Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 53
Temps de recherche: 0.0479s

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

méta-moteur

Le comportement de cet animal est programmé mécaniquement.

Des interactions biomécaniques, plutôt que des neurones, contrôlent les mouvements de l'un des animaux les plus simples. Cette découverte offre un aperçu de la façon dont le comportement animal fonctionnait avant l'apparition des neurones.

L'animal extrêmement simple Trichoplax adhaerens se déplace et réagit à son environnement avec agilité et avec un but apparent, mais il n'a pas de neurones ou de muscles pour coordonner ses mouvements. De nouveaux travaux montrent que les interactions biomécaniques entre les cils de l'animal suffisent à en expliquer ses mouvements.

Le biophysicien Manu Prakash se souvient très bien du moment où, tard dans la nuit, dans le laboratoire d'un collègue, il y a une douzaine d'années, il a regardé dans un microscope et a rencontré sa nouvelle obsession. L'animal sous les lentilles n'était pas très beau à voir, ressemblant plus à une amibe qu'à autre chose : une tache multicellulaire aplatie, de 20 microns d'épaisseur et de quelques millimètres de diamètre, sans tête ni queue. Elle se déplaçait grâce à des milliers de cils qui recouvraient sa face inférieure pour former la "plaque velue collante" qui lui a inspiré son nom latin, Trichoplax adhaerens.

Cette étrange créature marine, classée dans la catégorie des placozoaires, dispose pratiquement d'une branche entière de l'arbre de l'évolution de la vie pour elle-même, ainsi que du plus petit génome connu du règne animal. Mais ce qui a le plus intrigué Prakash, c'est la grâce, l'agilité et l'efficacité bien orchestrées avec lesquelles les milliers ou les millions de cellules du Trichoplax se déplacent.

Après tout, une telle coordination nécessite habituellement des neurones et des muscles - et le Trichoplax n'en a pas.

Prakash s'est ensuite associé à Matthew Storm Bull, alors étudiant diplômé de l'université de Stanford, pour faire de cet étrange organisme la vedette d'un projet ambitieux visant à comprendre comment les systèmes neuromusculaires ont pu évoluer et comment les premières créatures multicellulaires ont réussi à se déplacer, à trouver de la nourriture et à se reproduire avant l'existence des neurones.

"J'appelle souvent ce projet, en plaisantant, la neuroscience sans les neurones", a déclaré M. Prakash.

Dans un trio de prétirés totalisant plus de 100 pages - publiés simultanément sur le serveur arxiv.org l'année dernière - lui et Bull ont montré que le comportement de Trichoplax pouvait être décrit entièrement dans le langage de la physique et des systèmes dynamiques. Les interactions mécaniques qui commencent au niveau d'un seul cilium, puis se multiplient sur des millions de cellules et s'étendent à des niveaux supérieurs de structure, expliquent entièrement la locomotion coordonnée de l'animal tout entier. L'organisme ne "choisit" pas ce qu'il doit faire. Au contraire, la horde de cils individuels se déplace simplement - et l'animal dans son ensemble se comporte comme s'il était dirigé par un système nerveux. Les chercheurs ont même montré que la dynamique des cils présente des propriétés qui sont généralement considérées comme des signes distinctifs des neurones.

Ces travaux démontrent non seulement comment de simples interactions mécaniques peuvent générer une incroyable complexité, mais ils racontent également une histoire fascinante sur ce qui aurait pu précéder l'évolution du système nerveux.

"C'est un tour de force de la biophysique", a déclaré Orit Peleg, de l'université du Colorado à Boulder, qui n'a pas participé aux études. Ces découvertes ont déjà commencé à inspirer la conception de machines mécaniques et de robots, et peut-être même une nouvelle façon de penser au rôle des systèmes nerveux dans le comportement animal. 

La frontière entre le simple et le complexe

Les cerveaux sont surestimés. "Un cerveau est quelque chose qui ne fonctionne que dans le contexte très spécifique de son corps", a déclaré Bull. Dans les domaines connus sous le nom de "robotique douce" et de "matière active", la recherche a démontré que la bonne dynamique mécanique peut suffire à accomplir des tâches complexes sans contrôle centralisé. En fait, les cellules seules sont capables de comportements remarquables, et elles peuvent s'assembler en systèmes collectifs (comme les moisissures ou les xénobots) qui peuvent accomplir encore plus, le tout sans l'aide de neurones ou de muscles.

Mais est-ce possible à l'échelle d'un animal multicellulaire entier ?

Le Trichoplax fut un cas d'étude parfait : assez simple pour être étudié dans les moindres détails, mais aussi assez compliqué pour offrir quelque chose de nouveau aux chercheurs. En l'observant, "vous regardez simplement une danse", a déclaré Prakash. "Elle est d'une incroyable complexité". Elle tourne et se déplace sur des surfaces. Elle s'accroche à des plaques d'algues pour les piéger et les consommer comme nourriture. Elle se reproduit asexuellement en se divisant en deux.

