Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 48
Temps de recherche: 0.0446s

totalitarismes

Apparemment enhardi par ses propres formulations, Jung s’aventure avec confiance sur la glace fragile des généralisations et des pronostics politiques. Tout d’abord, il exprime sa foi en la démocratie : "En qualité de Suisse, je suis un démocrate invétéré, et cependant je reconnais que la nature est aristocratique, et de plus, ésotérique." S’étant ainsi absous lui-même, il poursuit : "Les grands actes libérateurs de l’histoire universelle ont été accomplis par des personnalités dominantes, jamais par la masse inerte qui est en tout temps secondaire et dépend du démagogue si elle doit éventuellement bouger." Le péan de la nation italienne, ajoute-t-il, est dédié à la personnalité du Duce, et les chants funèbres des autres nations lamentent l’absence de grands chefs. Au cas où nous pourrions encore douter de la nature de ces grands chefs, Jung ajoute une note marginale qui mérite d’être citée en entier : Ce chapitre a été originellement donné sous forme de conférence sous le titre de Die Stimme des Innern au Kulturbund, à Vienne, en novembre 1932. Depuis lors, l’Allemagne aussi a trouvé son chef.

Que cette note ait été plus qu’un commentaire impersonnel est corroboré par un certain nombre de faits. Lorsqu’il fut critiqué par le Dr G. Bailly pour avoir accepté de devenir l’éditeur de la Zentrablatt für Psychotherapie, Jung soutint qu’en accomplissant cette démarche, il s’était exposé aux malentendus "auxquels personne ne peut échapper, lorsque mû par une nécessité supérieure, il est parvenu à s’entendre avec les pouvoirs qui existent en Allemagne" [Neue Zürcher Zeitung, 13 mars 1934]. […]

En 1936, alors qu’il développait son "analyse psycho-politique" conformément à la tendance aristocratique de la nature, Jung déclare explicitement : "La démocratie communiste ou socialiste est le soulèvement des inadaptés contre les efforts de l’ordre." Et encore : "Les hommes SS sont en pleine transformation et vont devenir une caste de chevaliers à la tête de 60 millions d’indigènes." "Il existe deux types de dictateurs, le type du chef et le type du medecine-man. Hitler appartient à ce dernier type. Il est le porte-parole des anciens dieux… la Sybille… l’oracle delphique." Dès le début de 1939 il avertit les chefs d’Etats occidentaux "de ne pas toucher à l’Allemagne dans son humeur présente. Elle est beaucoup trop dangereuse… Laissez-la pénétrer en Russie. Il y a là assez de territoires – un sixième de la surface de la terre" [Cosmopolitan Interview, janvier 1939]. […]

Après l’événement, Jung fit preuve d’une sagesse rétrospective comme l’eut fait à sa place tout autre mage politique qui se serait rendu coupable d’une semblable énormité. […] Après la défaite de 1945, son portrait de Hitler subit une transformation remarquable. La figure hermaphrodique du medecine-man "religieux" cum Sybille, le "demi-dieu" qu’il nous avait présenté en 1936 fait place à "cet épouvantail à moineaux psychique (avec pour bras un manche à balai)", un hystérique, souffrant de pseudologia phantastica, un psychopathe entraînant des millions d’êtres à une psychose collective, qui, incidemment cessait d’être – comme en un temps aux yeux de Jung – particulière à l’URSS. 

Auteur: Glover Edward

Info: Dans "Freud ou Jung ?", trad. Lucy Jones, P.U.F., Paris, 1954, pages 118-120

[ nazisme ] [ caution extérieure ] [ volte-face ] [ vingtième-siècle ] [ ambivalence ] [ adaptation ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

végétaux

Pourquoi les plantes sont-elles vertes ?

La couleur verte des plantes qui réalisent le processus de la photosynthèse n’est pas due au hasard. Des scientifiques ont exploré comment cette couleur protège les plantes de changements soudains et fréquents de l’énergie solaire.

À quoi les plantes doivent-elles leur couleur verte ? Des scientifiques ont travaillé sur la manière dont les plantes réagissent à la lumière pour le comprendre. Le modèle qu’ils ont établi a été présenté le 26 juin 2020 dans la revue Science.

"Les plantes photosynthétiques sont vertes parce que leurs complexes d’antennes absorbent la lumière à travers le spectre visible, y compris les parties bleues et rouges, tout en reflétant les longueurs d’onde vertes", écrivent les chercheurs. La photosynthèse est un processus de fabrication de matière organique chez le végétal (et certaines bactéries), à partir de gaz carbonique, d’eau et qui utilise la lumière du Soleil. Le terme signifie littéralement "synthèse par la lumière".

Les antennes collectrices dont parlent les auteurs composent ce qu’on appelle des photosystèmes. Il est ici question de l’endroit où s’effectue la photosynthèse : dans les parties vertes, et notamment les feuilles. Les cellules continent des chloroplastes, qui renferment eux-mêmes la chlorophylle, le fameux pigment vert qui capte l’énergie lumineuse. Les pigments photosynthétiques sont regroupés en photosystèmes.

Les scientifiques s’intéressent à ce qui se passe lorsque la lumière du Soleil qui arrive jusqu’à une feuille change rapidement. La plante doit alors se protéger contre cette arrivée brusque d’énergie solaire, dans son système qui assure la photosynthèse à l’intérieur de chaque feuille. Si la plante ne peut pas gérer de telles fluctuations, les auteurs expliquent que son organisme va tenter d’expulser l’énergie qui se trouve en trop, et que les cellules peuvent être endommagées. Quelle technique ont développée les organismes photosynthétiques face à cela ?

Grâce au vert, les plantes atténuent ce "bruit"

"Notre modèle montre qu’en absorbant uniquement des couleurs très spécifiques de la lumière, les organismes photosynthétiques peuvent se protéger automatiquement contre les changements soudains — ou ‘bruit’ — de l’énergie solaire, entraînant une conversion de puissance remarquablement efficace", résume Nathaniel Gabor, professeur associé de physique à l’université de Californie à Riverside, cité dans un communiqué.

Autrement dit, les feuilles se sont adaptées pour faire face à ce bruit. Elles l’amortissent, en quelque sorte. Elles sont colorées de vert, car seules certaines régions du spectre solaire sont adaptées pour assurer une protection contre cette énergie solaire qui évolue rapidement. Grâce à cette couleur, les plantes atténuent le "bruit" dont parle le physicien. Les scientifiques disent avoir été surpris par la simplicité du modèle qu’ils ont créé pour comprendre les plantes. "La nature vous surprendra toujours", observe Nathaniel Gabor.

L’étude détaillée de ce phénomène ne sert pas seulement à mieux comprendre les mécanismes mis en œuvre par les plantes. Par biomimétisme, on pourrait imaginer que cette manière d’absorber la lumière soit utilisée pour améliorer les performances des panneaux solaires, en atténuant le "bruit" de l’énergie solaire.

Auteur: Internet

Info: https://www.numerama.com, 5 juillet, 2020, Nelly Lesage

[ teinte olive ] [ filtre ] [ coloris ]

 

Commentaires: 0

Ajouté à la BD par miguel

hypothèse évolutive

Les concepts biosémiotiques de Marcello Barbieri explorent l'idée que les organismes vivants peuvent être considérés comme des systèmes de signes. Il suggère que les unités fondamentales de la vie sont sémiotiques, ce qui signifie que les organismes et leurs comportements peuvent être compris comme des processus d'interprétation et de production de signes.

Ainsi c'est un système où les organismes et leurs actions peuvent être considérés comme un langage. Tout comme nous interprétons et produisons des signes pour communiquer un sens, les êtres vivants font de même à travers leurs comportements et leurs interactions. Cette perspective nous aide à comprendre la vie comme un processus dynamique de communication et d'interprétation basé sur des signes.

Dans sa théorie biosémiotique Marcello Barbieri propose deux aspects fondamentaux : la copie et le codage.

1. La copie, qui désigne le processus par lequel l'information biologique est transmise d'une génération à l'autre. Elle implique la réplication et la transmission du matériel génétique, tel que l'ADN. Ce processus de copie assure le transfert des traits et des caractéristiques des parents à la progéniture.

2. Le codage, quant à lui, fait référence à la traduction de l'information génétique en caractères phénotypiques. Il implique le décodage et l'interprétation des instructions génétiques par la machinerie cellulaire pour produire des caractéristiques physiques et des comportements particuliers. Le processus de codage est responsable de la traduction de l'information génétique dans le développement et le fonctionnement des organismes.

Ces deux aspects fonctionnent ensemble dans la biosémiotique pour faciliter la transmission et l'expression de l'information génétique. La copie assure la continuité du matériel génétique d'une génération à l'autre, tandis que le codage permet de traduire l'information génétique en traits et comportements visibles c'est à dire qu'elles peuvent être considérées comme des signes qui transmettent des informations sur les processus internes de l'organisme et les interactions avec l'environnement. 

Il y a donc ici un lien entre la biosémiotique et l'épigénétique qui réside dans la manière dont ces deux concepts contribuent à notre compréhension de la transmission et de l'expression de l'information biologique.

L'épigénétique fait référence aux changements dans l'expression des gènes qui n'impliquent pas de modifications de la séquence d'ADN sous-jacente. Ces changements peuvent être influencés par divers facteurs tels que des indices environnementaux, des choix de mode de vie et des interactions sociales.

Changements épigénétiques qui peuvent donc être considérés comme une forme de transmission d'informations puisqu'ils influencent l'expression de l'information génétique, entraînant des modifications du phénotype d'un organisme. Ces changements peuvent ensuite être hérités d'une génération à l'autre ou se produire de manière dynamique au cours de la vie d'un individu.

Les modifications épigénétiques agissent essentiellement comme une couche d'information qui influence l'expression des gènes et peut réagir à l'environnement. Elles peuvent être considérées comme une forme de codage, où l'information génétique sous-jacente est "interprétée" et modifiée pour répondre à des circonstances changeantes.

En comprenant l'interaction entre les facteurs génétiques et épigénétiques, la biosémiotique offre un cadre permettant d'explorer la manière dont l'information est transmise, interprétée et exprimée aux niveaux génétique et épigénétique. Cela nous aide à saisir la complexité des systèmes biologiques et le rôle du traitement de l'information dans la formation de la variation phénotypique et de l'adaptation.

Auteur: chatGPT4

Info: août 2023

[ biophysique ] [ interactivité ]

 

Commentaires: 0

Ajouté à la BD par miguel

ADN

Le génome humain: un orchestre complexe
Une équipe de généticiens suisses de l'Université de Genève (UNIGE), de l'École Polytechnique Fédérale de Lausanne (EPFL) et de l'Université de Lausanne (UNIL) a découvert que les variations génétiques sont en mesure d'affecter l'état du génome à de nombreux endroits, apparemment séparés, et de moduler par conséquent l'activité des gènes, à la manière d'un chef d'orchestre coordonnant les instrumentistes pour qu'ils jouent en harmonie. Ces résultats inattendus, publiés dans Cell, révèlent le caractère polyvalent de la régulation du génome et offrent de nouvelles perspectives sur la façon dont il est orchestré.
La chromatine est un ensemble de protéines et d'ADN qui emballe le génome dans une cellule. Elle arrange l'ADN de telle sorte qu'il puisse être "lu" par un groupe de protéines appelé facteurs de transcription, qui active ou réprime l'expression des gènes. La séquence d'ADN varie toutefois d'un individu à l'autre, entraînant ainsi une variation moléculaire entre les états de la chromatine des individus. Cela finit par causer des variations dans la manière dont les humains répondent à l'environnement. Comprendre les processus génétiques et moléculaires régissant la variabilité de la chromatine est l'un des défis les plus importants dans le domaine des sciences de la vie qui permettrait de découvrir comment les variations génétiques prédisposent les individus à certaines maladies comme le cancer, le diabète ou les maladies auto-immunes.
L'étude publiée dans Cell montre comment les variations génétiques ont affecté trois couches moléculaires dans les lignées cellulaires immunes chez 47 individus dont les génomes ont été entièrement séquencés: au niveau des interactions entre l'ADN et les facteurs de transcription, des états de la chromatine et de l'expression des gènes. "Nous avons observé que les variations génétiques à un endroit précis du génome impactent plusieurs éléments régulateurs, pourtant séparés, en même temps. Cette coordination surprenante peut être comparée à un chef d'orchestre (ici le variant génétique) qui coordonne tous les instrumentistes (ici les facteurs de transcription et les modifications de la chromatine) pour changer le volume (ici l'expression des gènes) de la musique," explique le professeur Bart Deplancke de l'EPFL. Contrairement au modèle traditionnel qui suppose que l'impact des éléments régulateurs sur l'expression des gènes se fait de façon quasiment indépendante, les chercheurs suisses ont identifié un comportement bien plus harmonieux et synergique.
Les généticiens suisses montrent que le génome n'est pas juste un ensemble linéaire d'éléments qui interagissent par paires ; il s'organise de manière complexe et en réseaux. Si un élément n'agit pas correctement, c'est l'ensemble du système qui sera perturbé. "Nous avons découvert les règles biologiques de base sur le fonctionnement du génome et la manière dont les séquences régulatrices agissent ensemble pour impacter l'expression d'un gène," résume le professeur Alexandre Reymond de l'UNIL.
Si la route vers de potentielles applications médicales est encore longue, les principes mécaniques que les chercheurs viennent de découvrir mettent en lumière les aspects fondamentaux de la biologie du génome. "Il est encore trop tôt pour déterminer si nous serons un jour en mesure de moduler l'expression des gènes de manière ciblée, mais cette étude révèle un niveau de complexité de la fonction du génome qui n'avait pas été anticipé", conclut le professeur Emmanouil Dermitzakis de l'UNIGE. "Appliquer notre découverte à la médecine signifierait identifier un seul chef d'orchestre et définir son rôle parmi tous les autres chefs d'orchestre pour chaque ensemble musical - plutôt que simplement lister tous les artistes jouant dans notre orchestre de génomes."

Auteur: Internet

Info: 21 aout 2015

[ pilotage ] [ guidage ] [ lamanage ] [ gouvernance ] [ méta-moteur ]

 

Commentaires: 0

homme-animal

Des poissons plus méfiants remettent en cause les méthodes de surveillance des stocks de poissons.
L'Organisation des Nations unies pour l'alimentation et l'agriculture (FAO) estime que près de 70 % des stocks halieutiques sont pleinement exploités voire surexploités. Mais ce n'est peut-être qu'un tour joué par des poissons méfiants... La surexploitation industrielle est certainement un problème, mais une étude sur la pêche de loisir conduite par des scientifiques de l'UE sur les côtes de Majorque soulève quelques doutes sur l'exactitude des outils actuels utilisés pour la surveillance des stocks halieutiques.
Le tourisme représente 80 % de l'économie de l'île de Majorque, mais ce ne sont ni les plages ensoleillées ni les beaux paysages qui ont attiré Josep Alós et Robert Arlinghaus. Depuis janvier 2014, les deux scientifiques étudient les populations de poissons de la région, grâce à de nouveaux modèles mathématiques et méthodes de suivi. Et leurs découvertes sont plutôt déconcertantes. En effet, il semblerait que plus les pêcheurs sont nombreux, moins les poissons ont tendance à mordre à l'hameçon.
Pour arriver à ce résultat, les chercheurs ont étudié le comportement de deux poissons, le Serranus scriba (le Serran ou perche de mer), un carnivore, et le Diplodus annularis (le Sparaillon), un alguivore. Les études ont concerné 54 emplacements présentant les mêmes caractéristiques d'habitat mais soumises à différentes pressions de pêche à la ligne. Pendant la pêche, une caméra vidéo sous-marine autonome enregistrait le comportement des poissons.
Si je me fais avoir une fois...
Logiquement, la perche de mer, qui ne peut réfléchir trop longtemps avant d'attaquer une proie mobile, devait être plus agressive que le sparaillon envers les appâts. Mais les faits ont rapidement remis cette hypothèse en question: les poissons étaient effectivement plus agressifs lorsque les pêcheurs étaient rares, mais ils devenaient de plus en plus prudents avec l'augmentation du nombre d'appâts. Selon l'équipe, ce comportement évolutif peut s'expliquer par une sélection génétique vers une méfiance renforcée ainsi que par l'expérience, entraînant ainsi une diminution des prises.
Ces résultats sont en contradiction avec une étude précédente des deux scientifiques, qui s'était limitée à surveiller les méthodes standard de pêche à la ligne et avait conclu que les zones marines protégées contenaient des poissons plus nombreux et plus gros que les zones très exploitées. Le comportement du sparaillon, quant à lui, ne semblait pas affecté par ce changement.
"Ces résultats suggèrent que la pêche récréative pourrait aboutir à une situation apparente d'une forte réduction des prises mais sans changement réel dans la population des poissons, où le taux de prises décline plus vite que l'abondance des poissons", déclare Josep Alós, chercheur au Leibniz-Institute of Freshwater Ecology and Inland Fisheries et co-auteur de l'étude.
Cela veut-il dire que la diminution des stocks halieutiques, constatée à l'échelle mondiale, résulterait en fait d'un comportement plus méfiant des poissons? "Les rapports sur le déclin considérable des populations de poissons dans les océans s'appuyant uniquement sur les données provenant des pêcheries comme la pêche à la palangre du thon, de la morue ou de l'espadon pourraient donc s'expliquer par un comportement plus prudent de ces poissons. Nous devons revoir notre système de surveillance des stocks de poissons et tenir compte des possibles changements de comportement. Il se peut que certaines zones très exploitées contiennent en fait plus de poissons que nous le pensons", conclut Robert Arlinghaus, directeur de l'étude et chercheur à la Humboldt-Universität zu Berlin.
L'étude a été financée dans le cadre du projet FISH&FISHERS, qui cherche à améliorer les estimations de mortalité des poissons en étudiant les interactions spatiales entre les poissons et les pêcheurs. L'équipe espère que ses résultats contribueront à mieux protéger les écosystèmes marins, à préserver la biodiversité, et à renforcer la durabilité des pêcheries.

Auteur: Internet

Info: The role of the behavioural interactions between fish and fishers on fisheries sustainability, From 2014-01-01 to 2015-12-31, closed project

[ causes-effets ]

 

Commentaires: 0

confusion

1 Je lis en page quatre de mon quotidien que les campagnes de mesures au-dessus de l'Antarctique ne sont pas bonnes cette année : le trou de la couche d’ozone s’y agrandit dangereusement. En lisant plus avant, je passe des chimistes de la haute atmosphère aux P-DG d’Atochem et de Monsanto, lesquels modifient leurs chaînes de production pour remplacer les innocents chlorofluorocarbones, accusés de crime contre l’écosphère. Quelques paragraphes plus loin, ce sont les chefs d’État des grands pays industrialisés qui se mêlent de chimie, de réfrigérateurs, d’aérosols et de gaz inertes. Mais en bas de la colonne, voici que les météorologues ne sont plus d’accord avec les chimistes et parlent de fluctuations cycliques. Du coup, les industriels ne savent plus que faire. Les têtes couronnées hésitent elles aussi. Faut-il attendre ? Est-il déjà trop tard ? Plus bas, les pays du tiers monde et les écologistes ajoutent leur grain de sel et parlent de traités internationaux, de droit des générations futures, de droit au développement et de moratoires.

2 Le même article mêle ainsi réactions chimiques et réactions politiques. Un même fil attache la plus ésotérique des sciences et la plus basse politique, le ciel le plus lointain et telle usine dans la banlieue de Lyon, le danger le plus global et les prochaines élections, ou le prochain conseil d’administration. Les tailles, les enjeux, les durées, les acteurs ne sont pas comparables et pourtant les voilà engagés dans la même histoire.

3 En page six de mon quotidien, j’apprends que le virus du sida de Paris a contaminé celui du laboratoire du professeur Gallo, que MM. Chirac et Reagan avaient pourtant juré solennellement de ne pas remettre en cause l’historique de cette découverte, que les industries chimiques tardent à mettre sur le marché des médicaments réclamés à hauts cris par des malades organisés en associations militantes, que l’épidémie se répand en Afrique noire. De nouveau, des têtes couronnées, des chimistes, des biologistes, des patients désespérés, des industriels se trouvent engagés dans une même histoire incertaine.

4 En page huit, il s’agit d’ordinateurs et de puces contrôlées par les Japonais, en page neuf d’embryons congelés, en page dix de forêt qui brûle entraînant dans ses colonnes de fumées des espèces rares que certains naturalistes veulent protéger ; en page onze, de baleines munies de colliers auxquels sont accrochées des radios balises ; toujours en page onze, c’est un terril du Nord, symbole de l’exploitation ouvrière, que l’on vient de classer comme réserve écologique à cause de la flore rare qui s’y est développée. En page douze, le pape, les évêques, Roussel-Uclaf, les trompes de Fallope, les fondamentalistes texans s’assemblent autour du même contraceptif en une étrange cohorte. En page quatorze, c’est le nombre de lignes de la télévision haute définition qui rattache M. Delors, Thomson, la CEE, les commissions de standardisation, les Japonais encore, et les producteurs de téléfilms. Changez de quelques lignes le standard de l’écran, et les milliards de francs, les millions de téléviseurs, les milliers d’heures de téléfilms, les centaines d’ingénieurs, les dizaines de P-DG valsent.

5 Heureusement qu’il y a dans le journal quelques pages reposantes où l’on parle de pure politique (une réunion du parti radical), et le supplément des livres où les romans relatent les aventures exaltantes du moi profond (je t’aime, moi non plus). Sans ces pages lisses, on attraperait le tournis. C’est qu’ils se multiplient, ces articles hybrides qui dessinent des imbroglios de science, de politique, d’économie, de droit, de religion, de technique, de fiction. Si la lecture du journal quotidien est la prière de l’homme moderne, alors c’est un homme bien étrange qui prie aujourd’hui en lisant ces affaires embrouillées. Toute la culture et toute la nature s’y trouvent rebrassées chaque jour.

6 Pourtant, nul ne paraît s’en soucier. Les pages Économie, Politique, Sciences, Livres, Culture, Religion, Faits divers se partagent les maquettes comme si de rien n’était. Le plus petit virus du sida vous fait passer du sexe à l’inconscient, à l’Afrique, aux cultures de cellules, à l’ADN, à San Francisco, mais les analystes, les penseurs, les journalistes et les décideurs vous découperont le fin réseau que le virus dessine en petits compartiments propres où l’on ne trouvera que de la science, que de l’économie, que des représentations sociales, que des faits divers, que de la pitié, que du sexe. Pressez le plus innocent aérosol et vous serez dirigés vers l'Antarctique, et de là vers l’université de Californie à Irvine, les chaînes de montage de Lyon, la chimie des gaz inertes, et de là peut-être vers l’ONU, mais ce fil fragile sera rompu en autant de segments qu’il y a de disciplines pures : ne mélangeons pas la connaissance, l’intérêt, la justice, le pouvoir. Ne mélangeons pas le ciel et la terre, le global et le local, l’humain et l’inhumain. "Mais ces imbroglios font le mélange, direz-vous, ils tissent notre monde ?" — "Qu’ils soient comme s’ils n’existaient pas", répondent les analystes. Ils ont tranché le nœud gordien avec un glaive bien affuté. Le timon est rompu : à gauche la connaissance des choses, à droite l’intérêt, le pouvoir et la politique des hommes.

Auteur: Latour Bruno

Info: Nous n'avons jamais été modernes. La prolifération des hybrides. Incipit

[ binarisme simplificateur ] [ infobésité ]

 

Commentaires: 0

Ajouté à la BD par miguel

pesanteur

Nouvelles preuves : les ondes sonores transporteraient réellement de la masse

En général, lorsque nous pensons aux ondes sonores, nous imaginons des vibrations invisibles se déplaçant en apesanteur dans les airs, et sans masse. Mais cela pourrait bien être sur le point de changer. Des physiciens viennent de fournir une preuve supplémentaire que les"particules" sonores peuvent réellement transporter des petites quantités de masse. Ces preuves impliquent donc également que les ondes sonores peuvent produire leurs propres champs gravitationnels, ou un équivalent se comportant comme tel.

Mais avant d’approfondir le sujet, reprenons tout d’abord la base. Par exemple, si vous frappez un ballon avec votre pied, vous y transmettez de l’énergie. Einstein ajouterait que vous avez également contribué un peu à la masse du ballon, en l’accélérant. Mais si ce ballon est une particule minuscule et que le coup de pied est une onde sonore, vous pouvez imaginer la même chose. Pourtant, depuis des décennies, les physiciens se disputent pour savoir si l’élan d’une vague de particules représente une masse nette, ou pas.

L’année dernière, le physicien Alberto Nicolis de l’Université Columbia à New York a travaillé avec un collègue de l’Université de Pennsylvanie à Philadelphie pour étudier la manière dont différentes ondes se désintègrent et se dispersent dans un fluide à l’hélium extrêmement froid. Non seulement l’équipe de chercheurs a montré que les sons peuvent en réalité générer une valeur non nulle concernant la masse, mais cette dernière pourrait également"flotter" de manière étrange, le long des champs gravitationnels, dans un sens anti-gravitationnel.

Bien que les chercheurs aient affirmé cette possibilité, leur étude était tout de même limitée à un ensemble spécifique de conditions. De ce fait, Nicolis a utilisé un ensemble de techniques différentes pour montrer que les sons ont une masse dans les fluides et les solides ordinaires, et qu’ils peuvent même créer leur propre champ gravitationnel faible.

Leur nouvelle conclusion contredit les affirmations selon lesquelles les phonons sont sans masse. À présent, selon cette nouvelle recherche, nous savons que ces derniers ne répondent pas simplement à un champ de gravitation, mais qu’ils sont également une source de champ gravitationnel.

Dans un sens newtonien, telle est la définition même de la masse. Alors pourquoi y a-t-il tant de confusion sur cette question ? En fait, le problème réside dans la manière dont les ondes se déplacent dans un milieu donné. Tout comme une onde lumineuse est appelée un photon, une onde vibratoire (du son) peut être considérée comme une unité appelée"phonon".

Imaginez-vous immobile lors d’un concert, et que vous profitez du spectacle. La masse de votre corps est la même que lorsque vous vous êtes levés le matin. Puis vient une musique plus entraînante et votre voisin vous pousse, accélérant de ce fait votre corps. Selon la loi d’Einstein, qui dit que l’énergie est égale à la masse multipliée par la vitesse de la lumière au carré : le peu d’énergie que vous gagnez avec la poussée, est également de la masse.

Donc, en entrant en collision avec une autre personne, l’énergie y est transférée avec un peu de masse, de manière imperceptible. (Dans cet exemple imagé, les corps se heurtant à d’autres corps, représentent les phonons). Dans ces conditions simples, le mouvement de va-et-vient parfait des corps et le transfert direct de la quantité de mouvement peuvent être décrits comme une forme de dispersion linéaire. Tandis que les niveaux d’énergie peuvent fluctuer pendant ledit va-et-vient, votre corps se réinitialise pour ne pas donner de masse au cycle de phonons complet.

Mais la réalité n’est pas toujours aussi simple… Les ondes lumineuses se déplaçant dans le vide et les phonons dans un matériau théoriquement parfait pourraient bien être linéaires, mais les solides et les fluides se bousculant obéissent à diverses autres lois en fonction de certains champs et influences. Et ces conditions sont bien complexes : ainsi, à l’aide d’approximations connues sous le nom de théorie des champs effectifs, Angelo Esposito et Rafael Krichevsk, de l’Université Columbia et collègues de Nicoli, ont pu comprendre comment le phonon se déplace à travers de tels supports et comment calculer leur réponse à un champ gravitationnel.

Ces derniers ont pu démontrer que, même dans des conditions dites désordonnées du"monde réel", les ondes sonores pouvaient effectivement transporter une certaine masse. Bien entendu, cette masse n’est pas vraiment conséquente et reste minime, comme on peut s’y attendre. Nous parlons plutôt d’une quantité d’énergie contenue dans le phonon, mais divisée par le carré de la vitesse de la lumière. C’est donc une masse… minuscule.

Avec cette étude, il est également important de garder à l’esprit que les mathématiques sur lesquelles repose l’allégation n’ont pas encore été mises à l’épreuve. À présent, les scientifiques devront mesurer les changements gravitationnels d’atomes refroidis à une température proche du zéro absolu, ce qui pourrait être possible si nous explorons de tels condensats dans l’espace.

Mais grâce à ces découvertes, les chercheurs suggèrent qu’il serait également, et notamment, plus simple de "peser" un séisme. En effet, le son généré par un grand tremblement de terre pourrait représenter une masse conséquente.

Dans tous les cas, nous attendons les résultats des prochaines recherches dans ce domaine avec grande impatience !

Auteur: Internet

Info: Stéphanie Schmidt 7 mars 2019, https://trustmyscience.com

[ fréquences ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel