoir à manger du millefeuille (argumentatif) — une feuille de vrai, une feuille de faux, une feuille de vrai... Un journaliste de Mediapart va plus loin et pose gravement la question : "pourquoi nos cerveaux sont-ils si perméables" (à l’aberration complotiste) ? "Nos" : pas de discrimination offensante. "Cerveaux" : parce que c’est là-dedans que ça se passe. La réception du complotisme, c’est une affaire "dans le cerveau". Un psychologue social, dont la psychologie sociale n’a plus rien de social (mais c’est la grande tendance de la psychologie sociale) saisit aussitôt la perche du "cerveau" : comme une invitation faite aux sciences cognitives et à leur panacée explicative : le biais. Pourquoi le "cerveau" (des complotistes) erre-t-il ? Parce qu’il est en proie à des biais (cognitifs) — marche aussi avec "pourquoi votre fille est muette" : elle est en proie à des biais (auditifs). Après le biais pâtissier (celui du millefeuille — particulièrement traître avec toute cette crème, on ne sait plus si on mange des feuilles vraies ou des feuilles fausses), le biais de confirmation, puis le biais d’intentionnalité (à qui profite le crime ?), etc. De ce qu’il y a des biais, il résulte que la pensée n’est pas droite. C’est scientifique, on a bien avancé.

(...)

Les paroles institutionnelles en ruines

Voilà donc où en est la "compréhension" du fait complotiste dans les médias assistés de leurs experts satellites. D’où naît irrésistiblement un désir de compréhension de cette "compréhension", ou plutôt de cette incompréhension, de cette compréhension tronquée sur l’essentiel. En réalité, que la formation des opinions reprenne toute liberté, pour le meilleur et pour le pire, quand l’autorité des paroles institutionnelles est à terre, ça n’a pas grand-chose de surprenant. Mais pourquoi l’autorité des paroles institutionnelles est-elle à terre ? C’est la question à laquelle les paroles institutionnelles ont le moins envie de répondre. On les comprend : l’examen de conscience promet d’être douloureux, autant s’en dispenser — et maintenir le problème bien circonscrit au cerveau des complotistes.

Mais pourquoi l’autorité des paroles institutionnelles est-elle à terre ? C’est la question à laquelle les paroles institutionnelles ont le moins envie de répondre

C’est que l’autorité des paroles institutionnelles n’a pas été effondrée du dehors par quelque choc exogène adverse : elle s’est auto-effondrée, sous le poids de tous ses manquements. À commencer par le mensonge des institutions de pouvoir. Les institutions de pouvoir mentent. Mediator : Servier ment. Dépakine : Sanofi ment. Bridgestone : Bridgetsone ment. 20 milliards de CICE pour créer un million d’emplois : le Medef ment. Mais aussi : Lubrizol, les pouvoirs publics mentent ; nucléaire, tout est sûr : les nucléocrates mentent. Loi de programmation de la recherche : Vidal ment (mais à un point extravagant). Violences policières, alors là, la fête : procureurs, préfecture, IGPN, ministres, président de la République, tout le monde ment, et avec une obscénité resplendissante qui ajoute beaucoup. Covid : hors-concours.

Le capitalisme néolibéral a déchaîné les intérêts les plus puissants, or là où les intérêts croissent, la vérité trépasse. C’est qu’il faut bien accommoder la contradiction entre des politiques publiques forcenées et l’effet qu’elles font aux gens. Or pour combler ce genre d’écart, quand on a décidé de ne pas toucher aux causes de l’écart, il n’y a que le secours des mots. Alors on arrose généreusement avec du discours. Au début on fait de la "pédagogie", on "décrypte". Et puis quand le décryptage ne marche plus, il ne reste plus qu’à mentir — à soutenir que ce qui est n’est pas ("la police républicaine ne se cagoule pas, elle agit à visage découvert"), ou que ce qui n’est pas est (on ferme des lits pour améliorer l’accueil des malades). Quand il n’est pas pure et simple répression, le néolibéralisme finissant n’est plus qu’une piscine de mensonge. Nous baignons là-dedans. C’est devenu une habitude, et en même temps on ne s’y habitue pas. Vient forcément le moment où l’autorité de la parole institutionnelle s’effondre parce que l’écart entre ce qu’elle dit et ce que les gens expérimentent n’est plus soutenable d’aucune manière.

Alors ça part en glissement de terrain, et tout s’en va avec, notamment les médias d’accompagnement, précisément parce qu’ils auront accompagné, trop accompagné, pendant trop longtemps. Ils auront tant répété, tant ratifié, se seront tant empressés. Les complotistes voient l’esprit critique de la presse se réarmer dans la journée même de la parution d’un documentaire. Mais, en matière d’esprit critique, ils se souviennent aussitôt des interviews de Léa Salamé, de Macron interrogé par TF1-France2-BFM, de la soupe servie à la louche argentée, de la parole gouvernementale outrageusement mensongère mais jamais reprise comme telle, ils se souviennent de deux mois d’occultation totale des violences policières contre les "gilets jaunes", ils se souviennent du journalisme de préfecture qui a si longtemps débité tels quels les communiqués de Beauvau, certifié l’envahissement de la Salpêtrière par des casseurs.(...) C’est long trente ans à ce régime, pendant que le chômage, la précarité, les inégalités, les suicides et les services publics explosent. Ça en fait du travail de sape dans les esprits.

En fait c’est très simple : pourquoi les paroles institutionnelles s’effondrent-elles ? Parce que, dans le temps même où elles présidaient au délabrement de la société, elles auront, chacune dans leur genre, ou trop menti, ou trop couvert, ou trop laissé passer, ou trop regardé ailleurs, ou trop léché, que ça s’est trop vu, et qu’à un moment, ça se paye. Le complotisme en roue libre, c’est le moment de l’addition. Il faut vraiment être journaliste, ou expert de Conspiracy Watch pour ne pas voir ça. Trente ans de ruine à petit feu de l’autorité institutionnelle, et puis un beau jour, l’immeuble entier qui s’effondre : le discrédit. Mais normalement on sait ça : le crédit détruit, ne se reconstruit pas rapidement. Maintenant, il y a les ruines, et il va falloir faire au milieu des gravats pour un moment. On comprend que la plupart des médias, qui comptent au nombre des gravats, ne se résolvent pas à regarder le tableau. C’est bien pourquoi il fallait faire aussitôt un hold-up sur Hold-up : pour en fixer la "compréhension", et qu’elle ne s’en aille surtout pas ailleurs.

Rééducation et bienveillance

En attendant, la soupe est renversée et on a les complotistes sur les bras. Comment faire ? On a compris que l’heure de les traiter de cinglés était passée et qu’il urge de trouver autre chose pour endiguer la marée. Mais quoi ? Dans l’immédiat, pas grand-chose hélas, en tout cas pas ça. Il va falloir se faire à l’idée que la ruine des constructions de longue période, comme le crédit fait à la parole institutionnelle, ne se répare que par des reconstructions de longue période (par exemple, la destruction présente de la chaîne éducation-recherche prendra des décennies à être surmontée). Tant que la phalange anticomplotiste continuera d’apparaître telle qu’elle est, c’est-à-dire soudée au bloc des pouvoirs, le crédit de l’ensemble restera à zéro. En réalité, tant que la masse "médias" ne se fragmentera pas, tant que ne s’en détachera pas une fraction significative, qui rompe avec la position globale de ratification de l’ordre néolibéral et de déférence à l’endroit de tous ses pouvoirs, les clients du complotisme continueront de n’y voir qu’un appareil homogène de propagande — et d’aller chercher "ailleurs". Les gens ne vont chercher un "ailleurs" au-dehors que lorsque le champ institutionnel a échoué à aménager un "ailleurs" au-dedans. Mais quel aggiornamento, quelles révisions déchirantes, cette rupture, maintenant, ne suppose-t-elle pas ?

Pour l’heure, incapable, la parole autorisée cherche fébrilement quelque autre ressource — mais forcément au voisinage de ses formes de pensée invétérées. Idée de génie et redéploiement pédagogique : on va aller leur parler. Mais gentiment cette fois. On va leur écrire des lettres, en leur disant qu’ils sont nos amis — c’est donc la version Libération. Il y a celle du Monde. Si l’ambiance générale n’était pas si flippante, ce serait à se rouler par terre de rire. Tout y est. On va chercher Valérie Igounet de Conspiracy Watch — on avait l’habitude jusqu’ici de Rudy Reichstadt mais lui est trop épais, c’était l’anticomplotisme première manière, maintenant on ne peut plus le sortir. Dans la saison 2, ça donne : "Il faut réfuter par des faits, décrypter, mais sans être dans l’accusation ou la moquerie". Voilà la solution : tout dans l’onctueux, l’humain et la bienveillance — on est excellemment partis. "On est sur un fil", ajoute quand même l’experte dans un souffle. Tu l’as dit Valérie.

Tristan Mendès-France, lui, explique à peu de choses près qu’on a le stock des zinzins sur les bras et qu’avec eux, c’est foutu, il faudra faire avec. Mais que tout notre effort doit aller à enrayer les nouveaux recrutements : "il faut viser les primo-arrivants, faire de la prévention". Valérie Igounet a déjà commencé : elle mène, nous explique Le Monde, "de nombreux ateliers avec l’Observatoire du complotisme auprès d’enfants" — il faut prendre les "primo-arrivants" de loin. Tout le problème de l’anticomplotisme, c’est qu’il peut prononcer l’âme claire une phrase pareille qui, normalement, devrait faire froid dans le dos. Qu’on n’aille pas croire à une embardée individuelle : c’est la ligne générale. Le nouvel expert gyroscopique — il tourne sur à peu près tous les médias, France Culture, Le Monde, Regards —, Thomas Huchon, pense également qu’il faut "faire de l’éducation aux médias (…) en gros de la prévention pour vacciner contre l’épidémie de “fake news”". On se croirait au point de presse de Jérôme Salomon, et ça n’est pas un hasard. Car c’est cela qu’on trouve dans une tête d’anticomplotiste : des images de bacilles, de prophylaxie et de cordon sanitaire. De politique ? Aucunement. Ça n’est pas une affaire de politique, ou de discours politique : c’est une affaire médicale.

On voit d’ici à quoi pourra ressembler "l’éducation", ou plutôt la rééducation, aux médias. L’essentiel est que l’analyse du complotisme soit ramenée à son cadre : d’un côté le pathologique, de l’autre le pédagogique. Et puis, dans le camp-école réaménagé, les éducateurs, nous est-il désormais garanti, seront pleins d’empathie et d’écoute : "la diffusion du complotisme, conclut l’article du Monde, pose un défi à une multitude d’acteurs qui doivent plus que jamais prendre le temps d’expliquer, de démontrer, sans ostraciser ni caricaturer". De ne rien comprendre à ce point, c’en est extravagant. Finalement, rien n’a bougé d’un iota, le complotisme a encore de beaux jours devant lui. On se croirait revenu dans Tintin au Congo, mais où on aurait rappelé les missionnaires pour leur faire faire une UV de psycho avant de les renvoyer sur le terrain : "Nous n’économiserons ni notre patience ni notre bonté pour vous faire apercevoir que les esprits de la forêt n’existent pas. Puisque ce qui existe, c’est Dieu". 

Auteur: Lordon Fredéric

Info: https://blog.mondediplo.net/paniques-anticomplotistes, 25 nov 2020

[ contre-mesures sémantiques ]

 

Commentaires: 0

Ajouté à la BD par miguel

non-voyant

Le monde tel que l'imaginent ceux qui n'ont jamais vu. (I)
Depuis les opérations pratiquées par le chirurgien anglais Cheselden en 1728 sur des personnes atteintes de cataracte congénitale, redonner la vue aux aveugles ne tient plus du miracle biblique mais de la science - et les avancées extraordinaires que la médecine a effectuées dans ce domaine invitent à être optimistes pour l'avenir. Toutefois, la plupart des aveugles de naissance qui vivent aujourd'hui savent que ces progrès bénéficieront surtout aux générations futures et que, pour la majorité d'entre eux, ils quitteront ce monde sans en avoir rien vu. Pour autant, à en croire certains, il n'y a nullement là de quoi s'affliger :" Je ne regrette jamais de ne pas voir. Je vois autrement et puis je n'ai jamais vu avec les yeux, ça ne peut pas me manquer." affirme Sophie Massieu (36 ans, journaliste).
L'aveugle de naissance "ne sait pas ce qu'il perd", littéralement parlant, il n'a donc aucune raison de soupirer après un état qu'il n'a jamais connu. Ce n'est donc pas, dans son cas, sur le mode de la lamentation ou du regret lyrique qu'il faut entendre le mot "jamais", comme ce peut être le cas pour les aveugles tardifs qui restent longtemps hantés par leurs souvenirs de voyant... Non, pour l'aveugle-né, ce "jamais" fonctionne à la manière d'un levier, d'une faille où s'engouffre son imagination : à quoi peut ressembler ce monde visible dont tout le monde parle autour de lui ? Comment se représenter des notions proprement visuelles, telles que les couleurs, l'horizon, la perspective ? Toutes ces questions pourraient tenir en une seule : comment concevoir ce qu'est la vue sans voir ? Question qui a sa réciproque pour le voyant : comment se représenter ce que c'est que de ne pas voir pour quiconque a toujours vu ? Il y a là un défi lancé à l'imagination, défi d'autant plus difficile à relever que les repères auxquels chacun aura spontanément tendance à se référer seront tirés d'un univers perceptif radicalement différent de celui qu'on cherche à se représenter, et qu'ils risquent fort, par conséquent, de nous induire en erreur. Il n'est pas dit que ce fossé perceptif puisse être franchi par l'imagination - mais comme tout fossé, celui-ci appelle des passerelles : analogies puisées dans les autres sens ou dans le langage, efforts pour s'abstraire de ses automatismes de pensée - ce que Christine Cloux, aveugle de naissance, appelle une forme de "souplesse mentale"... L'enjeu, s'il est vital pour l'aveugle, peut sembler minime pour le voyant : que gagne-t-on à imaginer le monde avec un sens en moins ? On aurait tort de négliger l'intérêt d'une telle démarche intellectuelle, car s'interroger sur la perception du monde d'un aveugle de naissance, c'est remettre la nôtre en perspective, en appréhender le caractère relatif, mesurer à quel point nos représentations mentales dépendent de nos dispositions sensibles - enfin, c'est peut-être le moyen de prendre conscience des limites de notre point de vue et, le temps d'un effort d'imagination, de les dépasser...
Imaginer le monde quand on est enfant
Le jeune enfant voyant croit que les choses cessent d'exister dès lors qu'elles quittent son champ de vision : un moment très bref, dit-on, sépare le temps où il croit encore sa mère absente et celui où il la croit déjà morte. Qu'on s'imagine alors ce qu'il en est pour l'enfant aveugle de naissance... "J'avais peur de lancer un ballon, parce que je pensais qu'il allait disparaître. Mon monde s'arrêtait à un mètre, au-delà, pour moi, c'était le vide. "explique Natacha de Montmollin (38 ans, informaticienne de gestion). Comment être sûr que les objets continuent d'exister quand ils sont hors de portée, d'autant plus quand on ne les retrouve pas là où on les avait laissés ? Comment accorder sa confiance à monde aussi inconstant ? Un enfant aveugle de naissance aura nécessairement besoin de plus de temps qu'un enfant voyant pour trouver ses marques et pour comprendre le monde qui l'entoure.
Dans les premières années de sa vie, l'aveugle de naissance n'a pas conscience de son handicap... De fait, s'il ne vivait dans une société de voyants, il passerait toute sa vie sans se douter de l'existence du monde visible. Dans la nouvelle de H. G. Wells Le pays des aveugles, le héros, voyant débarqué dans une communauté d'aveugles qui vit repliée sur elle-même, découvre à ses dépens qu'on y traite ceux qui se prétendent doués de la vue non comme des dieux ou des rois, mais comme des fous, comme nous traitons ceux qui affirment voir des anges - pour le dire autrement : au royaume des aveugles de naissance, les borgnes seraient internés. C'est uniquement parce qu'il vit dans une société organisée par et pour des voyants que l'aveugle finit par contracter, avec le temps, le sentiment de sa différence. Cette découverte peut se faire de différentes manières : les parents peuvent, quand ils estiment leur enfant assez mûr, lui expliquer son infirmité ; l'enfant peut également la découvrir par lui-même, au contact des autres enfants. "On ne m'a jamais expliqué que j'étais aveugle, j'en ai pris conscience avec le temps, explique Sophie Massieu. Quand je jouais à cache-cache avec les autres enfants, je ne comprenais pas pourquoi j'étais toujours la première débusquée... Evidemment, j'étais toujours cachée sous une table, sans rien autour pour me protéger, je sautais un peu aux yeux..."
Le jeune aveugle de naissance finit donc par comprendre qu'il existe une facette de la réalité que les autres perçoivent mais qui lui demeure inaccessible. Dans un premier temps, cette "face du monde" doit lui paraître pour le moins abstraite et difficile à concevoir. Pour avoir un aperçu de l'effort d'imagination que cela exige, le voyant devrait tenter de se représenter une quatrième dimension de l'espace qui l'engloberait sans qu'il en ait conscience...
Il est inévitable que l'aveugle de naissance commence par se faire de certaines choses une représentation inexacte : ces "fourvoiements de l'imagination" constituent des étapes indispensables à l'élaboration de l'intelligence, qu'on soit aveugle ou non. En outre, ils peuvent avoir leur poésie. Un psychologue russe (cité par Pierre Villey dans son ouvrage Le monde des aveugles) mentionne l'exemple d'un jeune aveugle de naissance qui se représentait absolument tous les objets comme en mouvement, jusqu'aux plus immobiles : "pour lui les pierres sautent, les couleurs jouent et rient, les arbres se battent, gémissent, pleurent". Cette représentation peut prêter à sourire, mais après tout, la science et la philosophie ne nous ont-elles pas enseigné que l'immobilité du monde n'était qu'une illusion de la perception, découlant de l'incomplétude de notre point de vue ? A ce titre, l'imagination de ce garçon semblait lui avoir épargné certaines illusions dont l'humanité a eu tant de mal à se déprendre : par exemple, quoiqu'il ne sut rien du mouvement des corps célestes, on raconte que, lorsqu'on lui posa la question : "le soleil et la lune se meuvent-ils ?", il répondit par l'affirmative, sans aucune hésitation.
L'aveugle de naissance peut se représenter la plupart des objets en les palpant. Quand ceux-ci sont trop imposants, des maquettes ou des reproductions peuvent s'y substituer. "J'ai su comment était foutue la Tour Eiffel en ayant un porte-clefs entre les mains... " se souvient Sophie Massieu. Tant que l'objet demeure hors de sa portée, hors du champ de son expérience, il n'est pas rare que l'aveugle s'en fasse une image fantaisiste en se fondant sur la sonorité du mot ou par associations d'idées. Ce défaut n'est pas propre aux aveugles, et "chez chacun, l'imagination devance l'action des sens", pour reprendre l'expression de Pierre Villey. Mais ce défaut peut avoir des conséquences nettement plus fâcheuses chez l'aveugle de naissance, car s'il se contente de ces représentations inexactes et ne cherche pas à les corriger, il risque de méconnaître le monde qui l'entoure et de s'isoler dans un royaume fantasque construit selon les caprices de son imagination. L'aveugle-né n'a pas le choix : il doit s'efforcer de se représenter le monde le plus fidèlement possible, sous peine d'y vivre en étranger...
Imaginer les individus
Très tôt, l'aveugle va trouver des expédients pour se représenter le monde qui l'entoure, à commencer par les gens qu'il côtoie. Leur voix, pour commencer, constitue pour lui une mine d'informations précieuses : l'aveugle prête autant attention à ce que dit son interlocuteur qu'à la manière dont il le dit. La voix révèle un caractère, le ton une humeur, l'accent une origine... "On peut dire ce qu'on veut, mais notre voix parle de nous à notre insu." explique Christine Cloux (36 ans, informaticienne). Certains aveugles considèrent qu'il est beaucoup plus difficile de déguiser les expressions de sa voix que celles de son visage, et pour eux, c'est la voix qui est le miroir de l'âme : "Un monde d'aveugle aurait ses Lavater [auteur de"L'Art de connaître les hommes par la physionomie"]. Une phonognomie y tiendrait lieu de notre physiognomie." écrit Pierre Villey dans Le monde des aveugles. Mais à trop se fier au caractère révélateur d'une voix, l'aveugle s'expose parfois à de cruelles désillusions... Villey cite le cas d'une jeune aveugle qui s'était éprise d'une actrice pour le charme de sa voix : "Instruite des déportements peu recommandables de son idole elle s'écrie dans un naïf élan de désespoir : "Si une pareille voix est capable de mentir, à quoi pourrons-nous donc donner notre confiance ?".
De nombreux autres indices peuvent renseigner l'aveugle sur son interlocuteur : une poignée de main en dit long (Sophie Massieu affirme haïr "les poignées de main pas franches, mollasses...", qu'elle imagine comparables à un regard fuyant) ; le son des pas d'un individu peut renseigner sur sa corpulence et sa démarche ; les odeurs qu'il dégage peuvent donner de précieux renseignements sur son mode de vie - autant d'indices que le voyant néglige souvent, en se focalisant principalement sur les informations que lui fournit sa vue. Quant à l'apparence physique en elle-même, la perspicacité de l'aveugle atteint ici ses limites : "Il y a des choses qu'on sait par le toucher mais d'autres nous échappent : on a la forme du visage, mais on n'a pas la finesse des traits, explique Sophie Massieu. On peut toujours demander aux copines "tiens, il me plaît bien, à quoi il ressemble ?" Bon, il faut avoir des bonnes copines... " Certains aveugles de naissance sont susceptibles de se laisser influencer par les goûts de la majorité voyante : Jane Hervé mentionne la préférence d'une aveugle de naissance pour les blonds aux yeux bleus :"Je crois que les blonds sont beaux. Peut-être que c'est rare...". "D'une façon générale, je pense que la manière dont nous imaginons les choses que nous ne pouvons pas percevoir tient beaucoup à la manière dont on nous en parle, explique Sophie Massieu. Si la personne qui vous le décrit trouve ça beau, vous allez trouvez ça beau, si elle trouve ça moche, vous allez trouver ça moche...". De ce point de vue, l'aveugle dépend - littéralement - du regard des autres : "Mes amis et ma famille verbalisent beaucoup ce qu'ils voient, alors ils sont en quelque sorte mon miroir parlant..." confie Christine Cloux.
Imaginer l'espace
On a cru longtemps que l'étendue était une notion impossible à concevoir pour un aveugle. Platner, un médecin philosophe du siècle dernier, en était même arrivé à la conclusion que, pour l'aveugle-né, c'était le temps qui devait faire office d'espace : "Eloignement et proximité ne signifient pour lui que le temps plus ou moins long, le nombre plus ou moins grand d'intermédiaires dont il a besoin pour passer d'une sensation tactile à une autre.". Cette théorie est très poétique - on se prend à imaginer, dans un monde d'aveugles-nés, des cartes en relief où la place dévolue à chaque territoire ne serait pas proportionnelle à ses dimensions réelles mais à son accessibilité, au temps nécessaire pour le parcourir... Dans les faits, cependant, cette théorie nous en dit plus sur la manière dont les voyants imaginent le monde des aveugles que sur le contraire. Car s'il faut en croire les principaux intéressés, ils n'ont pas spécialement de difficulté à se figurer l'espace.
"Tout est en 3D dans ma tête, explique Christine Cloux. Si je suis chez moi, je sais exactement comment mon appartement est composé : je peux décrire l'étage inférieur sans y aller, comme si j'en avais une maquette. Vraiment une maquette, pas un dessin ou une photo. De même pour les endroits que je connais ou que j'explore : les gares, des quartiers en ville, etc. Plus je connais, plus c'est précis. Plus j'explore, plus j'agrandis mes maquettes et j'y ajoute des détails."La représentation de l'espace de l'aveugle de naissance se fait bien sous formes d'images spatiales, mais celles-ci n'en sont pas pour autant des images-vues : il faudrait plutôt parler d'images-formes, non visuelles, où l'aveugle projette à l'occasion des impressions tactiles. Pour décrire cette perception, Jane Hervé utilise une comparaison expressive :"les sensations successives et multiples constituent une toile impressionniste - tramée de mille touchers et sensations - suggérant la forme sentie, comme les taches d'or étincelant dans la mer composant l'Impression, soleil devant de Claude Monet."
A l'époque des Lumières, certains commentateurs, stupéfaits par les pouvoirs de déduction des aveugles, s'imaginaient que ceux-ci étaient capables de voir avec le bout de leurs doigts (ils étaient trompés, il faut dire, par certains aveugles qui prétendaient pouvoir reconnaître les couleurs d'un vêtement simplement en touchant son étoffe). Mais les aveugles de naissance eux-mêmes ne sont pas à l'abri de ce genre de méprises : Jane Hervé cite le cas d'une adolescente de 18 ans - tout à fait intelligente par ailleurs - qui pensait que le regard des voyants pouvait contourner les obstacles - exactement comme la main permet d'enserrer entièrement un petit objet pour en connaître la forme. Elle pensait également que les voyants pouvaient voir de face comme de dos, qu'ils étaient doués d'une vision panoramique : "Elle imaginait les voyants comme des Janus bifaces, maîtres du regard dans toutes les directions.". L'aveugle du Puiseaux dont parle Diderot dans sa Lettre sur les aveugles, ne sachant pas ce que voulait dire le mot miroir, imaginait une machine qui met l'homme en relief, hors de lui-même. Chacun imagine l'univers perceptif de l'autre à partir de son univers perceptif propre : le voyant croit que l'aveugle voit avec les doigts, l'aveugle que le voyant palpe avec les yeux. Comme dans la parabole hindoue où des individus plongés dans l'obscurité tentent de déduire la forme d'un éléphant en se fondant uniquement sur la partie du corps qu'ils ont touché (untel qui a touché la trompe prétend que l'éléphant a la forme d'un tuyau d'eau, tel autre qui a touché l'oreille lui prête la forme d'un éventail...) - semblablement les êtres humains imaginent un inconnu radical à partir de ce qu'ils connaissent, quand bien même ces repères se révèlent impropres à se le représenter.
Parmi les notions spatiales particulièrement difficiles à appréhender pour un aveugle, il y a la perspective - le fait que la taille apparente d'un objet diminue proportionnellement à son éloignement pour le sujet percevant. "En théorie je comprends ce qu'est la perspective, mais de là à parvenir à réaliser un dessin ou à en comprendre un, c'est autre chose - c'est d'ailleurs la seule mauvaise note que j'ai eu en géométrie, explique Christine Cloux. Par exemple, je comprends que deux rails au loin finissent par ne former qu'une ligne. Mais ce n'est qu'une illusion, car en réalité il y a toujours deux rails, et dans ma tête aussi. Deux rails, même très loin, restent deux rails, sans quoi le train va avoir des ennuis pour passer..." Noëlle Roy, conservatrice du musée Valentin Haüy, se souvient d'une aveugle âgée, qui, effleurant avec ses doigts une reproduction en bas-relief du tableau l'Angélus de Millet, s'était étonnée que les deux paysans au premier plan soient plus grands que le clocher dont la silhouette se découpe sur l'horizon. Quand on lui expliqua que c'était en vertu des lois de la perspective, les personnages se trouvant au premier plan et le clocher très loin dans la profondeur de champ, la dame s'étonna qu'on ne lui ait jamais expliqué cela... On peut se demander comment cette dame aurait réagi si, recouvrant l'usage de la vue suite à une opération chirurgicale, elle avait aperçu la minuscule silhouette d'un individu dans le lointain : aurait-elle pensé que c'était là sa taille réelle et que cet individu, s'approchant d'elle, n'en serait pas plus grand pour autant ? Jane Hervé cite le témoignage d'une aveugle de 62 ans qui a retrouvé la vue suite à une opération : "Tout était déformé, il n'y avait plus aucune ligne droite, tout était concave... Les murs m'emprisonnaient, les toitures des maisons paraissaient s'effondrer comme après un bombardement. Ce que je voyais ovale, je le sentais rond avec mes mains. Ce que je distinguais à distance, je le sentais sur moi. J'avais des vertiges permanents. "On peut s'imaginer le cauchemar que représente une perception du monde où la vision et la sensation tactile ne concordent pas, où les sens envoient au cerveau des signaux impossibles à concilier... D'autres aveugles de naissance, ayant recouvré l'usage de la vue suite à une opération, dirent avoir l'impression que les objets leur touchaient les yeux : ils eurent besoin de plusieurs jours pour saisir la distance et de plusieurs semaines pour apprendre à l'évaluer correctement. Cela nous rappelle que notre vision du monde en trois dimensions n'a rien d'innée, qu'elle résulte au contraire d'un apprentissage et qu'il y entre une part considérable de construction intellectuelle.

Auteur: Molard Arthur

Info: http://www.jeanmarcmeyrat.ch/blog/2011/05/12/le-monde-tel-que-limaginent-ceux-qui-nont-jamais-vu

[ réflexion ] [ vacuité ] [ onirisme ] [ mimétisme ] [ synesthésie ] [ imagination ]

 
Mis dans la chaine

Commentaires: 0