Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 52
Temps de recherche: 0.0716s

femme-par-homme

Nana ne bougea plus. Un bras derrière la nuque, une main prise dans l’autre, elle renversait la tête, les coudes écartés. Il voyait en raccourci ses yeux demi-clos, sa bouche entr’ouverte, son visage noyé d’un rire amoureux ; et, par derrière, son chignon de cheveux jaunes dénoué lui couvrait le dos d’un poil de lionne. Ployée et le flanc tendu, elle montrait les reins solides, la gorge dure d’une guerrière, aux muscles forts sous le grain satiné de la peau. Une ligne fine, à peine ondée par l’épaule et la hanche, filait d’un de ses coudes à son pied. Muffat suivait ce profil si tendre, ces fuites de chair blonde se noyant dans des lueurs dorées, ces rondeurs où la flamme des bougies mettait des reflets de soie. Il songeait à son ancienne horreur de la femme, au monstre de l’Écriture, lubrique, sentant le fauve. Nana était toute velue, un duvet de rousse faisait de son corps un velours ; tandis que, dans sa croupe et ses cuisses de cavale, dans les renflements charnus creusés de plis profonds, qui donnaient au sexe le voile troublant de leur ombre, il y avait de la bête. C’était la bête d’or, inconsciente comme une force, et dont l’odeur seule gâtait le monde. Muffat regardait toujours, obsédé, possédé, au point qu’ayant fermé les paupières, pour ne plus voir, l’animal reparut au fond des ténèbres, grandi, terrible, exagérant sa posture. Maintenant, il serait là, devant ses yeux, dans sa chair, à jamais.

Auteur: Zola Emile

Info: Les Rougon-Macquart, tome 9 : Nana

[ personnage ] [ fascinante ]

 

Commentaires: 0

Ajouté à la BD par miguel

unicité

La théorie de l'électron unique, également connue sous le nom d'hypothèse de l'univers à un électron, est une idée fascinante et quelque peu non conventionnelle en physique. Elle a été proposée par le célèbre physicien John Archibald Wheeler lors d'une conversation téléphonique avec Richard Feynman en 1940. Le concept central de cette hypothèse est qu'il n'y a qu'un seul électron dans tout l'univers, qui voyage dans le temps, apparaissant ainsi sous la forme d'innombrables électrons identiques à différentes positions dans l'espace et le temps.

L'idée de Wheeler était inspirée par le fait que tous les électrons ont des propriétés identiques, telles que la charge et la masse, et que ces propriétés sont les mêmes pour les électrons et leurs antiparticules, appelées positrons, à l'exception de leurs charges opposées. Il a proposé qu'un électron avançant dans le temps soit considéré comme un électron ordinaire, tandis que le même électron reculant dans le temps apparaîtrait comme un positron. En conséquence, tous les électrons et positrons de l'univers seraient en fait des manifestations de la même particule fondamentale, tissant un chemin complexe à travers l'espace et le temps.

La théorie de l'électron unique est une idée élégante et stimulante, mais elle n'a pas eu beaucoup de succès auprès de la communauté des physiciens. En effet, l'hypothèse est difficile à concilier avec les observations expérimentales et les principes établis de la physique moderne. Par exemple, la théorie exigerait que le nombre d'électrons et de positrons dans l'univers soit égal, mais les données expérimentales indiquent qu'il y a beaucoup plus d'électrons que de positrons. En outre, le modèle standard de la physique des particules, qui décrit avec succès le comportement des particules fondamentales et leurs interactions, ne soutient pas l'hypothèse d'un seul électron.

Auteur: Internet

Info: Sur le profil FB de Nassim Haramein

[ cosmologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

transmutation

Pour la première fois, des scientifiques observent la création de matière à partir de lumière.

L'une des implications les plus fascinantes de la célèbre équation d'Einstein E=mc2 est que matière et énergie sont interchangeables.

En d'autres termes, il devrait être possible de créer de la matière à partir d'énergie pure, telle que la lumière. Ce processus, connu sous le nom de création de matière ou de production de paires, a été proposé pour la première fois par les physiciens Gregory Breit et John Wheeler en 1934. Cependant, il est resté insaisissable pendant des décennies, car il nécessite des photons de très haute énergie pour entrer en collision l'un avec l'autre et produire des paires d'électrons et de positons.

Aujourd'hui, une équipe de scientifiques du Brookhaven National Laboratory de New York a rapporté la première observation directe de la création de matière à partir de la lumière en une seule étape. Ils ont utilisé le collisionneur d'ions lourds relativistes (RHIC), un puissant accélérateur de particules capable d'assembler des ions lourds à une vitesse proche de celle de la lumière. Ce faisant, ils ont créé des champs électromagnétiques intenses contenant des photons virtuels, qui sont des perturbations de courte durée dans les champs qui se comportent comme de vrais photons.

Lorsque deux ions se sont croisés sans entrer en collision, certains de leurs photons virtuels ont interagi et se sont transformés en photons réels à très haute énergie. Ces photons sont ensuite entrés en collision et ont produit des paires électron-positron, qui ont été détectées par le détecteur STAR au RHIC. Les scientifiques ont analysé plus de 6 000 de ces paires et ont constaté que leur distribution angulaire correspondait à la prédiction théorique de la création de matière à partir de la lumière.

Cette expérience confirme non seulement une prédiction de longue date de l'électrodynamique quantique, mais démontre également une nouvelle façon d'étudier les propriétés de la matière et de l'antimatière dans des conditions extrêmes. Les scientifiques espèrent poursuivre l'étude de ce phénomène et de ses implications pour la physique fondamentale et la cosmologie. 


Auteur: Internet

Info: https://www.thesci-universe.com/ 5/18/2023

[ recherche fondamentale ]

 

Commentaires: 0

Ajouté à la BD par miguel

insectes

On sait enfin de quoi discutent les araignées ! Cette IA traduit leur conversation

Pour la première fois, grâce à l'intelligence artificielle (IA), nous pouvons comprendre ce que disent les araignées.

Les araignées recourent à des danses complexes pour communiquer, vous le saviez ? Oui, ces fascinantes créatures utilisent des mouvements subtils pour s'exprimer.

Au fil de millions d'années d'évolution, leur capacité à communiquer s'est considérablement raffinée. Les scientifiques analysent ces danses au laboratoire, utilisant des vibromètres laser. Ces dispositifs précis mesurent les vibrations des surfaces. Leur coût élevé et leur fragilité limitent cependant leur application extérieure.

Face à cela, Noori Choi a relevé un grand défi. Il a distingué les sons dans une forêt dense, isolant les vibrations de trois espèces d'araignées.

Normalement, cette analyse aurait pris 1 625 jours, mais grâce à l'IA développée par Choi, ce fut réalisé bien plus rapidement. Choi a non seulement surmonté des obstacles techniques mais a aussi innové dans l'étude des araignées.

(Photo - lien youtube. Un doctorant de l'Université du Nebraska-Lincoln a révolutionné l'étude des araignées en combinant des microphones abordables à un algorithme d'apprentissage automatique avancé pour analyser les sons. Ensuite, il a emmené son invention dans les forêts du Mississippi pour la tester.)

Grâce à cette démarche, le travail de Noori Choi a introduit une méthode innovante pour capturer les mouvements fins des araignées.

Au cours de l'été, il a collecté une quantité considérable de données, atteignant 39 000 heures d'enregistrements. Parmi ces données, on trouve 17 000 séquences distinctes de vibrations produites par les araignées.

Bien sûr, les obstacles étaient nombreux, Le milieu forestier étant un tissu de sons et de vibrations générés par une myriade d'organismes vivants.

Pourtant, malgré les bruits de fond environnementaux, l'IA a réussi à isoler les communications spécifiques des araignées. " Le vibroscape est un espace de signalisation plus fréquenté que prévu ", a déclaré Choi. Cette constatation illustre la complexité du travail d'analyse.

Les secrets de la communication chez les araignéesL'étude minutieuse des données a dévoilé des comportements des araignées auparavant non identifiés. Il semble que ces créatures choisissent soigneusement leurs scènes de communication. Elles préfèrent certains substrats à d'autres pour optimiser leurs messages.

En plus, l'étude a dévoilé que les araignées modifient leurs signaux vibratoires selon la présence et l'espèce d'autres araignées alentour. Cette adaptation minimise la confusion durant les rituels de séduction et augmente la cohésion sociale dans leurs communautés complexes.

Alors, il semble que ces découvertes ouvrent de nouvelles perspectives pour étudier les araignées. En intégrant les microphones et l'IA, on peut mieux surveiller les écosystèmes en se concentrant sur ces créatures.

Choi a souligné que " même si tout le monde s'accorde sur le fait que les arthropodes sont très importants pour le fonctionnement des écosystèmes… s'ils s'effondrent, la communauté entière peut s'effondrer ".

Auteur: Internet

Info: https://www.lebigdata.fr - Nirina R, 9 avril 2024

[ nature ] [ symbiose ] [ messages ] [ échanges ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

animal-minéral

Des progrès dans la compréhension de la biominéralisation par une nouvelle microscopie X

Chez les organismes vivants, les processus de biominéralisation régulent la croissance des tissus minéralisés, tels que les dents, les os, les coquilles… Ces procédés restent fascinants à étudier pour une meilleure compréhension du monde naturel qui nous entoure et de sa diversité, d'autant plus que ces recherches peuvent contribuer à l'élaboration de procédés biomimétiques pour la réalisation de nouveaux matériaux.

Une équipe interdisciplinaire française, à laquelle participe l'équipe du LIONS de l'UMR NIMBE, s'est intéressée à la bio-formation du carbonate de calcium, dont la structure complexe est encore largement incomprise. La texture complexe de matériaux naturels, observés auprès du synchrotron de l'ESRF par une méthode originale de diffraction de rayons X développée par l'Institut Frenel, est décrite et les résultats publiés dans la revue "Nature Materials". Un point de départ pour comprendre l'élaboration de ce composé, et définir les conditions physiques, chimiques et biologiques nécessaires pour produire de façon synthétique ce type de biominéraux.

La compréhension en sciences des matériaux, paléoclimatologie et sciences de l’environnement des phénomènes de biominéralisation ouvrent des perspectives fascinantes et attirent nombre de chercheurs. Le carbonate de calcium en est une bonne illustration : les théories issues de la cristallisation classique ne peuvent expliquer la formation des structures biominérales calcaires extrêmement complexes, telles que celles observées chez l’oursin ou l’huître perlière par exemple. La formation de ce constituant majeur de la croute terrestre reste ainsi encore largement incomprise.

L’étude, menée par une équipe interdisciplinaire française et publiée dans la revue Nature Materials, exploite une nouvelle microscopie en rayons X permettant de révéler les spécificités structurales du biominéral. Elle conduit à l’identification de modèles probables de biominéralisation.

L’approche développée par cette équipe est motivée par une contradiction apparente : tandis que les espèces vivantes capables de cristalliser le carbonate de calcium produisent une remarquable diversité architecturale aux échelles macro et micrométriques, à l’échelle sub-micrométrique, la structure biominérale se caractérise au contraire, par l'observation constante d'une même structure granulaire et cristalline. Par conséquent, une description des caractéristiques cristallines à cette échelle "mésométrique", c'est-à-dire, à l’échelle de quelques granules (50-500 nm), est une clé pour construire des scénarios réalistes de biominéralisation. C’est également une difficulté majeure pour la microscopie, puisqu’aucune des approches expérimentales actuellement utilisées (électroniques, X ou visibles) n’est capable d’y accéder.

Grâce à la nouvelle approche de microscopie X en synchrotron, la ptychographie de Bragg, développée en 2011 par l’Institut Fresnel, il a été possible de révéler les détails tridimensionnels de l'organisation méso-cristalline des prismes de calcite, les unités minérales constituant l’extérieur de la coquille de l’huître perlière. Bien que ces prismes soient habituellement décrits comme des mono-cristaux "parfaits", il a été possible de mettre en évidence l'existence de grands domaines cristallins d’iso-orientations et d’iso-déformations, légèrement différents les uns des autres. Ces résultats entièrement originaux plaident en faveur de chemins de cristallisation non classiques, comme la fusion partielle d’un ensemble de nanoparticules primaires ou l’existence de précurseurs de type liquides.

Ce résultat a été obtenu dans cadre d’un programme de recherche à 4 ans financé par l’ANR (ANR-11-BS20-0005). Il constitue le point de départ d’un projet ERC Consolidator (#724881), qui a pour objectif d’établir les conditions physiques, chimiques et biologiques nécessaires pour produire des biominéraux synthétiques à la demande.

Auteur: Internet

Info: Réf :  F. Mastropietro, P. Godard, M. Burghammer, C. Chevallard, J. Daillant, J. Duboisset, M. Allain, P. Guenoun, J. Nouet, V. Chamard, Revealing crystalline domains in a mollusc shell “single-crystalline” prism, Nature Materials (2017). Communiqué CNRS/INSIS : "Une nouvelle microscopie éclaire la formation des biominéraux", 1er sept 2017

[ évolution ] [ niveaux intermédiaires ] [ méta-moteur ]

 

Commentaires: 0

Ajouté à la BD par miguel

conjecture scientifique

L’Univers pourrait être dominé par des tachyons, des particules se déplaçant plus vite que la lumière

 (Photo : Une délicate sphère de gaz créée par une onde de souffle de supernova à 160 000 années-lumière de la Terre.)

Dans un article préliminaire récent, deux physiciens avancent une proposition qui pourrait révolutionner notre compréhension de l’Univers. Leur théorie audacieuse suggère que notre cosmos pourrait être gouverné par des particules hypothétiques appelées tachyons qui se déplacent toujours plus vite que la lumière.

L’hypothèse des tachyons

Dans le monde fascinant de la physique théorique où les frontières de la connaissance sont sans cesse repoussées, la quête pour comprendre les mystères de l’Univers est incessante. Récemment, deux physiciens ont par exemple fait une proposition audacieuse qui pourrait potentiellement transformer notre vision fondamentale de l’Univers : l’hypothèse des tachyons. Selon la théorie, il s’agirait de particules hypothétiques qui se déplacent toujours plus vite que la lumière.

Bien que leur existence soit largement contestée et contredite par les principes de la relativité restreinte, qui dit qu’aucune particule dotée de masse ne peut voyager à une vitesse supérieure à celle de la lumière dans le vide, les tachyons continuent de susciter l’intérêt des chercheurs en raison de leur potentiel à repousser les frontières de notre compréhension.

Comment leur présence pourrait-elle changer le monde ?

Les chercheurs avancent plus précisément l’hypothèse audacieuse que les tachyons pourraient jouer un rôle fondamental dans notre compréhension de la composition de l’Univers. Dans ce modèle, ces particules pourraient en effet être la clé pour expliquer deux phénomènes mystérieux : la matière noire et l’énergie noire. La première est une substance invisible qui compose la majorité de la masse de l’Univers observable, mais dont la nature exacte reste largement inconnue. L’énergie noire est quant à elle responsable de l’expansion accélérée de l’univers. Plus précisément, les chercheurs suggèrent que les tachyons pourraient être la véritable identité de la matière noire.

Concernant l’énergie noire, rappelons que les astronomes peuvent mesurer la luminosité intrinsèque des supernovae de type Ia, ce qui leur permet de déterminer leur distance par rapport à la Terre. En comparant cette luminosité apparente à la luminosité intrinsèque attendue d’une supernova de type Ia standard, ils peuvent calculer la distance de la supernova et ainsi estimer la distance de l’objet hôte (généralement une galaxie).

En combinant les mesures de distance de nombreuses supernovae de ce type à différentes distances, les astronomes peuvent alors tracer la relation entre la distance et le taux d’expansion de l’Univers. Dans le cadre de cette étude sur les tachyons, les chercheurs ont appliqué leur modèle cosmologique alternatif aux données observées sur ces supernovae. Il s’est alors avéré que ce dernier était tout aussi cohérent avec ces observations.

En intégrant les tachyons dans leur modèle, les physiciens suggèrent que ces particules pourraient ainsi fournir une explication unifiée à ces deux phénomènes cosmologiques complexes.

Quelles sont les limites de cette théorie ?

Malgré son potentiel révolutionnaire, la théorie des tachyons est confrontée à de nombreuses limites. Tout d’abord, leur existence même est hautement improbable selon les connaissances actuelles de la physique. En effet, la notion de voyager plus vite que la lumière soulève des questions fondamentales sur la causalité et les principes de la relativité. De plus, bien que ce modèle cosmologique puisse expliquer certaines observations, il nécessite encore des tests expérimentaux rigoureux pour être validé.

En conclusion, l’étude des tachyons représente une exploration audacieuse des limites de notre compréhension de l’Univers. Cependant, bien que cette théorie ouvre de nouvelles perspectives fascinantes, elle devra être soumise à un examen minutieux et à des tests rigoureux pour être pleinement acceptée par la communauté scientifique.

Les recherches de l’équipe ont été publiées dans la base de données pré-imprimée arXiv en mars.



 

Auteur: Internet

Info: https://sciencepost.fr/ - Brice Louvet, expert espace et sciences18 avril 2024

[ spéculations ] [ monde subatomique ] [ vitesse supraluminique ] [ effet Tcherenkov ] [ superluminique ]

 

Commentaires: 0

Ajouté à la BD par miguel

cosmos miroir

Le cerveau humain ressemble étrangement à l'Univers

Des chercheurs ont comparé la structure de l'Univers à celle du réseau neuronal. Proportions, fluctuations de la matière, connexions entre les étoiles et les neurones... Ils ont constaté des similitudes troublantes entre les deux... malgré des échelles distantes d'années-lumière !

Comparer le cerveau humain, qui mesure en moyenne 1.500 cm3 et pèse 1,4 kg, avec l'Univers, estimé à plus de 880.000 milliards de milliards de kilomètres de diamètre, peut sembler quelque peu incongru. C'est pourtant l'exercice auquel se sont essayés deux chercheurs dans un article publié dans la revue Frontiers in Physics. Aussi étonnant que cela puisse paraître, ils ont découvert des similitudes troublantes entre les deux structures. "Bien que les interactions physiques dans les deux systèmes soient complètement différentes, leur observation au moyen de techniques microscopiques et télescopiques permet de saisir une morphologie analogue fascinante, au point qu'il a souvent été noté que la toile cosmique et la toile des neurones se ressemblent", écrivent l'astrophysicien Franco Vazza et le neurobiologiste Alberto Feletti.

70 % de masse "inutile"

Les similitudes sont d'abord notables au niveau des proportions. Le cerveau contient 86 milliards de neurones, reliés par des millions de milliards de synapses. L'Univers observable est formé d'au moins 100 milliards de galaxies, arrangées elles aussi en longs filaments et en nœuds. Dans les deux systèmes, 75 % de la masse a un rôle "passif" : l'eau dans le cas du cerveau, l’énergie noire dans le cas de l’Univers.

Partant de ce constat troublant, les chercheurs ont poursuivi leur comparaison plus loin, en cherchant à observer comment les fluctuations de la matière se dispersent à des échelles aussi différentes. Ils ont pour cela fait appel à une analyse de la densité spectrale de puissance, une technique souvent utilisée en cosmologie pour étudier la distribution spatiale des galaxies. "Notre analyse montre que la distribution des fluctuations au sein du réseau neuronal du cervelet sur une échelle allant de 1 micromètre à 0,1 millimètre suit la même progression de la distribution de la matière dans la toile cosmique mais, bien sûr, à une échelle plus grande qui va de 5 millions à 500 millions d'années-lumière", atteste Franco Vazza.

(Sur l'article original on voit deux photos, une section du cervelet grossie 40x à côté d'une simulation cosmologique de l’Univers - portion de 300 millions d’années - produite par l'Université de Bologne.)

Deux réseaux qui partagent les mêmes structures de connexions

Les deux chercheurs ont également comparé d'autres paramètres, comme le nombre de connexions dans chaque nœud et la tendance à recouper plusieurs connexions dans les nœuds centraux du système. "Une fois de plus, les paramètres structurels ont permis d'identifier des niveaux de concordance inattendus", révèle Alberto Feletti. Les chercheurs se sont aussi amusés à quantifier les informations stockables par chaque système. Sachant que chaque synapse peut contenir 4,7 bits de données, on estime que le cerveau humain est capable de stocker 2,5 petabytes de mémoire. Pour l'Univers, il a été calculé qu'il faudrait 4,3 petabytes de mémoire pour stocker toutes les informations des structures cosmiques observables. Là encore, les ordres de grandeur sont les mêmes.

"Il est probable que la connectivité au sein des deux réseaux évolue selon des principes physiques similaires, malgré la différence frappante et évidente entre les puissances physiques régulant les galaxies et les neurones", souligne Alberto Feletti. Bien entendu, il existe aussi des différences notoires entre les deux systèmes. On sait par exemple que l'Univers est en expansion et se réchauffe, ce qui n'est (heureusement) pas le cas du cerveau. De plus, cette comparaison est basée sur des simplifications majeures. Il n'en reste pas moins que l'expression "avoir la tête dans les étoiles" prend tout son sens à la lecture de cette étude.

Auteur: Internet

Info: Céline Deluzarche, journaliste, https://www.futura-sciences.com, le 19/11/2020

[ monde anthropo-solipsiste ] [ réalité consensuelle ]

 
Commentaires: 1
Ajouté à la BD par miguel

sciences

Les ordinateurs peuvent-ils être créatifs? Le projet WHIM ("What-if Machine"), financé par l'UE, génère non seulement des scénarios fictifs mais évalue également leur potentiel attractif et d'utilisation. Il représente une avancée majeure dans le domaine de la créativité informatique. La science ignore bien souvent le monde du fantastique, mais les choses changent avec le projet WHIM qui porte bien son nom (en anglais, "whim" signifie fantaisie). Ce projet ambitieux élabore un système logiciel capable d'inventer et d'évaluer des idées imaginaires. "WHIM est un antidote à l'intelligence artificielle traditionnelle, qui est obsédée par la réalité", déclare Simon Colton, coordinateur du projet et professeur en créativité informatique au Goldsmiths College, à l'université de Londres. "Nous faisons partie des premiers à appliquer l'intelligence artificielle à la fiction". L'acronyme du projet signifie What-If Machine. C'est également le nom du premier logiciel de conception de fictions au monde, par un processus d'idéation (processus créatif de production, de développement et de communication de nouvelles idées) développé dans le cadre du projet. Le logiciel génère des mini-récits fictifs en utilisant des techniques de traitement du langage et une base de données des faits trouvés sur le web (qui sert de référentiel de faits "réels"). Le logiciel intervertit ou déforme ensuite les faits pour créer des scripts hypothétiques. Le résultat est souvent absurde: "Que se passerait-il si une femme se réveillait dans une allée après avoir été transformée en chat, mais tout en étant toujours capable de faire du vélo ?" Les ordinateurs peuvent-ils juger la créativité ? WHIM est bien plus qu'une simple machine génératrice d'idées. Le logiciel cherche également à évaluer le potentiel d'utilisation ou la qualité des idées générées. En effet, ces dernières sont destinées à un usage par le public, et les impressions du public ont été sondées avec des expériences participatives (crowdsourcing). Par exemple, les personnes interrogées ont fait part de leurs impressions générales, précisant également aux chercheurs du projet WHIM si les scripts imaginaires produits étaient, selon elles, innovants et avaient un bon potentiel narratif. Au moyen de techniques d'apprentissage automatique, conçues par des chercheurs de l'institut Jozef Stefan de Ljubljana, le système acquiert progressivement une compréhension plus précise des préférences du public. "On pourrait dire que la fiction est subjective, mais il existe des schémas communs", déclare le professeur Colton. "Si 99 % du public pense qu'un humoriste est amusant, alors nous pourrions dire que l'humoriste est amusant, au moins selon la perception de la majorité". Ce n'est que le début Générer des mini-récits fictifs ne constitue qu'un aspect du projet. Des chercheurs de l'Universidad Complutense Madrid transforment les mini-récits en scripts narratifs complets, qui pourraient mieux convenir pour l'intrigue d'un film par exemple. Parallèlement, des chercheurs de l'University College Dublin tentent d'entraîner les ordinateurs à produire des idées et paradoxes métaphoriques en inversant et opposant des stéréotypes trouvés sur le web, tandis que des chercheurs de l'Université de Cambridge explorent l'ensemble du web à des fins de création d'idées. Tous ces travaux devraient engendrer de meilleures idées imaginaires plus complètes. Plus qu'une simple fantaisie Bien que les idées imaginaires générées puissent être fantaisistes, WHIM s'appuie sur un processus scientifique solide. Il fait partie du domaine émergent de la créativité informatique, une matière interdisciplinaire fascinante située à l'intersection de l'intelligence artificielle, la psychologie cognitive, la philosophie et les arts. WHIM peut avoir des applications dans plusieurs domaines. Une des initiatives envisage de transformer les récits en jeux vidéo. Une autre initiative majeure implique la conception informatique d'une production de théâtre musicale: le scénario, le décor et la musique. Le processus complet est en cours de filmage pour un documentaire. WHIM pourrait également s'appliquer à des domaines non artistiques. Par exemple, il pourrait être utilisé par des modérateurs lors de conférences scientifiques pour sonder les participants en leur posant des questions destinées à explorer différentes hypothèses ou cas de figure. L'UE a accordé 1,7 million d'euros de financement au projet WHIM, actif d'octobre 2013 à septembre 2016.

Auteur: Internet

Info:

[ homme-machine ] [ informatique ] [ créativité ]

 

Commentaires: 0

cognition

Comment le cerveau déforme la réalité temporelle
En 1973 Benjamin Libet de l’université d’état de Californie à San Francisco, dans une série d’expériences fascinantes, a prouvé que la prise de conscience suite à un stimulus sensoriel, (stimulation électrique sur le cerveau) se produit 500 millisecondes (temps neuronal) après le stimulus.
Lors de certaines opérations du cerveau, il a obtenu l’autorisation des patients de réaliser une expérience, qui consistait à stimuler avec des électrodes la zone du cerveau à l’air libre, (la boite crânienne étant ouverte ) qui correspondait à la zone d’activité d’une piqûre au doigt. Le sujet réveillé déclare après 500 millisecondes sentir la piqûre.
C’est-à-dire que la plupart des expériences conscientes, requièrent une période minimale substantielle d’activation corticale de 350 à 500 millisecondes pour accéder à la conscience.
Ben Libet a profité de certaines opérations du cerveau où celui-ci est ouvert et où le patient est réveillé pour stimuler directement le cerveau et observer les réactions du patient. En fait, il stimulait d’abord un doigt (avec une petite décharge électrique), puis il mesurait le temps pour que le sujet ressente une piqûre au doigt. Ça donnait 25 millisecondes.
Ensuite, il stimulait directement le cerveau sur la zone correspondant à la main. Le sujet ressent bien une piqûre à la main (et non pas au cerveau), mais seulement au bout de 500 millisecondes. De plus, pour que le sujet ressente une piqûre, il fallait envoyer un train de choc, et non pas un choc unique.
Ben Libet a ensuite combiné les deux expériences : il a d’abord stimulé le doigt, puis 200 ms plus tard il stimule le cerveau avec un train de chocs. Le sujet ressent une seule piqûre, 700 ms après la stimulation du doigt. Comme les chocs électriques fait au cerveau sont plus faibles que ceux faits au doigt, et comme le sujet ne ressent qu’une faible piqûre, on sait que la piqûre qu’il a ressenti après 700 ms était la stimulation du cerveau. Celle effectuée sur le doigt est donc passée à la trappe.
Puis Libet recommence (le doigt, puis le cerveau), mais en laissant cette fois un délai de 500 ms entre les deux stimulations. Toujours rien : le sujet ne perçoit qu’une seule piqûre, 1 seconde après la première stimulation (c’est-à-dire 500 ms après la stimulation du cerveau).
Libet recommence une dernière fois, mais en laissant plus de 500 ms entre les deux stimulations. Là, le patient ressent bien 2 piqûres, la première 25 ms après la première stimulation (au doigt), et la deuxième 500 ms après la deuxième stimulation (au cerveau).
Libet a tiré plusieurs conclusions de ces expériences :
1- L’influx nerveux met 25 ms pour parvenir du doigt au cerveau.
2- Il faut 500 ms pour être conscient de quelque chose, puisque c’est le délai entre la stimulation du cerveau et la sensation afférente.
3- Une stimulation au cerveau moins de 500 ms après une première stimulation au doigt nous empêche d’être conscients d’une piqûre dont nous serions normalement conscients au bout de 25 ms.
Évidemment ça pose un problème, puisque le temps d’élaboration d’une sensation consciente est bien de 500 ms (475 ms en fait, puisqu’il faut compter le temps que l’influx nerveux arrive du doigt au cerveau). Comment se fait-il que dans la réalité, nous soyons conscients d’un stimuli après 25 ms seulement ? La solution que propose Libet est incroyable : il suggère ni plus ni moins que la conscience antidate la sensation en retournant en arrière dans le temps de 475 ms.
Cette expérience est la confirmation scientifique, que la conscience volontaire arrive beaucoup trop tard pour être à l’origine de l’action.
Et si le cerveau peut initier nos mouvements volontaires, avant même l’apparition d’une volonté consciente de faire ces mouvements, quel rôle reste-t-il pour la conscience?
Les expériences de Libet soulignent que tout ce qui se produit est d’abord inconscient, avant de devenir conscient.
Cette expérience a été vérifiée par d’autres scientifiques, et notamment Patrick Haggard qui travaille à l’Institut des neurosciences cognitives de l’University Collège de Londres, où Il dirige une équipe d’une dizaine de chercheurs.

Auteur: Internet

Info: http://www.neotrouve.com/?p=4496, 18 octobre 2013. Le livre de Benjamin Libet écrit trois ans avant sa mort en 2007 et traduit pour les éditions Dervy sous le titre L’esprit au-delà des neurones, témoigne d’une vie de recherche qui aura influencé autant les neurosciences que nourri nombre de débats en philosophie. D’ailleurs l’ouvrage, rétrospective des travaux et des découvertes du chercheur, porte un sous-titre programmatique qui atteste de cette double-entrée philosophique et scientifique : Une exploration de la conscience et de la liberté. Les expériences de Libet montrent un décalage de quelques dixièmes de seconde entre l’activité cérébrale et l’accès des sujets d’expérience à leurs propres états subjectifs, états qui correspondent subjectivement à cette activité neuronale. Le décalage temporel constaté n’est donc pas celui qui a lieu entre des états cérébraux et les états mentaux correspondant, mais celui qui a lieu entre les états cérébraux et la conscience d’ordre supérieur qui se porte sur les états mentaux correspondant. Compris de cette façon, un tel décalage ne semble t-il pas logique, conforme à la différence qu’il peut y avoir entre conscience immédiate et conscience réflexive, d’ordre supérieur ?

[ neurosciences ]

 

Commentaires: 0

épigénétique

"Percer les secrets du vivant grâce à la biologie quantique"

En primeur pour notre magazine, Birgitta Whaley, qui dirige le Berkeley Quantum Information and Computation Center de l'université de Californie, a accepté d'expliquer en quoi les "mécanismes quantiques à l'oeuvre chez les organismes vivants" pouvaient révolutionner le monde. D'autant qu'ils ne sont qu'une cinquantaine de scientifiques à travers la planète à poursuivre ces travaux fondamentaux.

Sciences et Avenir : Quand on évoque l’information quantique, on pense en premier lieu à la physique et aux particules de matière ou de lumière. Or, vous travaillez sur le vivant ?

Birgitta Whaley : Nous étudions tout un éventail d'organismes, des plantes vertes aux bactéries, qu'il s'agisse d'unicellulaires ou de feuilles. Mais aussi des oiseaux ou d'autres animaux. Nous voulons apporter la preuve qu'il existe un comportement quantique chez ces organismes vivants, à toute petite échelle, impliquant des "grains de lumière" (photons).

Avez-vous découvert ce comportement quantique ? Oui, il est tout à fait évident que des effets quantiques sont au coeur, en particulier, de ce qu’on appelle la photosynthèse. Nous les observons dans les premiers stades de ce mécanisme essentiel à la vie qui permet l’absorption de la lumière, puis sa transformation en énergie électronique, les électrons déclenchant ensuite les réactions chimiques qui permettent la formation de glucides [constituants essentiels des êtres vivants].

Outre la connaissance fondamentale, pourquoi est-ce important de comprendre ce mécanisme ?

Parce qu’il est essentiel à la production de nourriture et donc à notre vie. Mais imaginez aussi que nous parvenions à réaliser une photosynthèse artificielle qui capture l’énergie solaire aussi bien que le font les plantes, dont le processus a été hautement optimisé après 3,6 milliards d’années d’évolution. Ce ne serait plus 15 % de rendement que l’on obtiendrait, comme cela se pratique avec le photovoltaïque aujourd’hui, mais presque 100 % !

Qu’ont donc réussi à faire les plantes, et pas nous ?

Chez les plantes vertes, des récepteurs composés de chlorophylle sont capables d’absorber des photons alors même que la lumière reçue est très faible. Chacun d’eux ne reçoit en moyenne qu’un photon toutes les dix secondes. Il faut que la plante soit vraiment très efficace pour réaliser cette absorption avec si peu de lumière. Il y a même des bactéries marines qui n’absorbent qu’un photon (dans l’infrarouge) toutes les vingt minutes.

Qu’est-il important de mesurer ?

Les détails de ce processus d’absorption, en particulier sa dynamique… Nous connaissons très bien la chlorophylle, nous savons quelle partie de la molécule absorbe le photon et à quel niveau. Le problème vient de ce que cette chlorophylle est enchâssée dans un échafaudage complexe de protéines- pigments qui se mettent à leur tour à vibrer, à entrer en rotation… Nos expériences suggèrent fortement que ces vibrations oeuvrent en conjonction avec l’excitation électronique déclenchée par l’arrivée du photon. Elles aident au transfert des électrons qui déclencheront ultérieurement des réactions chimiques. Ce mécanisme d’absorption, facilité par des effets quantiques, peut avoir jusqu’à 99 % d’efficacité. Un photon arrive, un électron est produit. Finement réglé, il répond à une nécessité de survie de l’organisme.

Quel genre d’appareillages utilisez-vous pour les mesures ?

Nous employons des faisceaux laser pulsés, qui permettent de préciser la dynamique d’excitation des molécules. Par exemple, avec trois pulses qui se succèdent [arrivée de photons d’une certaine fréquence], nous pouvons voir, lors du premier, la molécule réceptrice amorcer son passage vers un état " excité", puis, lors du deuxième pulse, la molécule devenir entièrement excitée, le troisième pulse permettant d’apporter des précisions sur la durée de cette excitation.

Cela ne semble pas évident…

En biologie, vous ne savez pas où s’arrête le système quantique et où commence son environnement. La plupart des spécialistes haussent les épaules en disant que tout cela est trop compliqué, qu’ils ne veulent même pas en entendre parler !

Dans combien de temps pensez-vous comprendre ce qui se passe ?

Peut-être dans vingt ans… Mais d’ici à dix ans, grâce à la biologie synthétique, nous devrions pouvoir élaborer une structure qui fasse progresser notre compréhension.

"COMPORTEMENT. La fascinante intelligence spatiale des oiseaux.

La migration des oiseaux et leur capacité à déterminer la bonne direction à prendre sont aussi un domaine "très tendance" en biologie quantique ! Birgitta Whaley le trouve d’autant plus fascinant que "les effets quantiques ne sont pas du tout évidents. Est peut-être impliquée ici ce qu’on nomme l’intrication quantique" [deux objets qui peuvent être spatialement séparés mais doivent être traités globalement, comme un seul]. La lumière est en effet absorbée par une molécule à l’arrière de la rétine de chaque oeil de l’oiseau, qui produit puis transfère un électron. On se demande alors quel est le comportement quantique des deux électrons (entre eux) qui pénètrent dans le cerveau de l’oiseau, ce qui lui délivre un message particulier. Mais il ne s’agit pour l’instant que "d’une belle hypothèse et il nous faudrait des données expérimentales".)

Auteur: Internet

Info: www.sciencesetavenir.fr, Dominique Leglu, 7.11.2016

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel