Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 7
Temps de recherche: 0.0332s

fusion

Lorsqu’on prend des photographies holographiques suivant des angles différents, les images individuelles peuvent être observées séquentiellement et séparément à partir de la même émulsion en répliquant les conditions originales de l’exposition. Ceci illustre un autre aspect des expériences visionnaires à savoir le fait que d’innombrables images tendent à se dérouler en une séquence rapide de la même région du champ expérimental.
Les images holographiques individuelles peuvent être perçues comme séparées mais elles font partie intégrante d’une matrice indifférenciée plus vaste de modèles d’interférence de lumière dont elles sont originaires.

Auteur: Grof Stanislav

Info: Psychologie transpersonnelle, page 57

[ hologramme ] [ unicité-multiplicité ] [ mystique ] [ explication ] [ intrication ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

particules élémentaires

Même si les quarks devaient être trouvés (et je ne crois pas que ça arrivera), ils ne seront pas plus élémentaires que les autres particules, puisqu'un quark pourra être considéré comme composé de deux quarks et d'un antiquark, et ainsi de suite. Je pense que les expériences nous ont appris qu'en obtenant des unités de plus en plus petites, nous n'arrivons pas à des unités fondamentales, ou indivisibles, mais à un point où la division n'a aucun sens. Voilà le résultat des expériences de ces vingt dernières années et j'ai bien peur que certains physiciens n'en soient pas arrivés à cette conclusion. Les spécialistes ignorent tout simplement ce fait expérimental.

Auteur: Heisenberg Werner Karl

Info: Glimpsing Reality: Ideas in Physics and the Link to Biology. Werner Heisenberg (p. 15) University of Toronto Press. Toronto, Ontario, Canada. 1996

[ cul-de-sac ] [ pessimisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

connaissance

Le savant, même sous l'aspect où il use de sa raison, [...] demeure totalement tributaire des sens. [...] Il suit de là, nous l'avons déjà fait remarquer et l'on ne saurait trop y appuyer, que le savant, comme tel, ne sort pas, ne peut pas sortir du monde de la nature, du monde corporel et sensible. Il est confiné, par définition, dans le monde de l'expérience sensible extérieure. Et, aussi bien est-ce pour cela que toutes les branches de la science ainsi entendue, sont appelées du même nom. Elles s'appellent toutes des sciences expérimentales. Ce qui veut dire que non seulement elles partent de l'expérience des sens ; mais encore qu'elles s'y terminent.

Le philosophe, lui, a bien son point de départ dans l'expérience des sens. Sa raison, étant elle aussi une raison humaine, n'échappe point à la condition propre de la raison humaine, que saint Thomas définissait par ce beau mot, comme nous l'avons vu : ratio nostra ortum haleta sensu. Mais si elle part du sens, elle ne s'y termine pas. Sa conclusion propre, comme raison de philosophe, sera quelque chose qu'elle découvre dans ce que les sens perçoivent, mais que les sens eux-mêmes ne peuvent plus percevoir, que, seule, la raison percevra. La conclusion, la découverte à laquelle aboutit la raison philosophique, ne pourra pas être contrôlée, vérifiée, par les sens ou par l'expérience : elle ne sera pas d'ordre expérimental. Elle sera, proprement, d'ordre rationnel.

Auteur: Pègues Thomas

Info: Dans "Aperçus de philosophie thomiste et de propédeutique", page 39

[ scientifique ] [ différence ] [ intellect ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

particules élémentaires

Les imprévisibles effets de l'interaction forte continuent de surprendre les physiciens

Après plus d'un siècle de collision de particules, les physiciens ont une assez bonne idée de ce qui se passe au cœur de l'atome. Les électrons bourdonnent dans des nuages probabilistes autour d'un noyau de protons et de neutrons, chacun contenant un trio de particules bizarres appelées quarks. La force qui maintient tous les quarks ensemble pour former le noyau est la force forte, la bien nommée. C'est cette interaction forte qui doit être surmontée pour diviser l'atome. Et cette puissante force lie les quarks ensemble si étroitement qu'aucun quark n'a jamais été repéré en solo.

Ces caractéristiques des quarks, dont beaucoup peuvent être expliquées dans un cours de sciences au lycée, ont été établies comme des faits expérimentaux. Et pourtant, d'un point de vue théorique, les physiciens ne peuvent pas vraiment les expliquer.

Il est vrai qu'il existe une théorie de la force forte, et c'est un joyau de la physique moderne. Elle se nomme chromodynamique quantique (QCD), " chromo " faisant référence à un aspect des quarks appelé poétiquement " couleur ". Entre autres choses, la QCD décrit comment la force forte s'intensifie lorsque les quarks se séparent et s'affaiblit lorsqu'ils se rassemblent, un peu comme une bande élastique. Cette propriété est exactement à l'opposé du comportement de forces plus familières comme le magnétisme, et sa découverte dans les années 1970 a valu des prix Nobel. D'un point de vue mathématique, les quarks ont été largement démystifiés.

Cependant, les mathématiques fonctionnent mieux lorsque la force entre les particules est relativement faible, ce qui laisse beaucoup à désirer d'un point de vue expérimental. Les prédictions de la CDQ furent confirmées de manière spectaculaire lors d'expériences menées dans des collisionneurs qui rapprochèrent suffisamment les quarks pour que la force forte entre eux se relâche. Mais lorsque les quarks sont libres d'être eux-mêmes, comme c'est le cas dans le noyau, ils s'éloignent les uns des autres et exercent des pressions sur leurs liens de confinement, et la force forte devient si puissante que les calculs stylo papier sont mis en échec. Dans ces conditions, les quarks forment des protons, des neutrons et une multitude d'autres particules à deux ou trois quarks, généralement appelées hadrons, mais personne ne peut calculer pourquoi cela se produit.

Pour comprendre les bizarreries dont les quarks sont capables, les physiciens ne peuvent que lancer des simulations numériques de force brute (qui ont fait des progrès remarquables ces dernières années) ou regarder les particules ricocher dans de bonnes expériences de collisionnement à l'ancienne. Ainsi, près de 60 ans après que les physiciens aient formalisé le quark, la particule continue de surprendre.

Quoi de neuf et digne de mention

Pas plus tard que l'été dernier, la collaboration du LHCb au Grand collisionneur de hadrons en Europe a repéré des signes de deux variétés jusqu'alors inédites de quarks, les tétraquarks, furtivement observés à travers les tunnels souterrains du collisionneur. Cataloguer la diversité des comportements des quarks aide les physiciens à affiner leurs modèles pour simplifier les complexités de la force forte en fournissant de nouveaux exemples de phénomènes que la théorie doit rendre compte.

Les tétraquarks ont été découverts pour la première fois au LHC à l'été 2014, après plus d'une décennie d'indices selon lesquels les quarks pourraient former ces quatuors, ainsi que des groupes de deux ou trois. Cette découverte a alimenté un débat qui s'est enflammé malgré une question apparemment ésotérique: faut-il considérer quatre quarks comme une "molécule" formée de deux hadrons doubles quarks faiblement attirés connus sous le nom de mésons, ou s'assemblent-ils en paires plus inhabituelles connues sous le nom de diquarks?

Au cours des années qui suivirent, les physiciens des particules accumulèrent des preuves de l'existence d'une petite ménagerie de tétraquarks exotiques et de " pentaquarks " à cinq quarks. Un groupe se détacha en 2021, un tétraquark " à double charme " qui vécut des milliers de fois plus longtemps que ses frères exotiques (à 12 sextillionièmes de seconde comme le Methuselah). Il a prouvé qu'une variété de quark — le quark charme — pouvait former des paires plus résistantes que la plupart des suppositions ou des calculs minutieux l'avaient prédit.

À peu près à la même époque, les chercheurs ont mis au point une nouvelle façon de tamiser le maelström qui suit une collision proton-proton à la recherche d'indices de rencontres fortuites entre des composites de quarks. Ces brefs rendez-vous permettent de déterminer si un couple donné de hadrons attire ou repousse, une prédiction hors de portée du QCD. En 2021, les physiciens ont utilisé cette technique de "femtoscopie" pour apprendre ce qui se passe lorsqu'un proton s'approche d'une paire de quarks " étranges ". Cette découverte pourrait améliorer les théories sur ce qui se passe à l'intérieur des étoiles à neutrons.

L'année dernière, les physiciens ont appris que même les quarks de l'atome d'hélium, très étudié, cachent des secrets. Les atomes d'hélium dénudés ont inauguré le domaine de la physique nucléaire en 1909, lorsque Ernest Rutherford (ou plutôt ses jeunes collaborateurs) les projeta sur une feuille d'or et découvrit le noyau. Aujourd'hui, les atomes d'hélium sont devenus la cible de projectiles encore plus petits. Au début de l'année 2023, une équipe a tiré un flux d'électrons sur des noyaux d'hélium (composés de deux protons et de deux neutrons) et a été déconcertée de constater que les cibles remplies de quarks gonflaient bien plus que ce que la CDQ leur avait laissé supposer.








Auteur: Internet

Info: https://www.quantamagazine.org/, Charlie Wood, 19 fev 2024

[ fermions ] [ bosons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

recherche fondamentale

Personne ne prenait au sérieux les expériences quantiques de John F. Clauser. 50 ans plus tard, il reçoit un prix Nobel.

Le 4 octobre, John F. Clauser, 80 ans, s'est réveillé dans sa maison californienne pour apprendre qu'il avait reçu le prix Nobel de physique. Il le recevra lors d'une cérémonie à Stockholm, en Suède, le 10 décembre, avec Anton Zeilinger et Alain Aspect, pour leurs travaux sur l'intrication quantique. 

Un moment de fête pour Clauser, dont les expériences révolutionnaires sur les particules de lumière ont contribué à prouver des éléments clés de la mécanique quantique.

"Tout le monde veut gagner un prix Nobel", a déclaré M. Clauser. "Je suis très heureux."

Mais son parcours jusqu'à l'obtention du plus grand prix scientifique n'a pas toujours été simple. 

Dans les années 1960, Clauser était étudiant en physique à l'université Columbia. Par hasard, il découvrit à la bibliothèque de l'université un article qui allait façonner sa carrière et l'amener à poursuivre les travaux expérimentaux qui lui ont valu le prix Nobel.

L'article, écrit par le physicien irlandais John Stewart Bell et publié dans la revue Physics en 1964, se demandait si la mécanique quantique donnait ou non une description complète de la réalité. Le phénomène d'intrication quantique constituant le cœur de la question.

L'intrication quantique se produit lorsque deux ou plusieurs particules sont liées d'une certaine manière, et quelle que soit la distance qui les sépare dans l'espace, leurs états restent liés. 

Par exemple, imaginez une particule A qui s'envole dans une direction et une particule B dans l'autre. Si les deux particules sont intriquées - ce qui signifie qu'elles partagent un état quantique commun - une mesure de la particule A déterminera immédiatement le résultat de la mesure de la particule B. Peu importe que les particules soient distantes de quelques mètres ou de plusieurs années-lumière - leur liaison à longue distance est instantanée. 

Cette possibilité avait été rejetée par Albert Einstein et ses collègues dans les années 1930. Au lieu de cela, ils soutenaient qu'il existe un "élément de réalité" qui n'est pas pris en compte par la mécanique quantique. 

Dans son article de 1964, Bell soutenait qu'il était possible de tester expérimentalement si la mécanique quantique échouait à décrire de tels éléments de la réalité. Il appelait ces éléments non pris en compte des "variables cachées".

Bell pensait en particulier à des variables locales. Ce qui signifie qu'elles n'affectent la configuration physique que dans leur voisinage immédiat. Comme l'explique Clauser, "si vous placez des éléments localement dans une boîte et effectuez une mesure dans une autre boîte très éloignée, les choix de paramètres expérimentaux effectués dans une boîte ne peuvent pas affecter les résultats expérimentaux dans l'autre boîte, et vice versa."

Clauser décida de tester la proposition de Bell. Mais lorsqu'il voulut faire l'expérience, son superviseur l'exhorta à reconsidérer sa décision. 

"Le plus difficile au départ a été d'obtenir l'opportunité", se souvient Clauser. "Tout le monde me disait que ce n'était pas possible, donc à quoi bon !".

Le laboratoire quantique 

En 1972, Clauser a finalement eu l'occasion de tester la proposition de Bell alors qu'il occupait un poste postdoctoral au Lawrence Berkeley National Laboratory en Californie. Il s'associa à un étudiant en doctorat, Stuart Freedman. Ensemble, ils mirent sur pied un laboratoire rempli d'équipement optique. 

"Personne n'avait fait cela auparavant", a déclaré Clauser. "Nous n'avions pas d'argent pour faire quoi que ce soit. Nous avons dû tout construire à partir de rien. Je me suis sali les mains, ai été immergé dans l'huile, il y avait beaucoup de fils et j'ai construit beaucoup d'électronique."

Clauser et Freedman ont réussi à créer des photons intriqués en manipulant des atomes de calcium. Les particules de lumière, ou photons, s'envolaient dans des filtres polarisants que Clauser et Freedman pouvaient faire tourner les uns par rapport aux autres. 

La mécanique quantique prédit qu'une plus grande quantité de photons passerait simultanément les filtres que si la polarisation des photons était déterminée par des variables locales et cachées.

L'expérience de Clauser et Freedman mis en évidence que les prédictions de la mécanique quantique étaient correctes. "Nous considérons ces résultats comme des preuves solides contre les théories de variables cachées locales", ont-ils écrit en 1972 dans Physical Review Letters.

Des débuts difficiles

Les résultats de Clauser et Freedman furent confirmés par d'autres expériences menées par Alain Aspect et Anton Zeilinger. 

"Mes travaux ont eu lieu dans les années 70, ceux d'Aspect dans les années 80 et ceux de Zeilinger dans les années 90", a déclaré Clauser. "Nous avons travaillé de manière séquentielle pour améliorer le domaine".

Mais l'impact de l'expérience révolutionnaire de Clauser n'a pas été reconnu immédiatement.

"Les choses étaient difficiles", se souvient Clauser. "Tout le monde disait : "Belle expérience, mais vous devriez peut-être sortir et mesurer des chiffres et arrêter de perdre du temps et de l'argent et commencer à faire de la vraie physique"."

Il a fallu attendre 50 ans pour que Clauser reçoive le prix Nobel pour son travail expérimental. Son collègue, Stuart Freedman, est décédé en 2012. 

"Mes associés sont morts depuis longtemps. Mon seul titre de gloire est d'avoir vécu assez longtemps". a déclaré Clauser

Lorsqu'on lui a demandé s'il avait des conseils à donner aux jeunes chercheurs compte tenu de sa propre difficulté initiale, Clauser a répondu : "Si vous prouvez quelque chose que tout le monde pense vrai, et que vous êtes le premier à le faire, vous ne serez probablement pas reconnu avant 50 ans. C'est la mauvaise nouvelle. La bonne, c'est que j'ai eu beaucoup de plaisir à faire ce travail." 


Auteur: Internet

Info: https://www.livescience.com, Jonas Enande, 9 déc 2022

[ agrément moteur ] [ délectation ] [ observateur dualisant ]

 

Commentaires: 0

Ajouté à la BD par miguel

fausse viande

La Décroissance : Pour vous, l'abolition de l'élevage fait le jeu du capital : il y a une collusion d'intérêts entre ceux qui la prônent et la science, l'industrie, les start-up des biotechnologies, les investisseurs qui se saisissent du marché en plein essor des substituts alimentaires...

Jocelyne Porcher: [...] Ce qui se développe aujourd'hui, le véganisme, la revendication d'en finir avec l'élevage, cela sert des intérêts économiques. L'agriculture cellulaire qui arrive, en collusion avec les défenseurs des animaux au nom d'une agriculture sans élevage, s'inscrit dans la continuité du processus d'industrialisation de la production alimentaire. On passe de la production de matière animale à partir d'animaux à la production de matière animale sans les animaux, avec les mêmes acteurs : c'est-à-dire la science, l'industrie, la banque. [...] Avec l'agriculture cellulaire, on change le niveau d'extraction : au lieu d'extraire la matière animale à partir de la vache, du cochon, etc., l'extraction se fait à un niveau plus resserré, au niveau de la cellule. On est bien dans la même logique de pensée, complètement inscrite dans le système capitaliste. Ce qui explique à la fois le soutien financier accordé aux associations véganes, type L214, qui reçoit directement de l'argent d'une fondation américaine et qui a une surface médiatique sans commune mesure avec ce qu'elle fait réellement, c'est-à-dire de la communication au service d'une agriculture sans élevage. [...]

LD : En quoi consiste la viande "propre" que les start-up veulent produire ?

JP : Mark Prost, un des premiers biologistes a avoir travaillé là-dessus, celui qui a présenté le premier hamburger in vitro en 2013, disait : "La viande in vitro est 100% naturelle, la seule différence c'est qu'elle est produire en dehors de la vache..." C'est ça l'idée: ils considèrent que la vache, ce n'est que de la ressource de matière animale. [...] L'idée de certaines start-up, c'est de faire l'équivalent du produit industriel en se passant d'animaux : selon eux, la multiplication de cellules de poulet va donner la même chose que le poulet qu'on achète actuellement dans les supermarchés, au moins visuellement...

LD: On a l'impression qu'ils n'en sont qu'au stade expérimental. Ce marché est-il appelé à grandir ?

JP: [...] Il y a des milliards investis là-dedans, des dizaines de start-up qui se développent, le potentiel du marché est énorme, non seulement en ce qui concerne la viande in vitro, mais aussi l'ensemble des substituts: le faux lait, les faux oeufs, le faux cuir... le faux tout. D'un point de vue technique, ce qu'on réussit à faire dans un incubateur, on peut réussir à le faire dans cent incubateurs. [...] Après il y a le volet sanitaire : ce sera peut-être un peu plus compliqué de garantir l'innocuité de ces produits. Mais aux Etats-Unis, cette viande in vitro est déjà autorisée à la vente, comme si c'était un produit ordinaire. La deuxième limite, c'est le consentement des gens à manger ces produits. C'est pourquoi, en plus de l'aspect production, les start-up des biotechnologies font un travail de fond pour préparer les consommateurs, construire la demande. De ce point de vue, des associations comme Peta aux Etats-Unis, L214 en France et Gaïa en Belgique, préparent vraiment le terrain pour que le marché des substituts se développe.

LD: Pour vendre ces substituts, l'industrie des biotechnologies affirme qu'elle oeuvre pour un monde meilleur. Vous, au contraire, vous montrez qu'elle signe le triomphe de la société industrielle et technicienne.

JP : Non seulement c'est l'industrialisation complète du vivant, mais c'est aussi la réduction de la vie au vivant. [...] On produit un amas de cellules qui se multiplient, c'est du vivant biologique, mais il n'y a pas de vie. C'est effectivement le triomphe de la technique, en tant qu'elle est complètement mortifère. Je le dis en citant Michel Henry, qui l'explique dans son livre La Barbarie : le triomphe de la technique sur la vie, c'est une destruction de la vie même, des affects, de la culture, du lien, de tout ce qui fait que la vie, c'est autre chose que du vivant.

LD: Le mouvement de la "libération animale" a l'air plus implanté dans les métropoles que dans les campagnes. Est-ce que vous pensez que ce type de préoccupation relève d'une civilisation très urbanisée comme l'est la nôtre, hors-sol, où on n'a plus de contact avec la terre, l'élevage et la production alimentaire en général ?

JP : Quand on est dans un milieu rural où il y a encore des vaches dans les champs, où les gens peuvent encore croiser des agriculteurs, des éleveurs, avoir un rapport à la vie et à la mort, les revendications d'en finir avec l'élevage passent beaucoup moins facilement que dans un milieu urbain, où les gens sont complètement déconnectés de la production, de ce que c'est qu'un champ, une prairie, de ce qui fait la relation de travail entre les humains et les animaux, et plus largement entre les agriculteurs et la nature. [...] Toute la propagande abolitionniste leur dit qu'élevage et production animale, c'est pareil. Ils sont dans la compassion, l'émotion. Des visions d'animaux maltraités leur arrivent sur leurs smartphones, et ils ont des réactions binaires : "la viande c'est mal, c'est affreux, je n'en mange plus." [...]

LD: Marx ironisait au XIXe sur les bourgeois qui se préoccupaient de protection animale mais qui ne se souciaient pas de la dégradation des conditions de vie dans les cités industrielles. Dans votre livre, vous notez aussi qu'une certaine protection animale, contemporaine de l'industrialisation et de l'urbanisation, parle de "bien-être animal" en dépolitisant la question.

JP : C'est aussi ce qu'a souligné l'historien Maurice Agulhon à la suite de Marx : le fait qu'au XIXe siècle, la protection animale vise d'abord à pacifier les classes populaires, avec l'hypothèse que la violence commise envers les animaux est de leur fait, et qu'au-delà couve le risque d'une violence contre l'ordre social, contre la bourgeoisie. Toute cette bourgeoisie, qui tient les transformations sociales, veut pacifier les mœurs après les révolutions de 1830 et 1848. Et l'un de ses moyens, c'est de pacifier les rapports envers les animaux, avec l'idée qu'il y a une violence atavique des classes populaires contre les animaux, que les gens ordinaires sont des brutes épaisses qu'il faudrait maîtriser, former, éduquer, civiliser. La loi Grammont, votée en 1850, [...] condamne le cocher qui malmène son cheval, mais pas le bourgeois propriétaire de la mine où descendent des chevaux et des enfants. On condamne la violence des personnes, des paysans, des ouvriers, mais on ne remet pas en cause les énormes bouleversements qu'engendre l'industrialisation [...] : la violence inouïe contre les enfants, les femmes et les hommes, mais aussi contre les animaux qui sont tous prolétarisés. Aujourd'hui, les défenseurs du "bien-être animal" sont toujours dans cette vision individuelle et dépolitisée : il suffit de voir une association comme PETA appeler à éduquer les gens, les rendre moraux, en leur donnant de la viande in vitro s'ils tiennent absolument à en manger, alors qu'elle occulte complètement les rapports sociaux et l'organisation du travail pensée par la bourgeoisie. Pourtant, la question, c'est bien la place des animaux dans les rapports sociaux, la violence faite aussi bien aux humains qu'aux animaux. Dans les porcheries industrielles par exemple, les gens subissent les mêmes conditions de vie au travail que les bêtes : on est enfermé du matin au soir, dans la poussière, le bruit, les odeurs infectes, c'est le même univers concentrationnaire pour les uns et pour les autres.

Auteur: Porcher Jocelyne

Info: Dans "La décroissance" N°165, décembre 2019, pages 26-27

[ enjeux économiques ] [ lobbies ] [ nourriture ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel