Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 5
Temps de recherche: 0.035s

évolution

Ainsi, les chevaux ont une colonne vertébrale très rigide, ce qui a pour conséquence que les gens peuvent les monter. Cependant, nous ne dirons pas que la fonction de la colonne vertébrale d'un cheval est de permettre aux gens de les monter, parce que nous ne pensons pas que la colonne vertébrale de cet animal a évolué comme elle l'a fait afin de permettre aux humains, dans le futur, à monter à cheval.

Auteur: Maynard Smith John

Info: In G.A. Dover and R.B. Flavell (eds.) Genome Evolution, Special Volume No. 20. Overview — Unsolved Evolutionary Problems (p. 378)

[ hasard ] [ indéterminisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

décentralisation

La vérité, c'est que personne n'est responsable. C'est la chose la plus difficile à laquelle les êtres humains peuvent s'habituer, mais le monde est plein de systèmes complexes, intelligemment conçus et interconnectés qui n'ont pas de centres de contrôle. L'économie est un système du même genre. L'illusion que les économies fonctionnent mieux si quelqu'un se charge d'elles - et décide de ce qui est fabriqué, où et par qui - fait un tort dévastateur à la richesse et à la santé des gens partout dans le monde, non seulement dans l'ex-Union soviétique mais aussi à l'Ouest.... C'est la même chose avec le corps. Vous n'êtes pas un cerveau qui fait fonctionner un corps en activant les hormones. Vous n'êtes pas non plus un corps qui fait fonctionner un génome en activant les récepteurs hormonaux. Vous n'êtes pas non plus un génome qui fait fonctionner un cerveau en activant des gènes qui activent les hormones. Vous êtes tout cela à la fois.

Auteur: Matt Ridley

Info: Genome: The Autobiography of a Species in 23 Chapters. Chapter 10 (p. 151) HarperCollins Publishers. New York, New York, USA. 2000

[ biologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

théorie endosymbiotique

Des gènes "étrangers", issus de micro-organismes ayant cohabité avec nos lointains ancêtres sont présents dans notre ADN, révèle une étude publiée le 13 mars 2015 dans la revue Genome Biology. En d’autres termes, nos gènes ne sont pas seulement hérités de nos ancêtres : ils proviennent aussi d’organismes vivants très différents de notre espèce, qui nous ont été transmis au cours de notre évolution. Un résultat d’autant plus surprenant que ces travaux révèlent que ces gènes issus de ces micro-organismes, loin de jouer un rôle anecdotique, ont des fonctions cruciales dans le fonctionnement de notre organisme. En effet, ils sont notamment impliqués dans le métabolisme des lipides […] et dans les processus de défense immunitaire. Quels sont ces micro-organismes qui nous ont transmis ces gènes ? Il s’agit essentiellement de bactéries et de protistes (des organismes généralement unicellulaires comme les micro-algues et les protozoaires). Comment ces gènes ont-ils bien pu pénétrer dans notre génome ? Par un processus appelé "transfert horizontal de gènes" (HGT pour horizontal gene transfer en anglais). Un processus déjà connu pour être à l’œuvre chez certains animaux simples, comme le ver nématode dont le génome possède des gènes issus de plantes et de micro-organismes. […] Or, ces nouveaux travaux montrent que, loin de concerner des animaux très simples comme le ver nématode, le transfert horizontal de gènes concerne aussi en réalité très probablement… la plupart des êtres vivants complexes, dont les primates et l’homme.

Auteur: Anonyme

Info: Dans "Les magiciens du nouveau siècle", page 153

[ mutations génétiques ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

biogénétique

Une partie de l' " ADN indésirable " sert un objectif 

Si on étire tout l’ADN d’une seule cellule humaine, il mesurerait plus de 5 mètres de long. Mais seul un fragment de cet ADN produit des protéines, la machinerie biologique nécessaire à la vie. En 2003, le Human Genome Project a montré que seulement 1 à 2 % de notre ADN – environ 4 cm sur ces 5 mètres – code des gènes pour les protéines. Les séquences non codantes qui constituent les 98 % restants sont souvent appelées " ADN indésirable (junk dna) ", un terme inventé en 1972 par le généticien Susumu Ohno, qui a suggéré que, tout comme les archives fossiles regorgent d'espèces disparues, nos génomes sont remplis d'espèces disparues. gènes éteints ou mal copiés endommagés par des mutations.