"Un organisme comme celui-ci se situe dans un régime intermédiaire entre quelque chose de réellement complexe, comme un vertébré, et quelque chose qui commence à devenir complexe, comme les eucaryotes unicellulaires", explique Kirsty Wan, chercheur à l'université d'Exeter en Angleterre, qui étudie la locomotion ciliaire.

Ce terrain intermédiaire entre les cellules uniques et les animaux dotés de muscles et de systèmes nerveux semblait être l'endroit idéal pour que Prakash et Bull posent leurs questions. "Pour moi, un organisme est une idée", a déclaré Prakash, un terrain de jeu pour tester des hypothèses et un berceau de connaissances potentielles.

Prakash a d'abord construit de nouveaux microscopes permettant d'examiner le Trichoplax par en dessous et sur le côté, et a trouvé comment suivre le mouvement à grande vitesse de ses cils. (Ce n'était pas un terrain entièrement nouveau pour lui, puisqu'il était déjà célèbre pour ses travaux sur le Foldscope, un microscope facile à assembler et dont la fabrication coûte moins d'un dollar). Il pouvait alors voir et suivre des millions de cils individuels, chacun apparaissant comme une minuscule étincelle dans le champ de vision du microscope pendant une fraction de seconde à la fois. "Vous ne voyez que les empreintes lorsqu'elles se posent sur la surface", a déclaré Prakash.

Lui-même - et plus tard Bull, qui a rejoint son laboratoire il y a six ans - ont passé des heures à observer l'orientation de ces petites empreintes. Pour que ces motifs complexes soient possibles, les scientifiques savaient que les cils devaient être engagés dans une sorte de communication à longue distance. Mais ils ne savaient pas comment.

Ils ont donc commencé à rassembler les pièces du puzzle, jusqu'à ce que, l'année dernière, ils décident enfin qu'ils avaient leur histoire.

Une marche en pilote automatique

Au départ, Prakash et Bull s'attendaient à ce que les cils glissent sur des surfaces, avec une fine couche de liquide séparant l'animal du substrat. Après tout, les cils sont généralement vus dans le contexte des fluides : ils propulsent des bactéries ou d'autres organismes dans l'eau, ou déplacent le mucus ou les fluides cérébrospinaux dans un corps. Mais lorsque les chercheurs ont regardé dans leurs microscopes, ils ont constaté que les cils semblaient marcher, et non nager.

Bien que l'on sache que certains organismes unicellulaires utilisent les cils pour ramper, ce type de coordination n'avait jamais été observé à cette échelle. "Plutôt qu'utiliser les cils pour propulser un fluide, il s'agit de mécanique, de friction, d'adhésion et de toutes sortes de mécanismes solides très intéressants", a-t-elle déclaré.

Prakash, Bull et Laurel Kroo, une étudiante diplômée en génie mécanique de Stanford, ont donc entrepris de caractériser la démarche des cils. Ils ont suivi la trajectoire de l'extrémité de chaque cilium au fil du temps, l'observant tracer des cercles et pousser contre des surfaces. Ils ont défini trois types d'interactions : le glissement, au cours duquel les cils effleurent à peine la surface ; la marche, lorsque les cils adhèrent brièvement à la surface avant de se détacher ; et le calage, lorsque les cils restent coincés contre la surface.

Dans leurs modèles, l'activité de marche émergeait naturellement de l'interaction entre les forces motrices internes des cils et l'énergie de leur adhésion à la surface. Le bon équilibre entre ces deux paramètres (calculé à partir de mesures expérimentales de l'orientation, de la hauteur et de la fréquence des battements des cils) permettant une locomotion régulière, chaque cilium se collant puis se soulevant, comme une jambe. Un mauvais équilibre produisant les phases de glissement ou de décrochage.

Nous pensons généralement, lorsque quelque chose se passe comme ça, qu'il y a un signal interne semblable à une horloge qui dit : "OK, allez-y, arrêtez-vous, allez-y, arrêtez-vous", a déclaré Simon Sponberg, biophysicien à l'Institut de technologie de Géorgie. "Ce n'est pas ce qui se passe ici. Les cils ne sont pas rythmés. Il n'y a pas une chose centrale qui dit 'Go, go, go' ou autre. Ce sont les interactions mécaniques qui mettent en place quelque chose qui va, qui va, qui va."

De plus, la marche pourrait être modélisée comme un système excitable, c'est-à-dire un système dans lequel, sous certaines conditions, les signaux se propagent et s'amplifient au lieu de s'atténuer progressivement et de s'arrêter. Un neurone est un exemple classique de système excitable : De petites perturbations de tension peuvent provoquer une décharge soudaine et, au-delà d'un certain seuil, le nouvel état stimulé se propage au reste du système. Le même phénomène semble se produire ici avec les cils. Dans les expériences et les simulations, de petites perturbations de hauteur, plutôt que de tension, entraînent des changements relativement importants dans l'activité des cils voisins : Ils peuvent soudainement changer d'orientation, et même passer d'un état de stase à un état de marche. "C'est incroyablement non linéaire", a déclaré Prakash.

En fait, les modèles de cils de Prakash, Bull et Kroo se sont avérés très bien adaptés aux modèles établis pour les potentiels d'action au sein des neurones. "Ce type de phénomène unique se prête à une analogie très intéressante avec ce que l'on observe dans la dynamique non linéaire des neurones individuels", a déclaré Bull. Sponberg est d'accord. "C'est en fait très similaire. Il y a une accumulation de l'énergie, et puis pop, et puis pop, et puis pop".

Les cils s'assemblent comme des oiseaux

Forts de cette description mathématique, Prakash et Bull ont examiné comment chaque cilium pousse et tire sur ses voisins lors de son interaction avec la surface, et comment toute ces activités indépendantes peuvent se transformer en quelque chose de synchronisé et cohérent.

Ils ont mesuré comment la démarche mécanique de chaque cilium entraînait de petites fluctuations locales de la hauteur du tissu. Ils ont ensuite écrit des équations pour expliquer comment ces fluctuations pouvaient influencer le comportement des cellules voisines, alors même que les cils de ces cellules effectuaient leurs propres mouvements, comme un réseau de ressorts reliant de minuscules moteurs oscillants.

Lorsque les chercheurs ont modélisé "cette danse entre élasticité et activité", ils ont constaté que les interactions mécaniques - de cils poussant contre un substrat et de cellules se tirant les unes les autres - transmettaient rapidement des informations à travers l'organisme. La stimulation d'une région entraînait des vagues d'orientation synchronisée des cils qui se déplaçaient dans le tissu. "Cette élasticité et cette tension dans la physique d'un cilium qui marche, maintenant multipliées par des millions d'entre eux dans une feuille, donnent en fait lieu à un comportement mobile cohérent", a déclaré Prakash.

Et ces modèles d'orientation synchronisés peuvent être complexes : parfois, l'activité du système produit des tourbillons, les cils étant orientés autour d'un seul point. Dans d'autres cas, les cils se réorientent en quelques fractions de seconde, pointant d'abord dans une direction puis dans une autre - se regroupant comme le ferait un groupe d'étourneaux ou un banc de poissons, et donnant lieu à une agilité qui permet à l'animal de changer de direction en un clin d'œil.

"Nous avons été très surpris lorsque nous avons vu pour la première fois ces cils se réorienter en une seconde", a déclaré M. Bull.

Ce flocage agile est particulièrement intriguant. Le flocage se produit généralement dans des systèmes qui se comportent comme des fluides : les oiseaux et les poissons individuels, par exemple, peuvent échanger librement leurs positions avec leurs compagnons. Mais cela ne peut pas se produire chez Trichoplax, car ses cils sont des composants de cellules qui ont des positions fixes. Les cils se déplacent comme "un troupeau solide", explique Ricard Alert, physicien à l'Institut Max Planck pour la physique des systèmes complexes.

Prakash et Bull ont également constaté dans leurs simulations que la transmission d'informations était sélective : Après certains stimuli, l'énergie injectée dans le système par les cils se dissipe tout simplement, au lieu de se propager et de modifier le comportement de l'organisme. Nous utilisons notre cerveau pour faire cela tout le temps, pour observer avec nos yeux et reconnaître une situation et dire : "Je dois soit ignorer ça, soit y répondre", a déclaré M. Sponberg.

Finalement, Prakash et Bull ont découvert qu'ils pouvaient écrire un ensemble de règles mécaniques indiquant quand le Trichoplax peut tourner sur place ou se déplacer en cercles asymétriques, quand il peut suivre une trajectoire rectiligne ou dévier soudainement vers la gauche, et quand il peut même utiliser sa propre mécanique pour se déchirer en deux organismes distincts.

"Les trajectoires des animaux eux-mêmes sont littéralement codées" via ces simples propriétés mécaniques, a déclaré Prakash.

Il suppose que l'animal pourrait tirer parti de ces dynamiques de rotation et de reptation dans le cadre d'une stratégie de "course et culbute" pour trouver de la nourriture ou d'autres ressources dans son environnement. Lorsque les cils s'alignent, l'organisme peut "courir", en continuant dans la direction qui vient de lui apporter quelque chose de bénéfique ; lorsque cette ressource semble s'épuiser, Trichoplax peut utiliser son état de vortex ciliaire pour se retourner et tracer une nouvelle route.

Si d'autres études démontrent que c'est le cas, "ce sera très excitant", a déclaré Jordi Garcia-Ojalvo, professeur de biologie systémique à l'université Pompeu Fabra de Barcelone. Ce mécanisme permettrait de faire le lien entre beaucoups d'échelles, non seulement entre la structure moléculaire, le tissu et l'organisme, mais aussi pour ce qui concerne écologie et environnement.

En fait, pour de nombreux chercheurs, c'est en grande partie ce qui rend ce travail unique et fascinant. Habituellement, les approches des systèmes biologiques basées sur la physique décrivent l'activité à une ou deux échelles de complexité, mais pas au niveau du comportement d'un animal entier. "C'est une réussite...  vraiment rare", a déclaré M. Alert.

Plus gratifiant encore, à chacune de ces échelles, la mécanique exploite des principes qui font écho à la dynamique des neurones. "Ce modèle est purement mécanique. Néanmoins, le système dans son ensemble possède un grand nombre des propriétés que nous associons aux systèmes neuro-mécaniques : il est construit sur une base d'excitabilité, il trouve constamment un équilibre délicat entre sensibilité et stabilité et il est capable de comportements collectifs complexes." a déclaré Sponberg.

"Jusqu'où ces systèmes mécaniques peuvent-ils nous mener ?... Très loin." a-t-il ajouté.

Cela a des implications sur la façon dont les neuroscientifiques pensent au lien entre l'activité neuronale et le comportement de manière plus générale. "Les organismes sont de véritables objets dans l'espace", a déclaré Ricard Solé, biophysicien à l'ICREA, l'institution catalane pour la recherche et les études avancées, en Espagne. Si la mécanique seule peut expliquer entièrement certains comportements simples, les neuroscientifiques voudront peut-être examiner de plus près comment le système nerveux tire parti de la biophysique d'un animal pour obtenir des comportements complexes dans d'autres situations.

"Ce que fait le système nerveux n'est peut-être pas ce que nous pensions qu'il faisait", a déclaré M. Sponberg.

Un pas vers la multicellularité

"L'étude de Trichoplax peut nous donner un aperçu de ce qu'il a fallu faire pour développer des mécanismes de contrôle plus complexes comme les muscles et les systèmes nerveux", a déclaré Wan. "Avant d'arriver à ça, quelle est le meilleur truc à suivre ? Ca pourrait bien être ça".

Alert est d'accord. "C'est une façon si simple d'avoir des comportements organisationnels tels que l'agilité que c'est peut-être ainsi qu'ils ont émergé au début et  au cours de l'évolution, avant que les systèmes neuronaux ne se développent. Peut-être que ce que nous voyons n'est qu'un fossile vivant de ce qui était la norme à l'époque".

Solé considère que Trichoplax occupe une "twilight zone... au centre des grandes transitions vers la multicellularité complexe". L'animal semble commencer à mettre en place "les conditions préalables pour atteindre la vraie complexité, celle où les neurones semblent être nécessaires."

Prakash, Bull et leurs collaborateurs cherchent maintenant à savoir si Trichoplax pourrait être capable d'autres types de comportements ou même d'apprentissage. Que pourrait-il réaliser d'autre dans différents contextes environnementaux ? La prise en compte de sa biochimie en plus de sa mécanique ouvrirait-elle vers un autre niveau de comportement ?

Les étudiants du laboratoire de Prakash ont déjà commencé à construire des exemples fonctionnels de ces machines. Kroo, par exemple, a construit un dispositif de natation robotisé actionné par un matériau viscoélastique appelé mousse active : placée dans des fluides non newtoniens comme des suspensions d'amidon de maïs, elle peut se propulser vers l'avant.

"Jusqu'où voulez-vous aller ? a demandé Peleg. "Pouvez-vous construire un cerveau, juste à partir de ce genre de réseaux mécaniques ?"

Prakash considère que ce n'est que le premier chapitre de ce qui sera probablement une saga de plusieurs décennies. "Essayer de vraiment comprendre cet animal est pour moi un voyage de 30 ou 40 ans", a-t-il dit. "Nous avons terminé notre première décennie... C'est la fin d'une époque et le début d'une autre".

Auteur: Internet

Info: https://www.quantamagazine.org/before-brains-mechanics-may-have-ruled-animal-behavior. Jordana Cepelewicz, 16 mars 2022. Trad Mg

[ cerveau rétroactif ] [ échelles mélangées ] [ action-réaction ] [ plus petit dénominateur commun ] [ grégarisme ] [ essaims ] [ murmurations mathématiques ]

 

Commentaires: 0

Ajouté à la BD par miguel