Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 171
Temps de recherche: 0.0535s

biogenèse

La durée des réponses épigénétiques qui sous-tendent l'héritage transgénérationnel est déterminée par un mécanisme actif reposant sur la production de petits ARN et la modulation de facteurs ARNi, dictant si les réponses ARNi* ancestrales seroent mémorisées ou oubliées.

Selon l'épigénétique - l'étude des changements héritables dans l'expression des gènes qui ne sont pas directement codés dans notre ADN - nos expériences de vie peuvent être transmises à nos enfants et aux enfants de nos enfants. Des études menées sur des survivants d'événements traumatiques suggèrent que l'exposition au stress peut effectivement avoir des effets durables sur les générations suivantes.

Mais comment exactement ces "souvenirs" génétiques sont-ils transmis ?

Une nouvelle étude de l'université de Tel Aviv (TAU), publiée la semaine dernière dans Cell, met en évidence le mécanisme précis qui permet d'activer ou de désactiver la transmission de ces influences environnementales.

Jusqu'à présent, on supposait qu'une dilution ou une décroissance passive régissait l'héritage des réponses épigénétiques", a déclaré Oded Rechavi, PhD, de la Faculté des sciences de la vie et de l'École de neurosciences Sagol de l'UAT. "Mais nous avons montré qu'il existe un processus actif qui régule l'héritage épigénétique au fil des générations".

Les scientifiques ont découvert que des gènes spécifiques, qu'ils ont nommés "MOTEK" (Modified Transgenerational Epigenetic Kinetics), étaient impliqués dans l'activation et la désactivation des transmissions épigénétiques.

"Nous avons découvert comment manipuler la durée transgénérationnelle de l'héritage épigénétique chez les vers en activant et désactivant les petits ARN que les vers utilisent pour réguler ces gènes", a déclaré Rechavi*.

Ces commutateurs sont contrôlés par une interaction en retour entre les petits ARN régulateurs de gènes, qui sont héritables, et les gènes MOTEK qui sont nécessaires pour produire et transmettre ces petits ARN à travers les générations.

Cette rétroaction détermine si la mémoire épigénétique se transmet ou non à la descendance, et combien de temps dure chaque réponse épigénétique.

Les chercheurs prévoient maintenant d'étudier les gènes MOTEK pour savoir exactement comment ces gènes affectent la durée des effets épigénétiques, et si des mécanismes similaires existent chez l'homme.

 Rechavi et son équipe avaient précédemment identifié un mécanisme d'"héritage de petits ARN" par lequel des molécules d'ARN produisaient une réponse aux besoins de cellules spécifiques et comment elles étaient régulées entre les générations.

"Nous avons précédemment montré que les vers héritaient de petits ARN suite à la famine et aux infections virales de leurs parents. Ces petits ARN aidaient à préparer leur progéniture à des épreuves similaires", a déclaré le Dr Rechavi. "Nous avons également identifié un mécanisme qui amplifiait les petits ARN héréditaires à travers les générations, afin que la réponse ne soit pas diluée. Nous avons découvert que des enzymes appelées RdRPs sont nécessaires pour recréer de nouveaux petits ARN afin de maintenir la réponse dans les générations suivantes."

On a constaté que la plupart des réponses épigénétiques héritables chez les vers C.elegans ne persistaient que pendant quelques générations. Cela a donné lieu à l'hypothèse que les effets épigénétiques s'effaçaient simplement au fil du temps, par un processus de dilution ou de désintégration.

"Mais cette hypothèse ne tenait pas compte de la possibilité que ce processus ne s'éteigne pas tout bonnement, mais qu'il soit au contraire régulé", a déclaré Rechavi, qui, dans cette étude, a traité des vers C.elegans avec de petits ARN qui ciblent la GFP (protéine fluorescente verte), un gène rapporteur couramment utilisé dans les expériences. "En suivant les petits ARN héréditaires qui régulaient la GFP - qui "réduisaient au silence" son expression - nous avons révélé un mécanisme d'héritage actif et réglable qui peut être activé ou désactivé."

Auteur: Internet

Info: https://www.kurzweilai.net/onoff-button-for-passing-along-epigenetic-memories-to-our-children-discovered. 29 mars 2016. *ARN interférant

[ bio-machine ] [ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

insecte

Araignée : du sexe contre un cadeau
Chez la pisaure, le mâle offre un présent à la femelle pour pouvoir l'étreindre. Mais, parfois, le paquet est vide...
Ah ! si DSK avait étudié les moeurs des araignées avant de monter dans sa chambre d'hôtel à New York ! Peut-être aurait-il évité les déboires qu'il a connus par la suite. Le mâle de l'espèce pisaure admirable (Pisaura mirabilis) qui désire convaincre une femelle de rencontre d'abandonner le ménage de sa toile lui offre très souvent un cadeau enveloppé dans un beau tissu de soie. À l'intérieur, très souvent, un insecte bien gras ou quelque autre delicatessen.
Le présent fait souvent mouche. La belle inconnue s'en empare et, pendant qu'elle s'en rassasie, son partenaire s'active à sa petite affaire. Plusieurs espèces d'insectes pratiquent ainsi le cadeau nuptial avec plus ou moins de bonheur. J'en ai donné plusieurs exemples dans un livre que j'ai consacré à la sexualité animale, voilà quelques années chez Grasset.
Mais le mâle pisaure se révèle parfois un vrai manipulateur en offrant un emballage vide ! C'est la surprenante découverte effectuée, après plusieurs années d'observation, par Maria Albo qui vient de consacrer un article scientifique à ce beau goujat dans la revue BMC Evolutionary Biology. Certains mâles, donc, glissent dans le paquetage non pas une succulente proie à dévorer, mais un morceau de mousse ou encore l'enveloppe d'un insecte déjà dévoré, en général par eux. La femelle n'imaginant un tel vice laisse le généreux inconnu l'étreindre.
À cet endroit-là, une petite explication est nécessaire sur le Kamasutra de l'araignée. Faute d'un zizi en bonne et due forme, le mâle doit utiliser deux appendices pour effectuer le transfert de spermatozoïdes : les pédipalpes situés de part et d'autre de sa gueule. Il les remplit avec une goutte de sperme déposée au préalable sur le sol ou sur un carré de soie. Pendant que madame ouvre son cadeau dont elle pense qu'il contient un petit casse-croûte, le mâle se colle tête-bêche contre elle pour lui enfourner ses deux seringues dans l'orifice adéquat, l'une après l'autre. L'opération prend plusieurs minutes.
Toutes les stratégies sont bonnes
Quand la femelle découvre qu'elle a été flouée, elle prend généralement ses huit pattes à son cou, se débarrassant de son vilain amant. Quelques gouttes tombent sur la moquette, mais ce n'est pas ça qui le préoccupe. Ce qu'il veut, c'est récupérer son cadeau pour, éventuellement, s'en resservir auprès d'une autre femelle crédule. Dès que la femelle fait mine de s'enfuir, il agrippe le cadeau et fait le mort ! Après quelques centimètres, la femelle, en ayant assez de se traîner le cadeau et son amant immobile, lâche tout.
Maria Albo ne s'est pas contentée d'observer ces manoeuvres, elle a aussi compté les étreintes et les a même chronométrées. Ainsi a-t-elle pu vérifier que les mâles offrant un cadeau sont davantage acceptés par les femelles. Cependant, ceux qui font un faux présent sont aussi éjectés plus rapidement. Généralement, ils n'ont pas le temps de vider leurs deux pédipalpes, mais ils se seront aussi moins fatigués pour attraper une proie et la donner en cadeau. "Le résultat final montre que le nombre d'oeufs pondus est moindre si la femelle n'a pas reçu de cadeau, mais il y a peu de différences entre les femelles qui ont reçu un présent comestible et celles qui en ont reçu un non comestible. Le succès de la triche explique probablement pourquoi les deux stratégies ont coévolué et se sont maintenues dans la population", explique l'arachnologue.
Dans le monde animal, toutes les stratégies sont bonnes pour disperser ses gènes. Le mâle pisaure n'est pas le pire en la matière. Tromperie, prostitution, vol d'enfant, assassinat, viol, tout est bon pour procréer. Les hommes n'ont donc rien inventé.

Auteur: Albo Maria J

Info: Le Point.fr, 14/11/2011

[ couple ] [ reproduction ]

 

Commentaires: 0

gènes

Une mauvaise herbe bizarre viole les règles
Au moins une plante désobéit aux lois fondamentales de la génétique : Une petite mauvaise herbe qui hérite ses gènes de ses grands-parents plutôt que de ses parents déroute des scientifiques, annoncent des chercheurs US.
Robert Pruitt, Professeur d'associé et une équipe de l'université de Purdue dans l'Indiana rapportent leur recherche dans le journal " Nature" d'aujourd'hui. Les résultats pourraient avoir des implications sur la façon dont les scientifiques comprennent les maladies génétique.
Ces scientifiques ont étudié un cresson, (Thaliana Arabidopsis), une mauvaise herbe qui prolifère entre autre dans les fissures des parcs de stationnement mais dont le modèle génétique est un des plus étroitement surveillé et connu.
Ils ont constaté qu'une fois croisée pour produire des caractéristiques particulières, la plante avait acquis, d'une façon ou d'une autre, des données génétiques d'une autre source que par ses parents.
Bien que d'autres organismes tels que la levure soient également connus pour obtenir leurs gènes d'une manière différente que celle, traditionnelle, des parents, les chercheurs disent que c'est la première description générale de ce mécanisme pour un organisme obtenant de l'information ADN d'ailleurs.
Pruitt indique qu'il est possible que les gènes aient été acquis pas par l'ADN mais par une molécule étroitement semblable appelé RNA, un intermédiaire cellulaire qui lit les instructions de l'ADN pour les transcrire en protéines
Les chercheurs ont multiplié plusieurs générations de cette mauvaise herbe. Multipliant d'abord des générations avec un gène doublé "hothead," se concentrant en particulier sur une version défectueuse de ce gène (qui fait en sorte que les pétales et des feuilles restent ensemble).
Dans les générations de plantes qu'ils ont étudiées, le cresson eut un gène fêlé de "hothead" une fois sur deux.
Ces plantes ont alors été croisées, et comme prévu, un quart de leur progéniture se retrouva avec deux gènes mutant, alors que trois quarts en avaient aucun, ou seulement un. Ceux avec les deux gènes mutant ont tous eu cette anomalie de pétales et de feuilles. Mais quand les plantes avec les deux gènes fêlés ont alors été croisées, quelque chose d'étrange s'est produit.
Selon les règles, toutes plantes de cette troisième génération auraient dû être anormales, puisque les seuls gènes qu'ils avaient en commun venaient de parents défectueux. Pourtant plus de 10% étaient normales.
Les scientifiques recherchent des gènes
Au début, Pruitt s'est demandé si des graines ou du pollen souillaient ses plantes. Mais les expériences répétées ont montré que ce n'était pas le cas, écartant tout autant la possibilité que, se cachant sur le génome de Thaliana Arabidopsis, il pourrait y avoir un autre gène qui duplique le gène de "hothead" en s'occupe de réparer avec ruse la défectuosité.
Exaspéré Pruitt a proposé l'idée que la progéniture normale avait acquis des données génétiques d'une autre source que celle de ses parents. L'idée de Pruitt est que cette information héréditaire pourrait être stockée sur l'ARN comme calibre moléculaire, et ainsi employée pour réparer certaines déviations dangereuses.
Si c'est vrai, la conclusion remarquable est que nos modèles génétiques ont une trousse à outils cachée, léguée par nos grands-parents et probablement au-delà, prévue pour guérir certaines mutations d'ADN qui causent de la maladie.
Dans un commentaire paru aussi dans "Nature" les biologistes moléculaires allemands Detlef Weigel de l'institut Max Planck et le professeur Gerd Jürgens de l'université de Tübingen, rendent hommages à "une découverte spectaculaire" en incitant aussi à la prudence. " Beaucoup d'expériences viennent à l'esprit pour explorer ce mécanisme de transmission peu orthodoxe qui peut sauter plusieurs générations " indiquent-ils.
Il est encore peu clair quant à savoir si cette qualité de self-guérison est unique à ce gène particulier, ( ou au cresson plus précisément ), ou si certaines des conditions régnant dans le laboratoire sont suspectes.
En France, Ian Small, sous-directeur des sciences à l'unité de recherches Génomique des plantes à Evry, près de Paris, dit que l'étude a des implications époustouflantes.
"Si ceci avait été publié le 1 avril, j'aurais immédiatement dit que c'est une plaisanterie d'imbécile" a-t-il dit au journal libération.

Auteur: Ingham Richard

Info: Agençe France-Presse Jeudi, 24 Mars 2005 avec ABC Science Online

 

Commentaires: 0

anthropologie

Lorsque Guénon écrivait, ni l’histoire de la Terre ni celle des peuples sans écriture n’était connue et ce type de considérations alimentait les réflexions de la plupart des ésotéristes. On a commencé de voir clair dans notre passé profond après sa mort. Chose étrange, ce que nous apprennent la géologie et la paléontologie résonne encore plus fortement avec les légendes de l’Asie centrale et du moyen-orient.
Les analyses génétiques des populations montrent la réalité de plusieurs exodes, dont les premiers ont pu avoir eu lieu dès l’apparition de l’homme dit "moderne" ou Homo sapiens sapiens, en d’autres termes nous-mêmes. L’homme de Néandertal, qui nous a précédés, était apparu environ 250 000 ans avant notre ère, au paléolithique moyen. Nous sommes alors à la fin de la glaciation de Mindel et l’expansion de Néandertal en Europe et en Asie profite d’un réchauffement peu accentué et qui ne dure pas plus d’une centaine de milliers d’années. À peine 100 000 ans plus tard, nos premiers parents génétiques sont présents. L’homme "moderne" apparu vers -200 000, juste avant la glaciation de Riss, une des plus sévères, va rester aux alentours de l’équateur jusqu’au réchauffement suivant qui commence vers 130 000. Le printemps éternel de Herschel pourrait y correspondre dans les régions circumpolaires. En effet, la température moyenne de la Terre atteint alors 4° au dessus de la moyenne actuelle, les eaux montent d’environ 3 mètres alors qu’elles étaient plus basses de 100 mètres – ce qui n’est pas rien – au plus fort de la glaciation de Riss. Vers -80 000, le climat se refroidit de nouveau sévèrement et, semble-t-il, très rapidement, en quelques années. Au plus fort de cette phase qui correspond dans les Alpes à la première période de la glaciation de Würm, les températures sont inférieures de 6° à la moyenne actuelle et le niveau des mers baisse de 120 mètres. Nous avons alors deux humanités sur notre planète, Néandertal et l’homme moderne, notre ancêtre direct.
Où sont-ils ? Quels sont leurs territoires respectifs ? Pour Néandertal, nous savons désormais qu’il n’a pas côtoyé l’homme moderne en Afrique. Par contre, il l’a rencontré en Europe et en Asie. On pensait jusqu’à ces dernières années qu’il s’agissait de deux espèces distinctes, incapables d’avoir une descendance commune, mais les études génétiques ont montré qu’il y avait eu des croisements et que les peuples de toute l’Eurasie portent encore aujourd’hui des gènes légués par les néandertaliens, des gènes importants puisqu’ils conditionnent en partie notre système immunitaire, notre réponse aux maladies. Néandertal disparaît assez brutalement vers -28 000, sans que l’on sache très bien expliquer ce remplacement drastique. Certains chercheurs sont d’avis que Néandertal aurait pu correspondre à l’Abel biblique tandis que les hommes actuels, selon les lois de succession cycliques, s’identifiaient à Caïn et à sa descendance. Toutefois, dans la Bible, Abel s’assimile à une tradition pastorale de bergers nomades tandis que Caïn désigne les premiers agriculteurs et constructeurs de complexes urbains, ce que n’a pas manqué de développer René Guénon dans l’article qu’il leur a consacré ; il les qualifie respectivement de "contemplatifs" et de "guerriers". Cette distinction pasteurs/cultivateurs n’a pas de sens avant le néolithique, donc avant la sortie de l’âge glaciaire. Toutefois, les preuves génétiques d’un croisement entre Neandertal, déjà présent sur le continent eurasiatique et homme moderne pourrait avoir laissé des traces dans la mémoire collective – faut-il y voir l’origine du mythe de la chute des Anges attirés par la beauté des filles des hommes ? (...)
Certains ésotéristes pensent aujourd’hui que Néandertal désignait peut-être les anciens Hyperboréens. Cette thèse ne manque pas d’intérêt car il a traversé deux glaciations et sa morphologie semble avoir été particulièrement adaptée au froid. Il aurait donc pu se réfugier dans les zones péri-arctiques lors de l’intervalle chaud de l’interglaciaire Riss-Würm. L’idée a été reprise par le musicien de Black Metal Varg Vikernes du groupe Burzum qui rattache l’homme de Néandertal à une tradition ouranienne et polaire qu’il relie au mythe de Thulé et au royaume mythique de l’Amenti, patrie boréale originelle des premiers rois Égyptiens, descendants d’Osiris.

Auteur: Anonyme

Info: Dans "Les magiciens du nouveau siècle"

[ hypothèses scientifiques ] [ archéologie mystérieuse ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

question

Stephen Paddock, le papy du futur ?
La tuerie de Las Vegas préfigure peut-être une nouvelle criminalité, celle des vieux et des malades qui n’ont rien à perdre dans une société du tout juridique où la morale n’a plus d’effet.
Stephen Craig Paddock, le tueur de Las Vegas, était trop vieux, trop riche, trop indifférent à la religion, à la politique - et même aux armes à feu - pour que son geste soit intelligible selon les grilles d’interprétation ordinaires. Et loin d’être un fou ou un être isolé, il était "normal", il avait une famille et une fiancée. Il n’avait d’ailleurs pas le moindre antécédent judiciaire. Angoissée par cette absence de sens, la presse chercha dans ses gènes l’explication de son massacre : son père avait été un gangster. Mais cette hypothèse loufoque ne satisfit personne. On prêta très peu d’attention au fait qu’il choisit de tuer des jeunes gens qui écoutaient un concert de musique country, celle que l’affreux retraité adorait. Des jeunes, donc, auxquels il aurait pu s’identifier. Comme si, au crépuscule de sa vie, il regrettait tant de quitter ses joies et ses délices qu’il en devint hargneux et envieux au point de vouloir éliminer ceux qui avaient devant eux de longues décennies pour en profiter.
Peut-être avait-il choisi d’en finir avec sa propre existence, ne supportant pas la vieillesse ou une maladie grave. Mais avant, Paddock voulait assouvir sa haine envers les jeunes bienheureux.
Cette hypothèse serait terrifiante si on la prenait non pas comme l’explication de l’acte isolé d’un homme mais comme une nouvelle manière d’appréhender nos rapports aux normes. En effet, que se passerait-il si la seule contrainte que nous ressentions était celle de la loi, si nous nous détachions complètement de celle de la morale ? Celle-ci était la grande obsession de la romancière américaine Patricia Highsmith. Dans son roman Ripley s’amuse, elle avait imaginé les comportements d’un homme, au bord de la mort, à qui l’on proposait de tuer pour sauver sa famille de la misère.
Bien sûr, la plupart de ceux qui arrivent à la fin de leur vie ne commettent pas des actes aussi graves, même si ces derniers restent impunis, parce que des contraintes morales les en empêchent justement.
Mais notre société ne cesse de saper ce rapport que nous entretenons avec la morale.
Depuis quelques décennies, l’Etat cherche à régler l’ensemble de nos comportements, ceux qui atteignent les autres, mais aussi ceux qui ne portent atteinte qu’à nous-mêmes, et cela commence de plus en plus tôt dans la vie. Il est vrai que les instances dites intermédiaires, comme la famille, l’école ou le travail, sont si fragilisées qu’elles peinent à imposer des normes. Désormais, ces institutions semblent incapables de fonctionner sans que les comportements, y compris les plus anodins, soient réglés par le droit. Ce nouveau travers de nos sociétés n’a-t-il pas comme conséquence l’incroyable cynisme que l’on peut attribuer à Paddock ? Ce travers permet, en effet, d’éviter les comportements antisociaux les plus graves, seulement si l’on risque d’être pris et puni.
Dans un tel monde, le groupe le plus redouté serait celui constitué par les personnes très âgées ou très malades, celles qui n’ont plus rien à perdre, et non plus par les jeunes. Complètement indifférentes à leur réputation post-mortem, elles formeraient des bandes se livrant aux pires turpitudes et suscitant la peur autour d’elles. Leur cynisme sera tel qu’elles devront être l’objet d’une surveillance constante et envahissante.
Des dispositifs techniques de contrôle viendront combler l’absence de sentiment de culpabilité des citoyens, celui-ci n’étant plus intérieur mais extérieur. Sauf à faire marche arrière sur cette bêtise qu’est le tout juridique, sauf à redonner du pouvoir aux instances intermédiaires, lesquelles devront être repensées à leur tour.
Mais quels efforts ne serions-nous pas prêts à faire pour éviter que des tueries comme celles de Sin City (Frank Miller et Robert Rodriguez, 2005), la ville du vice et du péché, ne deviennent aussi banales que les divorces ou les vols ? Pour empêcher que des salauds comme Paddock ne deviennent demain le type le plus courant du papy.

Auteur: Iacub Marcela

Info: Le nouvel observateur, 6 octobre 2017, 18:56

[ normalisation ] [ désenchantement ] [ tueur de masse ] [ amoralité ]

 

Commentaires: 0

chainon manquant

La question de l'origine de l'arbre de vie, vieille de plusieurs décennies, pourrait enfin être résolue

Des scientifiques utilisent une nouvelle application de l'analyse chromosomique pour répondre enfin à une question qui a interpellé les biologistes pendant plus d'un siècle.

Après des décennies de débats, des scientifiques pensent avoir identifié l'ancêtre le plus récent de la sœur de tous les animaux grâce à l'utilisation novatrice d'une technique analytique. Cette découverte résout une question centrale concernant l'évolution de l'arbre de la vie animale dans son ensemble.

Tous les animaux descendent d'un seul ancêtre commun, un organisme multicellulaire qui a probablement vécu il y a plus de 600 millions d'années. Cet ancêtre a eu deux descendances : l'une qui a conduit à l'évolution de toute la vie animale, et l'autre qui est considérée comme la sœur de tous les animaux.

Dans leur quête pour identifier les animaux vivants les plus étroitement liés à ce groupe jumeau, les scientifiques ont réduit les possibilités à deux candidats : les éponges de mer et les méduses à peigne (cténophores). Cependant, les preuves concluantes de l'existence de l'un ou l'autre de ces candidats n'ont pas encore été apportées.

Une nouvelle étude, publiée le 17 mai dans la revue Nature, vient de résoudre ce débat de longue haleine grâce à l'utilisation novatrice de l'analyse chromosomique.

La solution est apparue alors que Darrin T. Schultz, auteur principal et actuel chercheur postdoctoral à l'université de Vienne, et une équipe multi-institutionnelle séquençaient les génomes (l'ensemble des informations génétiques) de la méduse et de ses proches parents afin de mieux comprendre leur évolution.

Plutôt que comparer des gènes individuels, l'équipe a examiné leur position sur les chromosomes d'une espèce à l'autre. Bien que l'ADN subisse des modifications au cours de l'évolution, les gènes ont tendance à rester sur le même chromosome. Dans de rares cas de fusion et de mélange, les gènes sont transférés d'un chromosome à l'autre dans le cadre d'un processus irréversible. Schultz compare ce processus au mélange d'un jeu de cartes. Si vous avez deux jeux de cartes et que vous les mélangez "il est impossible de les démélanger comme elles étaient avant, la probabilité d'une telle opération est presque impossible", a déclaré Schultz à Live Science.

En d'autres termes, une fois qu'un gène s'est déplacé d'un chromosome à l'autre, il n'y a pratiquement aucune chance qu'il réapparaisse dans sa position d'origine à un stade ultérieur de l'évolution. En examinant le mouvement à grande échelle de groupes de gènes à travers les groupes d'animaux, Schultz et son équipe ont pu obtenir des informations importantes sur l'arbre généalogique de ces animaux.

L'équipe a trouvé 14 groupes de gènes qui apparaissaient sur des chromosomes distincts chez les méduses à peigne et leurs parents unicellulaires "non animaux". Il est intéressant de noter que chez les éponges et tous les autres animaux, ces gènes ont été réarrangés en sept groupes.

Étant donné que l'ADN de la méduse à peigne conserve les groupes de gènes dans leur position d'origine (avant leur réarrangement en sept groupes), cela indique qu'elle est la descendantes du groupe frère qui s'est détaché de l'arbre généalogique animal, avant que le mélange ne se produise.

En outre, les réarrangements de l'emplacement des gènes qui étaient communs aux éponges et à tous les autres animaux suggèrent un ancêtre commun dont ces réarrangements sont l'héritage. Ces résultats résolvent donc la question controversée quant à l'ensemble de l'arbre de vie des animaux et son origine.

Depuis que les ancêtres des méduses à peigne et des éponges se sont détachés de l'arbre généalogique, leurs descendants modernes n'ont cessé d'évoluer, de sorte que nous ne pouvons pas utiliser ces informations pour indiquer à quoi ressemblaient exactement les premiers animaux. Toutefois, les scientifiques estiment qu'il sera très utile d'étudier ces animaux modernes à la lumière de ces nouvelles informations sur leur lignée. "Si nous comprenons comment tous les animaux sont liés les uns aux autres, cela nous aide à comprendre comment les animaux ont évolué et ce qui fait d'eux ce qu'ils sont", a déclaré M. Schultz.

Auteur: Internet

Info: https://www.livescience.com/, 22 mai 2023, article de Sarah Moore

[ animal-végétal ] [ évolution du vivant ] [ septénaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

complexité

Epigénétique. Sous ce nom, se cache un tremblement de terre qui fait vaciller la statue la plus emblématique du monde du vivant : le génome. Depuis un demi-siècle, l'ADN était considéré comme un coffre-fort protégeant les plans de l'être humain. Des instructions portées par un collier de 3 milliards de bases lues par d'infatigables nanomachines fabriquant nuit et jour des protéines. C'était trop simple ! "Il y a une deuxième couche d'informations qui recouvre le génome. C'est l'épigénome", résume Marcel Méchali de l'Institut de génétique humaine de Montpellier. En fait, le message génétique n'est pas gravé pour toujours dans les chromosomes. "Des protéines et des molécules viennent se greffer sur l'ADN de base et modifient sa lecture. Cela dépend de l'environnement, de l'air que vous respirez et peut-être même des émotions que vous ressentez à un moment donné. De plus, ces informations sont transmissibles d'une génération à l'autre", poursuit Marcel Méchali. Le poids des régulateurs Tout comme le cerveau, qui n'est pas tout à fait le même après la lecture d'un livre ou à la suite d'une conversation animée, l'ADN est une structure plastique. "Des jumeaux qui partagent le même génome ne réagissent pas de la même façon aux agressions extérieures ou aux médicaments", indique Marcel Méchali. En résumé, l'expression d'un gène varie au fil du temps, d'un individu à l'autre et même d'une cellule à sa voisine. Les experts résument la nouvelle donne d'une phrase : "Ce ne sont pas les gènes qui comptent, mais les facteurs qui assurent leur régulation." Ces régulateurs qui contestent le pouvoir des gènes sont innombrables et souvent inattendus. Des molécules, des protéines, des micro-ARN et même des "pseudo-gènes". "La lecture du génome s'effectue dans des usines à transcription. Elles sont très localisées, mais très riches au plan chimique", ajoute Peter Fraser du Babraham Institute de Cambridge en Angleterre. Guerre des sexes Ce concept remet en cause de très nombreux dogmes, à commencer par celui de la non-transmission des caractères acquis. Certains généticiens pensent ainsi qu'une partie de nos maladies, voire de nos comportements est la conséquence du mode de vie de nos grands-parents. Récemment, le chercheur britannique Marcus Pembrey a démontré, en réanalysant d'anciennes données épidémiologiques, que les préférences alimentaires de préadolescents suédois du début du siècle dernier ont influencé la santé de leurs descendants sur au moins deux générations. Ce chercheur très atypique est connu pour une formule qui résume bien la situation : "Il y a des fantômes qui rôdent dans nos gènes." Darwin et Lamarck vont se retourner dans leur tombe en entendant ces discours, qui brouillent les frontières entre l'inné et l'acquis. Dans ce contexte, les chercheurs s'intéressent aux premiers instants qui suivent la fécondation de l'ovocyte par un spermatozoïde. Une question taraude la communauté scientifique : comment l'ovule décide-t-il d'être un XX (femme) ou un XY (homme) ? En d'autres termes, quand démarre la guerre des sexes ? A l'Institut Curie à Paris, Edith Heard, spécialiste de la biologie du développement, s'intéresse aux mécanismes d'inactivation du chromosome X chez les mammifères. Elle répond simplement à cette question : "Dès les premiers jours." Là encore, ce sont des facteurs aléatoires qui lancent les dés de la sexualité. En fait, ce sont des collisions entre des molécules dans les toutes premières cellules qui font de l'homme un Mozart ou une Marilyn Monroe."C'est la loi du hasard", résume Edith Heard. Minuscules mais puissants Reste enfin la question qui tue. Pourquoi l'homme et le chimpanzé, qui partagent plus de 99 % de leurs gènes, sont-ils si différents l'un de l'autre ? Certains chercheurs, comme l'Américaine Katherine Pollard, se sont lancés dans la quête du "gène de l'humanité" pour l'instant introuvable. D'autres voient dans ces différences la confirmation que ce ne sont pas les gènes qui comptent, mais toutes leurs variations. En réalité, la cellule est un indescriptible chaos. Elle contient, entre autres, des centaines de minuscules fragments d'ARN d'une puissance extravagante. Ils sont capables de bloquer un gène 10.000 fois plus gros. Comme si une mouche posée sur le pare-brise du TGV Paris-Marseille interdisait son départ. Une chose est sûre, ce nouvel horizon de la biologie va générer des océans de données qu'il faudra stocker, analyser et interpréter. Un défi presque surhumain, qui conduira peut-être à la découverte du gène de l'obstination.

Auteur: Perez Alain

Info: les échos, 27,09,2010, La nouvelle révolution génétique

[ sciences ] [ hyper-complexité ] [ adaptation ]

 

Commentaires: 0

nématologie

Ce ver parasite " vole " discrètement les gènes de son hôte 

En explorant ce processus connu sous le nom de " transfert horizontal de gènes ", les scientifiques pourraient en apprendre davantage sur la façon dont les bactéries deviennent résistantes aux médicaments.

Des scientifiques du Centre RIKEN de recherche sur la dynamique des biosystèmes au Japon ont récemment découvert que le parasite connu sous le nom de ver de crin de cheval " vole " les gènes de son hôte afin de le contrôler.

Il s’agit d’un processus connu sous le nom de " transfert horizontal de gènes ", c’est-à-dire lorsque deux génomes partagent des informations génétiques de manière non sexuelle.

L’étude de ce processus pourrait aider les scientifiques à comprendre comment les bactéries développent une résistance aux antibiotiques grâce à un processus similaire.

On nous a tous rappelé l'horreur existentielle des parasites cérébraux grâce aux " fourmis zombie "  , mais la manière exacte dont les parasites du monde réel réalisent ce spectacle de marionnettes biologiques reste un peu mystérieuse. L'un de ces parasites est le ver crin de cheval (​​ Chordodes ) , qui dépend des sauterelles, des grillons, des coléoptères et même des mantes pour sa survie et sa reproduction. Né dans l'eau, ce ver utilise des éphémères pour atteindre la terre ferme, où il attend ensuite d'être consommé par sa proie et se met au travail.

Une fois à l’intérieur d’un hôte, le ver commence à se développer et à manipuler l’insecte. Une fois qu'il est complètement mature, il incite cet hôte à sauter dans l'eau, complétant ainsi son cycle de vie. Le ver de crin de cheval parvient à cette capacité de contrôle mental en utilisant des molécules qui imitent le système nerveux central de l'hôte, mais la manière dont il crée ces molécules reste un mystère depuis un certain temps.

Aujourd'hui, une nouvelle étude du Centre RIKEN pour la recherche sur la dynamique des biosystèmes au Japon a révélé que les vers en crin de cheval utilisent le " transfert horizontal de gènes " – en volant effectivement les gènes d'un insecte – afin de contrôler leurs hôtes. Les résultats ont été récemment publiés dans la revue Current Biology.

Pour trouver cette réponse étrange – et plutôt grossière –, une équipe dirigée par Tappei Mishina a analysé l’expression génétique d’un ver de crin de cheval dans tout le corps avant, pendant et après avoir infecté une mante. L'étude montre que 3 000 gènes étaient exprimés davantage chez le ver lorsqu'il manipulait la mante (et 1 500 autres étaient exprimés moins), alors que l'expression des gènes de la mante restait inchangée.

Une fois qu'ils ont compris que le ver à crins produisait ses propres protéines au cours du processus de manipulation, les scientifiques se sont tournés vers une base de données pour discerner l'origine de ces protéines et ont été confrontés à un phénomène surprenant.

"Il est frappant de constater que de nombreux gènes de vers à crins susceptibles de jouer un rôle important dans la manipulation de leurs hôtes sont très similaires à des gènes de mante, ce qui suggère qu'ils ont été obtenus par transfert horizontal de gènes", a déclaré Mishina dans un communiqué de presse.

Dit simplement le transfert horizontal de gènes est le partage d’informations génétiques de manière non sexuelle entre deux génomes – dans ce cas, entre les génomes d’une mante et d’un ver de crin de cheval. Ce n’est pas un phénomène inconnu des scientifiques, car c’est la principale façon dont les bactéries développent une résistance aux antibiotiques .

Dans le cas du ver crin de cheval, quelque 1 400 gènes correspondaient à ceux des mantes, mais ils étaient complètement absents chez d'autres spécimens de Chordodes qui ne dépendent pas des mantes pour se reproduire. L’étude émet l’hypothèse que ces " gènes de mimétisme " ont probablement été acquis au cours de multiples événements de transfert et que les gènes affectant la neuromodulation, l’attraction vers la lumière et les rythmes circadiens étaient particulièrement utiles pour contrôler l’hôte.

En étudiant ce couple parasitaire, Mishina et d’autres scientifiques pourraient en apprendre davantage sur le transfert horizontal de gènes multicellulaires, le fonctionnement interne de cette partie non sexuelle de l’évolution et les mécanismes qui rendent les bactéries résistantes à nos médicaments les plus avancés.

Il est temps pour le parasite de donner un peu en retour

Auteur: Internet

Info: https://www.popularmechanics.com/ Darren Orf, 18 oct 2023

[ copie latérale ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

mutation héritée

Les graines héritent des souvenirs de leur mère Des chercheurs de l'UNIGE démontrent que le contrôle maternel et environnemental de la dormance des graines s'effectue via des mécanismes épigénétiques inédits. Les graines restent dans un état de dormance - un blocage temporaire de leur croissance - tant que les conditions environnementales ne sont pas idéales pour germer. La profondeur de ce sommeil, qui est influencée par différents facteurs, est héritée de leur mère, comme l'avaient montré des chercheurs de l'Université de Genève (UNIGE). Ils révèlent aujourd'hui dans la revue eLife comment cette empreinte maternelle est transmise grâce à de petits fragments d'ARN dits 'interférents', qui inactivent certains gènes. Les biologistes dévoilent également qu'un mécanisme similaire permet de transmettre une autre empreinte, celle des températures présentes au cours du développement de la graine. Plus cette température était basse, plus le niveau de dormance de la graine sera élevé. Ce mécanisme permet à la graine d'optimiser le moment de sa germination. L'information est ensuite effacée dans l'embryon germé, pour que la génération suivante puisse stocker de nouvelles données sur son environnement. La dormance est mise en oeuvre pendant le développement des graines dans la plante mère. Cette propriété permet aux graines de germer pendant la bonne saison, d'éviter que tous les rejetons d'une plante se développent au même endroit et entrent en compétition pour des ressources limitées, et favorise la dispersion des plantes. Les graines perdent également leur dormance à des échéances variables. "Des sous-espèces d'une même plante peuvent avoir différents niveaux de dormance selon les latitudes sous lesquelles elles sont produites, et nous voulions comprendre pourquoi", explique Luis Lopez-Molina, professeur au Département de botanique et biologie végétale de la Faculté des sciences de l'UNIGE. Le gène paternel est réduit au silence Comme tous les organismes ayant une reproduction sexuée, la graine reçoit deux versions de chaque gène, un allèle maternel et un allèle paternel, qui peuvent avoir des niveaux d'expressions différents. Les biologistes de l'UNIGE avaient montré en 2016 que les niveaux de dormance d'Arabidopsis thaliana (l'Arabette des Dames), un organisme-modèle utilisé en laboratoire, sont hérités de la mère. En effet, chez la graine, le niveau d'expression d'un gène régulateur de dormance appelé allantoinase (ALN) est le même que celui de l'allèle maternel. Ceci implique que c'est l'allèle maternel d'ALN qui est principalement exprimé, au détriment de l'allèle paternel. Dans l'étude actuelle, les chercheurs montrent que cette empreinte maternelle est transmise par un mécanisme épigénétique, qui influence l'expression de certains gènes sans en modifier la séquence. L'allèle paternel d'ALN est 'réduit au silence' par des modifications biochimiques appelées méthylations, qui sont effectuées dans la région promotrice du gène afin de l'inactiver. "Ces méthylations sont elles-mêmes le résultat d'un processus dans lequel sont impliqués différents complexes d'enzymes et de facteurs, ainsi que de petits fragments d'ARN dits 'interférents'. Il s'agit d'un exemple inédit d'empreinte génomique, car elle se fait en l'absence de l'enzyme habituellement responsable de la méthylation", détaille Mayumi Iwasaki, chercheuse au sein du groupe genevois et première auteure de l'article. L'empreinte du froid passé empêche l'éveil de la graine Les conditions environnementales présentes pendant la formation de la graine laissent aussi leur empreinte, car son niveau de dormance augmente avec une baisse des températures. "Nous avons découvert que, dans ce cas, les deux allèles du gène ALN sont fortement réprimés dans la graine. Ceci est dû à un mécanisme épigénétique semblable, mais dont les acteurs ne sont pas tous identiques à ceux qui opèrent pour réduire l'allèle paternel au silence", expose Luis Lopez-Molina. Cette empreinte du froid permet à la graine de conserver des informations sur les températures passées pour les inclure dans le choix du moment optimal de germination. Après la germination, le gène ALN est à nouveau réactivé dans l'embryon. La mémoire du froid sera ainsi effacée, ce qui permet de remettre les compteurs à zéro pour la génération suivante. "Etudier comment les facteurs maternels et environnementaux provoquent l'éveil des graines dormantes est d'une importance cruciale pour l'agriculture, notamment pour prévenir une germination précoce dans un environnement soumis aux changements climatiques", conclut Mayumi Iwasaki. L'enjeu au niveau écologique est, lui aussi, majeur, car l'augmentation des températures pourrait diminuer la dormance de la banque de semences et modifier ainsi la répartition des espèces végétales sous une latitude donnée. Ceci entraînerait de multiples conséquences, directe et indirectes, pour les espèces animales et végétales indigènes. Internet,

Auteur: Internet

Info: https://www.techno-science.net. Publié par Adrien le 27/03/2019, source: Université de Genève

[ biophysique ] [ mitochondrial ? ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Notre intelligence s'exprime différemment de celle des générations précédentes.
Des tests d'intelligence qui donnaient des résultats moyens de 100 points dans les années 60 donnent aujourd'hui des résultats de 120. C'est ce que les spécialistes de l'intelligence appellent l'effet Flynn, du nom du politologue néo-zélandais James Richard Flynn, qui a remarqué, à la fin des années 70, une progression de trois à cinq points du quotient intellectuel (QI) par décennie. Le phénomène se serait poursuivi depuis, selon plusieurs autres études.
Les nouvelles générations ne sont pas plus intelligentes que les précédentes, Serge Larivée, professeur à l'École de psychoéducation de l'Université de Montréal nous dit : "Si c'était le cas, souligne-t-il, cela voudrait dire que la génération de nos grands-parents était constituée en grande partie de déficients intellectuels, ce qui est insensé aux yeux de l'histoire."
Dans un texte qui vient de paraitre dans la revue L'année psychologique, le professeur analyse avec ses collègues Carole Sénéchal (Université d'Ottawa) et Pierre Audy (UdeM) les paradoxes de l'effet Flynn.
Les différents chercheurs qui se sont penchés sur l'effet Flynn en ont attribué la cause à des facteurs culturels plutôt qu'à des changements d'ordre génétique. Parmi ces facteurs, mentionnons une scolarisation plus précoce et plus étendue, une plus grande familiarité avec les tests d'intelligence, l'urbanisation et l'industrialisation, les changements dans les attitudes parentales, l'amélioration de la santé grâce à de meilleurs soins et à une alimentation plus équilibrée ainsi que la prolifération de médias visuels de plus en plus complexes.
Mais ce n'est pas dans tous les types de tests d'intelligence que s'observe l'effet Flynn. L'effet est plus fort dans les habiletés visuospatiales (mesurées par les matrices de Raven) et dans les compétences logiques (mesurées par les échelles de Weschler), alors qu'il est plutôt faible dans les performances verbales et mathématiques.
"Nous serions plus doués que nos ancêtres quant au raisonnement abstrait et aux aptitudes visuospatiales, sans les dépasser pour autant dans d'autres aspects de l'intelligence", écrivent les auteurs dans une version vulgarisée de leur texte paru dans la revue Sciences humaines d'octobre dernier. Ce serait donc ces compétences visuelles et de logique qui seraient davantage sollicitées et développées par notre environnement culturel d'une complexité croissante. Autrement dit, notre intelligence s'exprime différemment sans que nous soyons nécessairement plus intelligents que les générations précédentes. Nos arrière-grands-parents avaient une intelligence plus pratique, nous avons une intelligence plus abstraite.
Mais cette explication qui attribue le développement du QI à des éléments culturels ne contredit-elle pas les études, notamment réalisées auprès de jumeaux identiques, qui imputent une bonne part du QI à la génétique?
La réponse à ce paradoxe est fort simple: les gènes ne produisent leur effet qu'à la faveur d'un environnement propice à leur actualisation. Ainsi, une personne qui dispose d'un avantage génétique relativement à une habileté particulière va rechercher un environnement stimulant où son potentiel génétique va pouvoir s'exprimer. Selon les chercheurs, l'effet multiplicateur qui s'ensuit est un facteur probable de l'effet Flynn.
L'effet Flynn n'est pas ailleurs pas illimité. "Deux parents qui ont des quotients intellectuels élevés n'engendreront pas un enfant attardé, mais la probabilité qu'ils aient un enfant doté d'un QI aussi élevé qu'eux est plutôt faible", affirme Larivée. Il y aurait ainsi un retour à la normale.
La théorie de l'effet combiné des gènes et de l'environnement nous dit aussi qu'un plateau est atteint lorsque l'environnement a livré tout son effet stimulant. On assiste d'ailleurs à une stabilisation du QI dans certains pays développés où les scores sont parmi les plus hauts. Des études montrent un ralentissement de la tendance, voire une stagnation, au Danemark et en Suède, alors que d'autres concluent même à un léger déclin en Angleterre et dans d'autres pays industrialisés.
Dans les pays où le QI moyen continue de croitre, c'est surtout au sein des classes les plus défavorisées qu'on observe une remontée. Serge Larivée y voit l'effet d'une éducation de qualité maintenant accessible à tous.
Si l'effet Flynn a atteint ses limites dans les pays développés, il commence à se faire sentir dans les pays en voie de développement, notamment dans certains pays africains comme le Kenya et le Soudan.
Pour le professeur, il s'agit de bonnes nouvelles. "Cela signifie que l'écart entre les plus doués et les moins doués s'amincit, de même qu'il se réduit entre les pays riches et les pays pauvres. Cela signifie aussi qu'un environnement stimulant peut bénéficier aux plus démunis.

Auteur: Baril Daniel

Info: fév. 2013

[ anthropologie ] [ société ] [ évolution ] [ descendances ]

 

Commentaires: 0