Mais même si 98 % du génome est non codant, il ne s’agit pas précisément d’un poids mort. En 2012, un consortium de centaines de scientifiques a rapporté dans l'Encyclopédie des éléments de l'ADN qu'au moins 80 % du génome est " actif " au sens où une partie de l'ADN est traduite en ARN*, même si cet ARN est pas ensuite traduit en protéines. Il existe peu de preuves que la plupart de cet ARN provenant de gènes brisés ait un effet.

Cependant, certaines séquences non codantes, qui représentent environ 8 à 15 % de notre ADN, ne sont pas du tout indésirables. Elles remplissent des fonctions importantes, en régulant les gènes actifs des cellules et la quantité de protéines qu’ils produisent. Les chercheurs découvrent encore de nouvelles façons dont l'ADN non codant fait cela, mais il est clair que la biologie humaine est massivement influencée par les régions non codantes, qui ne codent pas directement pour les protéines mais façonnent quand même leur production. Les mutations dans ces régions, par exemple, ont été associées à des maladies ou à des troubles aussi variés que l'autisme, les tremblements et le dysfonctionnement hépatique.

De plus, en comparant les génomes humains à ceux des chimpanzés et d’autres animaux, les scientifiques ont appris que les régions non codantes peuvent jouer un rôle important dans ce qui nous rend uniques : il est possible que la régulation des gènes par l’ADN non codant différencie plus les espèces que les gènes et les protéines elles-mêmes.

Les chercheurs découvrent également que de nouvelles mutations peuvent parfois conférer de nouvelles capacités à des séquences non codantes, ce qui en fait une sorte de ressource pour une évolution future. En conséquence, ce qui mérite l’étiquette " ADN indésirable " reste à discuter. Les scientifiques ont clairement commencé à nettoyer ce tiroir à déchets depuis 1972 – mais ce qui reste dedans est encore à débattre.

Quoi de neuf et remarquable

Les scientifiques ont travaillé pour comprendre un type d’ADN non codant appelé " transposons** " ou " gènes sauteurs ". Ces bribes peuvent parcourir le génome, créant des copies d’elle-mêmes, qui sont parfois insérées dans des séquences d’ADN. Les transposons se révèlent de plus en plus essentiels au réglage de l'expression des gènes ou à la détermination des gènes codants activés pour être transcrits en protéines. C'est en partie pour cette raison qu'ils s'avèrent importants pour le développement et la survie d'un organisme . Lorsque les chercheurs ont conçu des souris dépourvues de transposons, la moitié des petits des animaux sont morts avant la naissance. Les transposons ont laissé des traces sur l'évolution de la vie. Quanta a rapporté qu'ils peuvent passer d'une espèce à l'autre - comme du hareng à l'éperlan et des serpents aux grenouilles - offrant parfois même certains avantages, comme protéger les poissons du gel dans les eaux glacées.

Les généticiens étudient également les " courts tandem  répétés ", dans lesquels une séquence d’ADN longue d’une à six paires de bases seulement est fortement répétée, parfois des dizaines de fois de suite. Les scientifiques soupçonnaient qu'elles aidaient à réguler les gènes, car ces séquences, qui représentent environ 5 % du génome humain, ont été associées à des maladies telles que la maladie de Huntington et le cancer. Dans une étude couverte par Quanta en février, les chercheurs ont découvert une manière possible par laquelle de courtes répétitions en tandem pourraient réguler les gènes : en aidant à réunir des facteurs de transcription, qui aident ensuite à activer la machinerie de production de protéines.

Ensuite, il y a les " pseudogènes*** ", restes de gènes fonctionnels qui ont été dupliqués puis dégradés par des mutations ultérieures. Cependant, comme Quanta l’a rapporté en 2021, les scientifiques ont découvert que parfois les pseudogènes ne demeurent pas pseudo ou indésirables ; au lieu de cela, ils développent de nouvelles fonctions et deviennent des régulateurs génétiques – régulant même parfois le gène même à partir duquel ils ont été copiés.

Auteur: Internet

Info: Yasemin Sapakoglu. *Aussi sur base 4, l'ARN ou acide nucléique, sert d'intermédiaire dans la circulation de l'information génétique de l'ADN aux protéines. **les transposons sont à la fois régulés par l'épigénétique, mais peuvent aussi induire des changements épigénétiques héritables, faisant le lien entre génome et épigénome dans l'évolution, 333vestiges moléculaires de gènes ancestraux devenus non fonctionnels, mais qui semblent parfois avoir acquis des rôles régulateurs inattendus au cours de l'évolution

[ stratégies géniques ] [ codifications du vivant ] [ mémoire diachronique active ] [ encodages chronologiques ]

 

Commentaires: 0

Ajouté à la BD par miguel

médecine

L'intelligence artificielle peut prédire l'activité sur et hors cible des outils CRISPR qui ciblent l'ARN au lieu de l'ADN, selon une nouvelle recherche publiée dans Nature Biotechnology.

L'étude menée par des chercheurs de l'université de New York, de l'université Columbia et du New York Genome Center associe un modèle d'apprentissage profond à des écrans CRISPR pour contrôler l'expression des gènes humains de différentes manières, comme si l'on appuyait sur un interrupteur pour les éteindre complètement ou si l'on utilisait un bouton d'atténuation pour réduire partiellement leur activité. Ces contrôles précis des gènes pourraient être utilisés pour développer de nouvelles thérapies basées sur CRISPR.

CRISPR est une technologie d'édition de gènes qui a de nombreuses applications en biomédecine et au-delà, du traitement de la drépanocytose à la fabrication de feuilles de moutarde plus savoureuses. Elle fonctionne souvent en ciblant l'ADN à l'aide d'une enzyme appelée Cas9. Ces dernières années, les scientifiques ont découvert un autre type de CRISPR qui cible l'ARN à l'aide d'une enzyme appelée Cas13.

Les CRISPR ciblant l'ARN peuvent être utilisés dans un large éventail d'applications, notamment l'édition de l'ARN, l'élimination de l'ARN pour bloquer l'expression d'un gène particulier et le criblage à haut débit pour déterminer les candidats médicaments prometteurs. Des chercheurs de l'Université de New York et du New York Genome Center ont créé une plateforme de criblage CRISPR ciblant l'ARN et utilisant Cas13 pour mieux comprendre la régulation de l'ARN et identifier la fonction des ARN non codants. L'ARN étant le principal matériel génétique des virus, notamment du SRAS-CoV-2 et de la grippe, les CRISPR ciblant l'ARN sont également prometteurs pour le développement de nouvelles méthodes de prévention ou de traitement des infections virales. Par ailleurs, dans les cellules humaines, lorsqu'un gène est exprimé, l'une des premières étapes est la création d'ARN à partir de l'ADN du génome.

L'un des principaux objectifs de l'étude est de maximiser l'activité des CRISPR ciblant l'ARN sur l'ARN cible prévu et de minimiser l'activité sur d'autres ARN qui pourraient avoir des effets secondaires préjudiciables pour la cellule. L'activité hors cible comprend à la fois les mésappariements entre l'ARN guide et l'ARN cible, ainsi que les mutations d'insertion et de délétion. 

Les études antérieures sur les CRISPR ciblant l'ARN se sont concentrées uniquement sur l'activité sur la cible et les mésappariements ; la prédiction de l'activité hors cible, en particulier les mutations d'insertion et de délétion, n'a pas fait l'objet d'études approfondies. Dans les populations humaines, environ une mutation sur cinq est une insertion ou une délétion ; il s'agit donc d'un type important de cibles potentielles à prendre en compte dans la conception des CRISPR.

"À l'instar des CRISPR ciblant l'ADN tels que Cas9, nous prévoyons que les CRISPR ciblant l'ARN tels que Cas13 auront un impact considérable sur la biologie moléculaire et les applications biomédicales dans les années à venir", a déclaré Neville Sanjana, professeur agrégé de biologie à l'université de New York, professeur agrégé de neurosciences et de physiologie à l'école de médecine Grossman de l'université de New York, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude. "La prédiction précise des guides et l'identification hors cible seront d'une grande valeur pour ce nouveau domaine de développement et pour les thérapies.

Dans leur étude publiée dans Nature Biotechnology, Sanjana et ses collègues ont effectué une série de criblages CRISPR de ciblage de l'ARN dans des cellules humaines. Ils ont mesuré l'activité de 200 000 ARN guides ciblant des gènes essentiels dans les cellules humaines, y compris les ARN guides "parfaitement adaptés" et les désadaptations, insertions et suppressions hors cible.

Le laboratoire de Sanjana s'est associé à celui de David Knowles, expert en apprentissage automatique, pour concevoir un modèle d'apprentissage profond baptisé TIGER (Targeted Inhibition of Gene Expression via guide RNA design) qui a été entraîné sur les données des cribles CRISPR. En comparant les prédictions générées par le modèle d'apprentissage profond et les tests en laboratoire sur des cellules humaines, TIGER a été capable de prédire l'activité sur cible et hors cible, surpassant les modèles précédents développés pour la conception de guides sur cible Cas13 et fournissant le premier outil de prédiction de l'activité hors cible des CRISPR ciblant l'ARN.

"L'apprentissage automatique et l'apprentissage profond montrent leur force en génomique parce qu'ils peuvent tirer parti des énormes ensembles de données qui peuvent maintenant être générés par les expériences modernes à haut débit. Il est important de noter que nous avons également pu utiliser l'"apprentissage automatique interprétable" pour comprendre pourquoi le modèle prédit qu'un guide spécifique fonctionnera bien", a déclaré M. Knowles, professeur adjoint d'informatique et de biologie des systèmes à la School of Engineering and Applied Science de l'université Columbia, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude.

"Nos recherches antérieures ont montré comment concevoir des guides Cas13 capables d'éliminer un ARN particulier. Avec TIGER, nous pouvons maintenant concevoir des guides Cas13 qui trouvent un équilibre entre l'élimination sur la cible et l'évitement de l'activité hors cible", a déclaré Hans-Hermann (Harm) Wessels, coauteur de l'étude et scientifique principal au New York Genome Center, qui était auparavant chercheur postdoctoral dans le laboratoire de Sanjana.

 Les chercheurs ont également démontré que les prédictions hors cible de TIGER peuvent être utilisées pour moduler précisément le dosage des gènes - la quantité d'un gène particulier qui est exprimée - en permettant l'inhibition partielle de l'expression des gènes dans les cellules avec des guides de mésappariement. Cela peut être utile pour les maladies dans lesquelles il y a trop de copies d'un gène, comme le syndrome de Down, certaines formes de schizophrénie, la maladie de Charcot-Marie-Tooth (une maladie nerveuse héréditaire), ou dans les cancers où l'expression aberrante d'un gène peut conduire à une croissance incontrôlée de la tumeur.

Notre modèle d'apprentissage profond peut nous indiquer non seulement comment concevoir un ARN guide qui supprime complètement un transcrit, mais aussi comment le "régler", par exemple en lui faisant produire seulement 70 % du transcrit d'un gène spécifique", a déclaré Andrew Stirn, doctorant à Columbia Engineering et au New York Genome Center, et coauteur de l'étude.

En associant l'intelligence artificielle à un crible CRISPR ciblant l'ARN, les chercheurs pensent que les prédictions de TIGER permettront d'éviter une activité CRISPR hors cible indésirable et de stimuler le développement d'une nouvelle génération de thérapies ciblant l'ARN.

"À mesure que nous recueillons des ensembles de données plus importants à partir des cribles CRISPR, les possibilités d'appliquer des modèles d'apprentissage automatique sophistiqués sont de plus en plus rapides. Nous avons la chance d'avoir le laboratoire de David à côté du nôtre pour faciliter cette merveilleuse collaboration interdisciplinaire. Grâce à TIGER, nous pouvons prédire les cibles non ciblées et moduler avec précision le dosage des gènes, ce qui ouvre la voie à de nouvelles applications passionnantes pour les CRISPR ciblant l'ARN dans le domaine de la biomédecine", a déclaré Sanjana.

Cette dernière étude fait progresser la large applicabilité des CRISPR ciblant l'ARN pour la génétique humaine et la découverte de médicaments, en s'appuyant sur les travaux antérieurs de l'équipe de l'Université de New York pour développer des règles de conception de l'ARN guide, cibler les ARN dans divers organismes, y compris des virus comme le SRAS-CoV-2, concevoir des protéines et des ARN thérapeutiques, et exploiter la biologie de la cellule unique pour révéler des combinaisons synergiques de médicaments contre la leucémie.

Auteur: Internet

Info: L'IA combinée à CRISPR contrôle précisément l'expression des gènes par l'Université de New York. https://phys.org/, 3 juillet 2023 - Nature Biotechnology. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning, Nature Biotechnology (2023). DOI: 10.1038/s41587-023-01830-8

[ génie génétique ]

 

Commentaires: 0

Ajouté à la BD par miguel