Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 108
Temps de recherche: 0.0615s

humour

Toujours est-il que la chose m’est apparue d’importance et propre à me hausser d’un cran dans votre estime : vous concevrez que nul travail, cette récompense en vue, n’eût paru d’intérêt suffisant pour retarder la mise en graphie de cette méditation.

Le problème est cette fois, monsieur, celui de la couille. (J’aurais pu dire celui de la coquille, mais je cède au goût du sensationnel, vous voyez, c’est un faible bien inoffensif.) De fait, il s’agit d’un problème de conchyliorchidologie (ou d’orchido-conchyliologie, qui me paraît, si plus orthodoxe, moins expéditif ; donc, je garde le premier).

AXIOME  :  Retirez le Q de la coquille : vous avez la couille, et ceci constitue précisément une coquille.

Je laisse à cet axiome, monsieur, le soin de perforer lui-même, de son bec rotatif à insertions de patacarbure de wolfram, les épaisses membranes dont s’entoure, par mesure de prudence, votre entendement toujours actif. Et je vous assène, le souffle repris, ce corollaire fascinant :

Et ceci est vrai, que la coquille initiale soit une coquille de coquillage ou une coquille d’imprimerie, bien que la coquille obtenue en fin de réaction soit toujours (à moins de marée extrêmement violente) une coquille d’imprimerie en même temps qu’une couille imprimée.

Vous entrevoyez d’un coup, je suppose, les conséquences à peine croyables de cette découverte. La guerre est bien loin.

Partons d’une coquille de coquillage, acarde ou ampullacée, bitestacée ou bivalve, bullée, caniculée ou cataphractée, chambrée, cloisonnée, cucullée… mais je ne vois pas l’intérêt de recopier dans son entier le dictionnaire analogique de Boissière. Bref, partons d’une coquille. La suppression du Q entraîne presque immédiatement la mutation du minéral inerte en un organe vivant et générateur. Et dans le cas d’une coquille initiale d’imprimeur, le résultat est encore plus spectaculaire, car la coquille en question est essence et abstraction, concept, être de raison, noumène. Le Q ôté permet le passage de l’essence à l’existence non seulement existante mais excitable et susceptible de prolongements.

J’aime à croire que parvenu à ce point, vous allez poser votre beau front dans votre main pour imiter l’homme de Rodin – vous conviendrez en passant de la nécessité d’une adéquation des positions aux fonctions, et que vous n’auriez pas l’idée de déféquer à plat ventre sauf caprice. Et vous vous demanderez, monsieur, d’abord, quel est le phénomène qui se produit. Y a-t-il transfert ? Disparition ? Mise en minorité ? ou effacement derrière une partie plus importante, que le trout ? Qui sait ? Qui ? Mais moi, naturellement sans quoi je ne vous écrirais pas. Je ne suis pas de ces brutes malavisées qui soulèvent les problèmes et les laissent retomber sauvagement sur la gueule de leur prochain.

Tiens, pourtant, si, en voilà un autre qui me tracasse, et je vous le dis en passant, car le genre épistolaire permet plus de caprice et de primesaut que le genre oratoire ou dissertatif, lequel je ne me sens pas qualifié pour oser aborder ce jour. L’expression : mettre la dernière main n’implique-t-elle pas, selon vous, que l’une des deux mains – et laquelle – fut créée avant l’autre par le père Ubu ? La dernière main est souvent la droite ; mais d’aucuns sont-ils pas gauchers ? Ainsi, de la dextre ou de la senestre, laquelle est la plus âgée ? Gageons que ce problème va tenter madame de Valsenestre à qui, en passant, vous voudrez bien présenter mes hommages. Et revenons à nos roustons.

Eh bien, monsieur, pour résoudre le mystère de l’absence du Q, nous disposons d’un moyen fécond et qui permet généralement de noyer sans douleur la poiscaille en remplaçant un mystère que l’on ne pénètre point par un mystère plus mou, c’est-à-dire non mystérieux et par conséquent inoffensif. C’est la "comparaison", méthode pataphysique s’il en fût. A cet agent d’exécution puissant, nous donnerons l’outil qui lui manque, c’est-à-dire le terme de.

Le jargon russe en l’espèce, qui sera notre étalon.

Vous le savez, monsieur, et si vous ne le savez pas, vous n’aurez jamais la sottise de le dire en public, il fut procédé en Russie, n’y a pas si longtemps que nos auteurs ne puissent s’en souvenir, à une réforme dite alphabétique, bien qu’en russe, cela ne se prononce point si facilement. Je vous le concède, cette réforme est à l’origine de la mort de Lénine, de la canonisation de sainte Bernadette et de quelques modifications structurales spécifiquement slaves apportées à un Etat de structure d’ailleurs imprécise ; nous passerons sur les épiphénomènes mineurs pour n’en conserver que le plus important. La réforme en question supprimait trois des 36 lettres alors en usage là-bas : le ? ou ’fita, le ? ou ’izitsa et le ? ou is’kratkoï.. [...]

Mais d’ores et déjà, vous voyez comment on peut supprimer le Q : il suffit d’un décret.

La question est de savoir ce que l’on a fait des lettres supprimées. Ne parlons même pas de celles à qui l’on en a substitué d’autres. Le problème est singulièrement précis : Où a-t-on mis les is’kratkoï ?

Vous vous doutez déjà de la suite. Et vous voyez l’origine de certaines rumeurs se découvrir à vos yeux émerveillés d’enfant sage.

D’ailleurs, monsieur, peu importe. Peu importe que l’on ait, par le passé, mésusé des lettres ainsi frappées d’interdit. Sans vouloir faire planer le soupçon sur qui que ce soit, je sais bien où l’on risquerait d’en dénicher quelques muids.

L’expression "lettre morte" n’est pas née de l’écume de la mer du même nom, vous le savez, monsieur. Les vérités les plus désagréables finissent par transpirer, comme l’eau orange d’un chorizo pendu par les pieds ou la sueur délicate d’un fragment d’Emmenthal qui tourne au translucide. Et les cimetières de lettres sont monnaie courante (sans que l’on ait jamais songé à chronométrer cette dernière, ce qui paraît inexcusable en un siècle sportif et ne permet point d’en préciser la vitesse). Nous n’avons pas accoutumé, me direz-vous, de remettre en cause le passé : je sais, et vous savez, que tout y est à refaire. Mais à bien y regarder, on est forcé de constater que c’est sans aucune originalité qu’a été résolu, de notre vivant ou presque, cet ardu problème de l’élimination en masse. Et cela continue.

Avant que la merdecine ait eu l’idée de s’adjoindre des fi ! syciens et des chie-mistes (ou cague-brouillard, comme disent les Anglois), la peste apportait une ingénieuse solution. Et les destructions provoquées parmi la gent corbote et ratière par la chasse, vu l’absence de grenades et de rusées à tête chercheuse, n’étaient point telles que ces bestioles ne fussent à même de procéder hygiéniquement à l’enlèvement des charognes. Il restait les os, que l’on suçait et que l’on perçait pour jouer de la quenia, comme Gaston Leroux l’a soigneusement rapporté dans " L’Epouse du soleil ". Bref, le professeur Yersin imagina de foutre une canule au cul des poux, et vainquit la peste. Le cancer fait des progrès, mais il abêtit, et déprive le frappé du contact de ses semblables – ou plutôt de ses différents – si utile pourtant. Sur quoi l’Allemagne redécouvre le camp de concentration déjà utilisé avant et ailleurs (le premier qui l’a inventé, levez le doigt). Le principe était bon : c’est celui du couvent. Mais si l’on sait où ça mène, l’on se refuse à voir où cela pourrait mener.

Vous avez déjà compris qu’en ce moment, loin de m’égarer, j’arrive à la proposition ferme, concrète et positive. Vous avez vu que, loin de lamenter le révolu, je suggère simplement que l’on améliore. Vous sentez, avec votre grand nez, que si le sort des prisonniers d’autrefois m’indiffère, c’est que la " pataphysique va toujours de l’avant puisqu’elle est immobile dans le temps et que le temps, lui, est rétrograde par définition, puisque l’on nomme “ direct ” celui des aiguilles d’une montre. Et vous voyez que je suis en train de poser les bases du camp de concentration pataphysique, qui est celui de l’avenir.

Grosso modo, une Thélème. Mais une Thélème obligatoire. Une Thélème où tout serait libre, sauf la liberté. Il s’agit bien en l’espèce de cette exception exceptionnelle à laquelle se réfère Le Livre. Un lieu où l’on serait contraint de ne pas s’éloigner du bonheur. Outre que le rendement des divers travaux que l’on pourrait ainsi faire exécuter librement aux détenus serait excellent – mais sachez que cette considération économique n’a pas un instant pesé sur notre choix plus ni moins que son contraire – le camp de concentration paradisiaque satisferait la tendance religieuse profonde qui sommeille au cœur de tout un tas d’individus non satisfaits de leur vie terrestre – et vous concevez qu’un prisonnier a des raisons de ne pas l’être. Il s’y pourrait, naturellement, faire du vélocipède. Vous pensez bien. Je ne développe pas les mille avantages du projet : je me borne à vous dire que, me désintéressant totalement du sort des is’kratkoï, je propose, par la présente, à votre excellence d’accumuler les Q des coquilles dans les camps ainsi com-binés qui prendraient par exemple le nom de camps de cul-centration, et de récupérer outre les coquilles résultantes et régénérées, les bûmes créées de la sorte à partir de rien, ce qui est quelque chose.

Vous ne serez pas sans remarquer que la réaction qui s’établit est assez analogue à celle qui se produirait, selon eux, dans ces breeders autotrophes où se fabrique une espèce de plutonium. Vous prenez la coquille, lui retirez le Q que vous enfermez en liberté, vous obtenez la couille et une nouvelle coquille, et ainsi de suite jusqu’à neuf heures vingt, où un ange passe. Je passe à mon tour sur l’émission de rayons bêta concomitante, d’une part parce qu’elle n’a pas lieu, d’autre part parce que cela ne regarde personne. Que le Q fût en fin de compte bien traité m’importait avant tout, du point de vue moral et parce qu’il est séant de ne point porter atteinte, sauf si l’on se nomme le P. U., à l’intégrité de quelque être que ce soit, (excepté le militaire) vu qu’il peut pêcher à la ligne, boire de l’alcool et s’abonner au Chasseur français, ou les trois. Du moins, c’est une des choses que l’on peut dire, et comme elle diffère de tout ce que l’on pourrait dire d’autre, il me semble qu’elle a sa place ici.

Piste-scrotum 1. Cette lettre vous est personnellement destinée. Néanmoins, au cas où elle n’intéresserait aucun autre membre du Collège, il me paraîtrait urgent de la diffuser. Si vous en décidiez ainsi, il me serait à honneur que vous la fissiez coiffer d’un chapeau à la gloire de Stanislas Leczinski, roi polonais, inventeur de la lanterne sourde à éclairer pendant les tintamarres et autres espèces de révolutions, et dont je ne me sens pas force d’entreprendre la rédaction que j’estime trop au-dessus de mes indignes moyens.

Piste-scrotum 2. En passant, vous constaterez que le principe de la conservation de ce que vous voudrez en prend un vieux coup dans les tabourets.

Auteur: Vian Boris

Info: Lettre au Provéditeur-éditeur sur un problème quapital et quelques autres, 26 mars 1955, In les Cahiers du Collège de Pataphysique.

[ lapsus ]

 

Commentaires: 0

homme-animal

La signification des meuglements des vaches, et autres histoires animales surprenantes
Vous pensez bien connaître les animaux? Pourtant les scientifiques qui les étudient leur découvrent régulièrement de nouvelles habiletés, intelligences et savoir-être étonnants.

C'est ce que raconte la journaliste spécialiste des sciences Aline Richard Zivohlava dans son ouvrage "Dans la peau des bêtes", paru en mai aux éditions Plon. Elle se glisse dans la peau de différents animaux pour un récit à la première personne. Nous en publions ci-dessous des extraits. Le titre et les intertitres sont de la rédaction de Slate.

Les corbeaux clairvoyants
L’histoire des Corneilles noires de la ville de Sendai, au Japon, a fait le tour du monde. À des branches de noyer plantés le long des routes pendaient de savoureuses noix, mais elles étaient, dans leurs coques vertes, inaccessibles à nos becs. C’est alors que mes congénères ont appris le code de la route. Au feu rouge, l’oiseau dépose sa noix devant la voiture, qui l’écrase au feu vert, et dont les fragments sont récupérés au feu rouge suivant. Malin, non? Et même carrément intelligent.

Les recherches scientifiques de ces dernières années ont révélé des capacités insoupçonnées chez les corvidés, en particulier dans le domaine de la cognition. Certains de nos savoir-faire avaient pourtant été remarqués dans le passé, mais vous n’aviez pas su les analyser… Vous rappelez-vous d’Ésope, le fabuliste qui a commis "Le Corbeau et le Renard", que nous critiquions tout à l’heure? Nous lui avons volontiers pardonné son écart puisqu’il a rendu hommage à l’ingéniosité de la corneille dans la comptine suivante: "La Corneille ayant soif, trouva par hasard une cruche où il y avait un peu d’eau; mais comme la cruche était trop profonde, elle n’y pouvait atteindre pour se désaltérer. Elle essaya d’abord de rompre la cruche avec son bec; mais n’en pouvant venir à bout, elle s’avisa d’y jeter plusieurs petits cailloux, qui firent monter l’eau jusqu’au bord de la cruche. Alors elle but tout à son aise."

Deux douzaines de siècles plus tard, en 2014, cette fable a été reproduite dans un laboratoire de l’université d’Auckland, en Nouvelle-Zélande. Des chercheurs ont voulu savoir si différents corvidés –Corbeaux calédoniens, Corbeaux freux et Geais des chênes– se montraient aussi clairvoyants que l’oiseau du fabuliste. Expérience réussie: soit deux tubes de verre, un large et un étroit, reliés entre eux par un mécanisme de vases communicants et à moitié remplis d’eau. Dans le premier, un morceau de liège flotte, agrémenté d’un morceau de viande. Tube trop étroit pour y plonger le bec. Les oiseaux ont dû trouver un moyen d’atteindre la nourriture: ils ont jeté des petits cailloux dans le tube large ne contenant pas le morceau de viande, pour faire monter l’eau dans le second tube étroit, et récupérer la récompense. C’est ce que l’on appelle effectuer une relation de cause à effet. Incroyable, quand on sait que, soumis au même test, les petits humains ne le réussissent que vers l’âge de 7 ans.

Les corbeaux sont capables de se priver dans l’immédiat pour une meilleure récompense dans le futur, une opération cognitive complexe.

La conclusion semble couler de source: des corbeaux aussi intelligents que vous, à l’âge de raison des petits humains! Mais au risque de décevoir mes congénères, je n’irai pas jusque-là. Rien ne prouve en effet que les mécanismes mentaux mis en jeu soient les mêmes pour nos deux espèces. Et la faculté spontanée de raisonner dans l’abstrait par le biais d’un processus d’association n’est pas forcément équivalente à ce que vous, humains, entendez généralement par "intelligence".

Il fallait en savoir plus. Les scientifiques qui nous étudient ont d’abord observé nos capacités cognitives liées à la vie en société. Tout comme vous, les corvidés activent leurs neurones pour améliorer leur cadre de vie, interagir avec leurs semblables, obtenir le meilleur pour eux-mêmes et leurs proches… La gestion de la nourriture est un enjeu majeur pour tout être vivant, et, pour nous autres corbeaux, l’occasion d’exercer notre mémoire et même de se projeter dans l’avenir. Des chercheurs britanniques ont par exemple montré que des geais, qui ont l’habitude de cacher leur nourriture, étaient capables de "classer" leurs aliments en fonction du temps écoulé avant la consommation: ils déterraient d’abord les caches de vers de terre, très appréciés mais périssables, avant celles des cacahuètes, moins goûteuses mais plus durables.

Les corbeaux sont aussi capables de se priver dans l’immédiat pour une meilleure récompense dans le futur, une opération cognitive complexe que vous pensiez réservée aux humains et aux grands singes. Une expérience menée en 2017 à l’université de Lund, en Suède, sur des corbeaux dressés consistait à leur faire choisir une friandise à dévorer tout de suite, ou bien un outil permettant d’ouvrir une boîte contenant une friandise plus grosse, au prix de quinze minutes d’efforts. La plupart des corbeaux ont choisi l’outil. Cela suggère la capacité de contrôle de soi et celle d’anticipation.

S’alimenter, c’est aussi coopérer mais parfois se fâcher quand un comportement est jugé incorrect. Dans une expérimentation menée dans un laboratoire à Vienne, des grands corbeaux ont su s’allier en tirant de concert deux bouts de ficelle pour récupérer deux parts de fromage: si l’un des oiseaux n’avait pas joué le jeu, aucun des deux n’aurait pu en profiter. Mais, dans une autre série d’expériences, il est arrivé qu’un des oiseaux ruse pour s’approprier tout le fromage. L’autre a alors refusé de coopérer plus avant avec le tricheur.

Les poulpes farceurs
Ces dernières années, nombre de nos capacités cognitives ont été découvertes par les scientifiques qui nous observent. Par exemple, notre dextérité au maniement des outils, faculté que l’on pensait réservée aux animaux "supérieurs". En 2009, quatre pieuvres de l’espèce Amphioctopus marginatus, habitantes des eaux chaudes de l’ouest du Pacifique, ont été filmées en train de manipuler des coquilles de noix de coco pour s’en faire une armure de protection contre les prédateurs, puis se balader, ainsi équipées, sur le plancher marin. La vidéo a intéressé les chercheurs…

Et enchanté le grand public: sans être encore aussi populaires que ceux consacrés aux chatons mignons, les films de poulpes malins font les beaux jours de votre Internet. Sur YouTube, 3 millions de vidéos sont disponibles! C’est ainsi que les humains ont pu découvrir les talents d’Inky, notre maître-poulpe de l’évasion. Cantonné dans son aquarium de Nouvelle-Zélande, Inky a profité de l’inattention d’un gardien qui n’avait pas bien fermé son réceptacle pour déverrouiller le dispositif, glisser au sol, et emprunter un tuyau d’un diamètre de 15 centimètres (!) se déversant dans l’océan Pacifique.

Stratégie, adaptation, innovation… Autant de qualités qui marquent, pour le moins, une belle intelligence des situations.Nous sommes aussi capables d’apprendre par observation et de manipuler des règles logiques: facultés d’autant plus étonnantes que nous n’avons pas eu de parents pour nous les enseigner. Des chercheurs ont installé des pieuvres devant un labyrinthe, elles ont su s’orienter en observant des congénères, puis en fonction d’indices visuels mis à leur disposition. Dans une autre expérience, on nous a placées devant cinq portes fermées, chacune marquée d’un symbole. Il fallait trouver celle donnant accès à un crabe, friandise que nous apprécions parmi toutes. Nous avons réussi à repérer la bonne porte, et appris à reconnaître son symbole même quand les scientifiques le changeaient de place. Et nous sommes capables de retenir plusieurs jours ces informations apprises, signe d’une bonne mémoire.

De même, nous jouons: un comportement évolué, peu commun chez les invertébrés. Sarah Zylinski, biologiste à l’université de Leeds, au Royaume-Uni, a observé un poulpe de l’espèce Octopus bimaculoides se livrer au jeu du chat et de la souris avec un crabe. En pleine mer, plusieurs plongeurs qui nous observaient ont eu la surprise de voir un tentacule taquin tenter de leur retirer leur masque à oxygène… En captivité, nous jonglons dans l’aquarium avec les petits cubes en plastique que vous nous envoyez. Et ne croyez pas que nous ne savons pas qui vous êtes.

En 2010, à l’aquarium de Seattle, aux États-Unis, deux membres de l’équipe soignante se sont livrés au jeu bien connu du "bad cop-good cop": l’un nous nourrissait avec douceur, l’autre nous touchait avec un bâton piquant. Après deux semaines, racontent les scientifiques qui ont organisé cette expérience, les huit pieuvres de l’aquarium se comportaient différemment avec l’un et l’autre, habillé pourtant du même uniforme.

En captivité, nous savons parfaitement vous faire passer des messages. La chercheuse de Leeds rapporte que des seiches, impatientes d’être nourries, aspergeaient d’eau leur gardien s’il tardait. Et, dans un parc zoologique en Allemagne, un poulpe est monté sur le bord de son aquarium pour inonder un spot dont la lumière devait le gêner.

La science n’a pas fini de dévoiler tout ce qu’il y a d’extraordinaire en nous. En avril 2017, un article scientifique, fort technique puisqu’il a été publié dans la revue Cell (dédiée à la biologie moléculaire et cellulaire), a suggéré que nous évoluions différemment de presque tous les êtres vivants de la planète: certains d’entre nous sont en effet capables de modifier à plusieurs reprises leur séquence d’ARN (acide ribonucléique, l’autre "molécule du vivant" avec l’ADN) et de l’éditer, pour mieux s’adapter à notre environnement. S’ensuivent, par exemple, des modifications de notre cerveau pour pouvoir prospérer dans des eaux aux températures différentes. Bien pratique en cette période de changements climatiques! Ludovic vous l’avait bien dit: nous sommes de véritables extraterrestres du fond des mers.

Les vaches communiquantes
La vache a ses sens en éveil. À l’inverse de ce que certains stupides imaginent, un regard bovin est un regard expert: une vision à 330 degrés, sans bouger la tête, qu’en dites-vous? Il est vrai que nous sommes plutôt myopes, et distinguons bien mieux les tendres pousses dans le pré qu’un véhicule arrivant au loin. Mais notre ouïe très fine y pallie. Les vaches distinguent les ultrasons (jusqu’à 35.000 hertz), tout comme les basses fréquences et les très faibles volumes sonores. Et puis, il y a notre odorat. C’est notre sens premier, il nous distingue et organise notre vie sociale. Les odeurs disent notre âge, nos besoins sexuels, notre place dans la hiérarchie du troupeau, notre niveau de stress. On se renifle et on se lèche entre vaches, et on approche nos mufles des humains à l’approche: il s’agit de flairer l’éleveur, le vétérinaire que l’on connaît, et de s’inquiéter de la présence d’un intrus à l’odeur inconnue.

En 2015, en Suisse, des chercheurs de l’École polytechnique de Zurich se sont livrés à une analyse acoustique de troupeaux pour tenter de comprendre ce que les vaches se disent. Lors des naissances de nos veaux et cela durant trois à quatre semaines, nous parlons à nos petits le mufle à moitié fermé pour produire un son grave. Et à l’inverse, quand on nous les retire, nous produisons un meuglement dans les fréquences hautes. De même, les veaux nous appellent plutôt dans les aigus.

De l’avis des scientifiques et des professionnels, fermiers et éleveurs qui nous côtoient, notre cri d’espèce, émis jusqu’à une cinquantaine de fois dans la journée, exprime une grande variété de situations et d’états: faim, soif, chaud, froid, souffrance, désir, appels…

Quant à vous, on dirait que nos "meuh" vous fascinent. Vous tentez parfois de nous imiter, bizarre! des humains qui singent les vaches! Mais vous n’êtes même pas fichus de vous entendre sur le son à produire… "Meuh" en France ; "moo" chez les Anglo-Saxons; "muh" pour les Allemands et les Danois; et "mō" du côté du Japon. Un plaisantin est même allé jusqu’à fabriquer ce qu’il a appelé une "boîte à meuh" pour faire rire ses semblables, on se demande vraiment pourquoi. Laquelle boîte a au moins eu une utilité: le docteur Lucien Moatti l’a calibrée pour le dépistage néonatal de la surdité des bébés humains. Si l’enfant tourne la tête au son de la vache, c’est qu’il entend bien…

Auteur: Internet

Info: Slate, Aline Richard, 30 mai 2019

[ anecdotes ]

 

Commentaires: 0

Ajouté à la BD par miguel

microbiote

Un chef d'orchestre de la subtile symphonie d'Evolution

Le biologiste Richard Lenski pensait que son expérience à long terme sur l'évolution pourrait durer 2 000 générations. Près de trois décennies et plus de 65 000 générations plus tard, il est toujours étonné par " l’incroyable inventivité " de l’évolution.

Au début de sa carrière, le biologiste décoré Richard Lenski pensait qu'il pourrait être contraint d'évoluer. Après l’annulation de sa subvention de recherche postdoctorale, Lenski a commencé à envisager provisoirement d’autres options. Avec un enfant et un deuxième en route, Lenski a assisté à un séminaire sur l'utilisation de types spécifiques de données dans un contexte actuariel* – le même type de données avec lequel il avait travaillé lorsqu'il était étudiant diplômé. Lenski a récupéré la carte de visite du conférencier, pensant qu'il pourrait peut-être mettre à profit son expérience dans une nouvelle carrière.

"Mais ensuite, comme c'est parfois le cas - et j'ai eu beaucoup de chance - le vent a tourné", a déclaré Lenski à Quanta Magazine dans son bureau de la Michigan State University. " Nous avons obtenu le renouvellement de la subvention et peu de temps après, j'ai commencé à recevoir des offres pour être professeur. 

Lenski, professeur d'écologie microbienne à l'État du Michigan, est surtout connu pour ses travaux sur ce que l'on appelle l' expérience d'évolution à long terme . Le projet, lancé en 1988, examine l'évolution en action. Lui et les membres de son laboratoire ont cultivé 12 populations d' E. coli en continu depuis plus de 65 000 générations, suivant le développement et les mutations des 12 souches distinctes.

Les résultats ont attiré l’attention et les éloges – y compris une bourse " genius " MacArthur, que Lenski a reçue en 1996 – à la fois pour l’énormité de l’entreprise et pour les découvertes intrigantes que l’étude a produites. Plus particulièrement, en 2003, Lenski et ses collaborateurs ont réalisé qu'une souche d' E. coli avait développé la capacité d'utiliser le citrate comme source d'énergie, ce qu'aucune population précédente d' E. coli n'était capable de faire.

Lenski s'intéresse également aux organismes numériques, c'est-à-dire aux programmes informatiques conçus pour imiter le processus d'évolution. Il a joué un rôle déterminant dans l’ouverture du Beacon Center dans l’État du Michigan, qui donne aux informaticiens et aux biologistes évolutionnistes l’opportunité de forger des collaborations uniques.

Quanta Magazine a rencontré Lenski dans son bureau pour parler de ses propres intérêts évolutifs dans le domaine de la biologie évolutive – et du moment où il a presque mis fin à l'expérience à long terme. 

QUANTA MAGAZINE : Quels types de questions ont été les moteurs de votre carrière ?

RICHARD LENSKI : Une question qui m'a toujours intrigué concerne la reproductibilité ou la répétabilité de l'évolution . Stephen Jay Gould, paléontologue et historien des sciences, a posé cette question : si nous pouvions rembobiner la bande de la vie sur Terre, à quel point serait-elle similaire ou différente si nous regardions l'ensemble du processus se reproduire ? L’expérimentation à long terme que nous menons nous a permis de rassembler de nombreuses données sur cette question.

Alors, l’évolution est-elle reproductible ?

Oui et non! Je dis parfois aux gens que c'est une question fascinante et motivante, mais à un certain niveau, c'est une question terrible, et on ne dirait jamais à un étudiant diplômé de s'y poser. C’est parce qu’elle est très ouverte et qu’il n’y a pas de réponse très claire.

Grâce à cette expérience à long terme, nous avons vu de très beaux exemples de choses remarquablement reproductibles, et d'autre part des choses folles où une population s'en va et fait des choses qui sont complètement différentes des 11 autres populations de la planète dans l' expérience.

Comment vous est venue l’idée de cette expérience à long terme ?

Je travaillais déjà depuis plusieurs années sur l'évolution expérimentale des bactéries, ainsi que des virus qui infectent les bactéries. C'était fascinant, mais tout est devenu si compliqué si vite que j'ai dit : " Réduisons l'évolution à sa plus simple expression. " En particulier, j'ai voulu approfondir cette question de reproductibilité ou répétabilité de l'évolution. Et pour pouvoir l'examiner, je voulais un système très simple. Lorsque j'ai commencé l'expérience à long terme, mon objectif initial était de l'appeler expérience à long terme lorsque j'arriverais à 2 000 générations.

Combien de temps cela vous a-t-il pris ?

La durée réelle de l'expérience a duré environ 10 ou 11 mois, mais au moment où nous avons collecté les données, les avons rédigées et publié l'article, il nous a fallu environ deux ans et demi. À ce moment-là, l’expérience avait déjà dépassé 5 000 générations et j’ai réalisé qu'il fallait la poursuivre.

Pensiez-vous que l’expérience se poursuivrait aussi longtemps ?

Non, non... il y a eu une période de cinq ans, peut-être de la fin des années 90 au début des années 2000, pendant laquelle j'ai réfléchi à la possibilité d'arrêter l'expérience. C'était pour plusieurs raisons différentes. La première était que je devenais accro à cette autre façon d’étudier l’évolution, qui impliquait d’observer l’évolution dans des programmes informatiques auto-réplicatifs, ce qui était absolument fascinant. Soudain, j'ai découvert cette manière encore plus brillante d'étudier l'évolution, où elle pouvait s'étendre sur encore plus de générations et faire encore plus d'expériences, apparemment plus soignées.

Comment votre vision de l’étude de l’évolution via ces organismes numériques a-t-elle évolué au fil du temps ?

J’ai eu ce genre d’" amour de chiot " lorsque j’en ai entendu parler pour la première fois. Au début, c'était tellement extraordinairement intéressant et excitant de pouvoir regarder des programmes auto-répliquants, de pouvoir changer leur environnement et d'observer l'évolution se produire.

L’un des aspects les plus passionnants de l’évolution numérique est qu’elle montre que nous considérons l’évolution comme une affaire de sang, d’intestins, d’ADN, d’ARN et de protéines. Mais l’idée d’évolution se résume en réalité à des idées très fondamentales d’hérédité, de réplication et de compétition. Le philosophe des sciences Daniel Dennett a souligné que nous considérons l’évolution comme cette instanciation, cette forme de vie biologique, mais que ses principes sont bien plus généraux que cela.

Je dirais que mes dernières orientations de recherche ont consisté principalement à discuter avec des collègues très intelligents et à siéger à des comités d'étudiants diplômés qui utilisent ces systèmes. Je suis moins impliqué dans la conception d'expériences ou dans la formulation d'hypothèses spécifiques, car ce domaine évolue extrêmement rapidement. Je pense que j'ai eu beaucoup de chance de pouvoir cueillir certains des fruits les plus faciles à trouver, mais maintenant j'ai l'impression d'être là en tant que biologiste, critiquant peut-être des hypothèses, suggérant des contrôles qui pourraient être effectués dans certaines expériences.

Votre intérêt pour les organismes numériques est donc l’une des raisons pour lesquelles vous avez envisagé de mettre fin à l’expérience à long terme. Quel était l'autre ?

À ce stade, l’autre chose qui était un peu frustrante dans les lignes à long terme était que la vitesse à laquelle les bactéries évoluaient ralentissait. À la façon dont j’y pensais, c’était presque comme si l’évolution s’était arrêtée. Je pensais que c'était tout simplement un environnement trop simple et qu'ils n'avaient pas grand-chose à faire de plus.

Donc ces deux choses différentes m’ont fait réfléchir à arrêter l’expérience. Et j'ai parlé à quelques collègues et ils m'ont dit en gros : tu ne devrais pas faire ça. D’ailleurs, j’en ai parlé avec ma femme, Madeleine, lorsque je commençais à m’intéresser beaucoup à ces organismes numériques – nous étions d’ailleurs en congé sabbatique en France à cette époque – et je lui ai dit : " Peut-être que je devrais appeler chez moi et fermer le labo. " Et elle a dit : " Je ne pense pas que tu devrais faire ça. "

Pourquoi votre femme et vos collègues ont-ils eu cette réaction ?

L’expérience s’était déjà avérée très rentable au sens scientifique, fournissant des données très riches sur la dynamique du changement évolutif. C’était plus ou moins unique dans les échelles de temps étudiées. Je pense donc que c’était de très bons conseils qu’ils m’ont donné. Je ne sais pas si j’aurais déjà pu débrancher moi-même. J'étais certainement un peu frustré et j'y pensais – mais de toute façon, les gens ont dit non !

Avez-vous dépassé le palier où vous disiez avoir l’impression que les organismes n’évoluaient pas tellement ?

C’est en fait l’une des découvertes vraiment intéressantes de l’expérience. Lorsque j’ai commencé l’expérience à long terme, je pensais que les bactéries atteindraient rapidement une sorte de limite à leur croissance. Il y a seulement quelques années, nous avons commencé à réaliser que les bactéries seraient toujours capables de dépasser tout ce que nous avions déduit dans le passé quant à leur limite stricte. J’ai réalisé que nous n’y réfléchissions tout simplement pas de la bonne manière. Même dans l’environnement le plus simple, il est toujours possible pour les organismes de réaliser n’importe quelle étape de leur métabolisme, ou n’importe quelle étape de leur biochimie, un peu mieux. Et la sélection naturelle, même si elle ne réussit pas à chaque étape, favorisera toujours, à long terme, ces améliorations subtiles.

Une lignée de bactéries a développé la capacité d’utiliser le citrate comme source de nourriture. Est-ce que cela s'est produit avant ou après que vous envisagiez d'arrêter l'expérience ?

C’est l’une des choses qui m’a fait réaliser que nous n’arrêterions pas l’expérience. En 2003, une lignée a développé la capacité d’utiliser le citrate. Cela a changé la donne : se rendre compte que même dans cet environnement extrêmement simple, les bactéries devaient évoluer et comprendre certaines choses importantes.

J’aime dire que les bactéries dînaient tous les soirs sans se rendre compte qu’il y avait ce bon dessert citronné juste au coin de la rue. Et jusqu’à présent, même après 65 000 générations, seule une population sur 12 a compris comment consommer ce citrate.

Vous avez également mentionné que certaines populations au sein de votre expérience ont développé des mutations à un rythme plus élevé. A quoi cela ressemble-t-il?

Après plus de 60 000 générations, six des 12 populations ont évolué pour devenir hypermutables. Elles ont développé des changements dans la réparation de leur ADN et dans les processus métaboliques de l'ADN, ce qui les amène à avoir de nouvelles mutations quelque part de l'ordre de 100 fois la vitesse à laquelle l'ancêtre [au début de l'expérience] le faisait.

C'est un processus très intéressant, car il est à la fois bon et mauvais du point de vue des bactéries. C'est mauvais car la plupart des mutations sont nocives ou, au mieux, neutres. Seule une rare pépite dans cette mine est une mutation bénéfique. Les bactéries qui ont le taux de mutation le plus élevé sont un peu plus susceptibles de découvrir l’une de ces pépites. Mais d’un autre côté, ils sont également plus susceptibles de produire des enfants et petits-enfants porteurs de mutations délétères.

La lignée capable de consommer du citrate faisait-elle partie du groupe qui avait évolué pour devenir hypermutable ?

C'est une excellente question. La lignée qui a développé la capacité d’utiliser le citrate n’avait pas un taux de mutation élevé. Il est intéressant de noter qu’il est devenu l’un de ceux présentant un taux de mutation plus élevé, mais seulement après avoir développé la capacité d’utiliser le citrate. Cela est cohérent avec l’avantage du taux de mutation plus élevé – la capacité supplémentaire d’exploration. Les bactéries étaient en fait assez mauvaises pour utiliser le citrate au départ, donc il y avait beaucoup d'opportunités après qu'elles aient développé la capacité d'utiliser le citrate pour affiner cette capacité.

Comment l’expérience à long terme vous aide-t-elle à comprendre l’évolution de la vie à plus grande échelle ?

Pour moi, l’une des leçons de cette expérience à long terme a été de constater à quel point la vie peut être riche et intéressante, même dans l’environnement le plus ennuyeux et le plus simple. Le fait que l’évolution puisse générer cette diversité et découvrir des portes légèrement entrouvertes qu’elle peut franchir témoigne de l’incroyable inventivité de l’évolution. Et s’il peut être si inventif et créatif à cette minuscule échelle spatiale et temporelle, et dans un environnement aussi ennuyeux, cela me suscite encore plus de respect, quand je pense à quel point il est remarquable dans la nature.

Qu’est-ce qui vous a le plus surpris dans ce projet ?

Que ça continue après toutes ces années. L’un de mes objectifs dans la vie est de faire en sorte que l’expérience continue. J'aimerais lever une dotation pour poursuivre l'expérience à perpétuité.

Qu’espérez-vous pour l’expérience à long terme dans le futur ?

J’espère que ce projet apportera bien d’autres surprises. Par exemple, deux lignées coexistent depuis 60 000 générations dans l’une des populations, où l’une se nourrit du produit que l’autre génère. Je pense qu'il est fascinant de se demander si, à un moment donné, cela pourrait se transformer en quelque chose qui ressemble davantage à une interaction prédateur-proie. Ce n’est certainement pas hors du domaine des possibles. Si cela arriverait un jour, je ne sais pas.

Cela a également été une immense joie de travailler avec des étudiants, des postdoctorants et des collaborateurs, et de les voir grandir et se développer. C'est vraiment la plus grande joie pour moi d'être un scientifique. J'aime dire aux gens que je suis bigame. J'ai deux familles : ma famille de laboratoire et ma famille biologique, et elles sont toutes les deux incroyablement merveilleuses.

Auteur: Internet

Info: Logan Zillmer pour Quanta Magazine - * Relatif aux méthodes mathématiques des actuaires

[ microbiome ] [ bio-informatique ] [ plasticité ] [ dépassement ] [ tâtonnement ] [ élargissement ] [ gaspillage ] [ adaptation ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution subatomique

Une nouvelle idée pour assembler la vie         (Avec l'aimable autorisation de Lee Cronin)

Si nous voulons comprendre des constructions complexes, telles que nous-mêmes, la théorie de l'assemblage affirme que nous devons tenir compte de toute l'histoire de la création de ces entités, du pourquoi et comment elles sont ce qu'elles sont.

La théorie de l'assemblage explique pourquoi, étant donné les possibilités combinatoires apparemment infinies, nous n'observons qu'un certain sous-ensemble d'objets dans notre univers.

La vie sur d'autres mondes - si elle existe - pourrait être si étrangère qu'elle en serait méconnaissable. Il n'est pas certain que la biologie extraterrestre utilise la même chimie que celle de la Terre, avec des éléments constitutifs familiers tels que l'ADN et les protéines. Avec cette approche les scientifiques pourraient même repérer les signatures de ces formes de vie sans savoir qu'elles sont le fruit de la biologie.

Ce problème est loin d'être hypothétique. En avril, la sonde Juice de l'Agence spatiale européenne a décollé de la Guyane française en direction de Jupiter et de ses lunes. L'une de ces lunes, Europe, abrite un océan profond et saumâtre sous sa croûte gelée et figure parmi les endroits les plus prometteurs du système solaire pour la recherche d'une vie extraterrestre. L'année prochaine, le vaisseau spatial Europa Clipper de la NASA sera lancé, lui aussi en direction d'Europe. Les deux engins spatiaux sont équipés d'instruments embarqués qui rechercheront les empreintes de molécules organiques complexes, signe possible de vie sous la glace. En 2027, la NASA prévoit de lancer un hélicoptère ressemblant à un drone, appelé Dragonfly, pour survoler la surface de Titan, une lune de Saturne, un monde brumeux, riche en carbone, avec des lacs d'hydrocarbures liquides qui pourraient être propices à la vie, mais pas telle que nous la connaissons.

Ces missions et d'autres encore se heurteront au même obstacle que celui auquel se heurtent les scientifiques depuis qu'ils ont tenté pour la première fois de rechercher des signes de biologie martienne avec les atterrisseurs Viking dans les années 1970 : Il n'y a pas de signature définitive de la vie.

C'est peut-être sur le point de changer. En 2021, une équipe dirigée par Lee Cronin, de l'université de Glasgow, en Écosse, et Sara Walker, de l'université d'État de l'Arizona, a proposé une méthode très générale pour identifier les molécules produites par les systèmes vivants, même ceux qui utilisent des chimies inconnues. Leur méthode suppose simplement que les formes de vie extraterrestres produisent des molécules dont la complexité chimique est similaire à celle de la vie sur Terre.

Appelée théorie de l'assemblage, l'idée qui sous-tend la stratégie des deux chercheurs a des objectifs encore plus ambitieux. Comme l'indique une récente série de publications, elle tente d'expliquer pourquoi des choses apparemment improbables, telles que vous et moi, existent. Et elle cherche cette explication non pas, à la manière habituelle de la physique, dans des lois physiques intemporelles, mais dans un processus qui imprègne les objets d'histoires et de souvenirs de ce qui les a précédés. Elle cherche même à répondre à une question qui laisse les scientifiques et les philosophes perplexes depuis des millénaires : qu'est-ce que la vie, de toute façon ?

Il n'est pas surprenant qu'un projet aussi ambitieux ait suscité le scepticisme. Ses partisans n'ont pas encore précisé comment il pourrait être testé en laboratoire. Et certains scientifiques se demandent si la théorie de l'assemblage peut même tenir ses promesses les plus modestes, à savoir distinguer la vie de la non-vie et envisager la complexité d'une nouvelle manière.

La théorie de l'assemblage a évolué, en partie, pour répondre au soupçon de Lee Cronin selon lequel "les molécules complexes ne peuvent pas simplement émerger, parce que l'espace combinatoire est trop vaste".

Mais d'autres estiment que la théorie de l'assemblage n'en est qu'à ses débuts et qu'il existe une réelle possibilité qu'elle apporte une nouvelle perspective à la question de la naissance et de l'évolution de la complexité. "Il est amusant de s'engager dans cette voie", a déclaré le théoricien de l'évolution David Krakauer, président de l'Institut Santa Fe. Selon lui, la théorie de l'assemblage permet de découvrir l'histoire contingente des objets, une question ignorée par la plupart des théories de la complexité, qui ont tendance à se concentrer sur la façon dont les choses sont, mais pas sur la façon dont elles sont devenues telles. Paul Davies, physicien à l'université de l'Arizona, est d'accord avec cette idée, qu'il qualifie de "nouvelle, susceptible de transformer notre façon de penser la complexité".

Sur l'ordre des choses

La théorie de l'assemblage est née lorsque M. Cronin s'est demandé pourquoi, compte tenu du nombre astronomique de façons de combiner différents atomes, la nature fabrique certaines molécules et pas d'autres. C'est une chose de dire qu'un objet est possible selon les lois de la physique, c'en est une autre de dire qu'il existe une voie réelle pour le fabriquer à partir de ses composants. "La théorie de l'assemblage a été élaborée pour traduire mon intuition selon laquelle les molécules complexes ne peuvent pas simplement émerger parce que l'espace combinatoire est trop vaste", a déclaré M. Cronin.

Walker, quant à lui, s'est penché sur la question de l'origine de la vie - une question étroitement liée à la fabrication de molécules complexes, car celles des organismes vivants sont bien trop complexes pour avoir été assemblées par hasard. Walker s'est dit que quelque chose avait dû guider ce processus avant même que la sélection darwinienne ne prenne le dessus.

Cronin et Walker ont uni leurs forces après avoir participé à un atelier d'astrobiologie de la NASA en 2012. "Sara et moi discutions de la théorie de l'information, de la vie et des voies minimales pour construire des machines autoreproductibles", se souvient M. Cronin. "Et il m'est apparu très clairement que nous convergions tous les deux sur le fait qu'il manquait une 'force motrice' avant la biologie."

Aujourd'hui, la théorie de l'assemblage fournit une explication cohérente et mathématiquement précise de l'apparente contingence historique de la fabrication des objets - pourquoi, par exemple, ne peut-on pas développer de fusées avant d'avoir d'abord la vie multicellulaire, puis l'homme, puis la civilisation et la science. Il existe un ordre particulier dans lequel les objets peuvent apparaître.

"Nous vivons dans un univers structuré de manière récursive*", a déclaré M. Walker. "La plupart des structures doivent être construites à partir de la mémoire du passé. L'information se construit au fil du temps.

Cela peut sembler intuitivement évident, mais il est plus difficile de répondre à certaines questions sur l'ordre des choses. Les dinosaures ont-ils dû précéder les oiseaux ? Mozart devait-il précéder John Coltrane ? Peut-on dire quelles molécules ont nécessairement précédé l'ADN et les protéines ?

Quantifier la complexité

La théorie de l'assemblage repose sur l'hypothèse apparemment incontestable que les objets complexes résultent de la combinaison de nombreux objets plus simples. Selon cette théorie, il est possible de mesurer objectivement la complexité d'un objet en examinant la manière dont il a été fabriqué. Pour ce faire, on calcule le nombre minimum d'étapes nécessaires pour fabriquer l'objet à partir de ses ingrédients, que l'on quantifie en tant qu'indice d'assemblage (IA).

En outre, pour qu'un objet complexe soit intéressant d'un point de vue scientifique, il faut qu'il y en ait beaucoup. Des objets très complexes peuvent résulter de processus d'assemblage aléatoires - par exemple, on peut fabriquer des molécules de type protéine en reliant n'importe quels acides aminés en chaînes. En général, cependant, ces molécules aléatoires ne feront rien d'intéressant, comme se comporter comme une enzyme. En outre, les chances d'obtenir deux molécules identiques de cette manière sont extrêmement faibles.

En revanche, les enzymes fonctionnelles sont fabriquées de manière fiable à maintes reprises en biologie, car elles sont assemblées non pas au hasard, mais à partir d'instructions génétiques transmises de génération en génération. Ainsi, si le fait de trouver une seule molécule très complexe ne vous dit rien sur la manière dont elle a été fabriquée, il est improbable de trouver plusieurs molécules complexes identiques, à moins qu'un processus orchestré - peut-être la vie - ne soit à l'œuvre.

Cronin et Walker ont calculé que si une molécule est suffisamment abondante pour être détectable, son indice d'assemblage peut indiquer si elle a été produite par un processus organisé et réaliste. L'intérêt de cette approche est qu'elle ne suppose rien sur la chimie détaillée de la molécule elle-même, ni sur celle de l'entité vivante qui l'a produite. Elle est chimiquement agnostique. C'est ce qui la rend particulièrement précieuse lorsque nous recherchons des formes de vie qui pourraient ne pas être conformes à la biochimie terrestre, a déclaré Jonathan Lunine, planétologue à l'université Cornell et chercheur principal d'une mission proposée pour rechercher la vie sur la lune glacée de Saturne, Encelade.

"Il est bien qu'au moins une technique relativement agnostique soit embarquée à bord des missions de détection de la vie", a déclaré Jonathan Lunine.

Il ajoute qu'il est possible d'effectuer les mesures requises par la théorie de l'assemblage avec des techniques déjà utilisées pour étudier la chimie des surfaces planétaires. "La mise en œuvre de mesures permettant l'utilisation de la théorie de l'assemblage pour l'interprétation des données est éminemment réalisable", a-t-il déclaré.

La mesure du travail d'une vie

Ce qu'il faut, c'est une méthode expérimentale rapide et facile pour déterminer l'IA (indice d'assemblage) de certaines molécules. À l'aide d'une base de données de structures chimiques, Cronin, Walker et leurs collègues ont conçu un moyen de calculer le nombre minimum d'étapes nécessaires à la fabrication de différentes structures moléculaires. Leurs résultats ont montré que, pour les molécules relativement petites, l'indice d'assemblage est à peu près proportionnel au poids moléculaire. Mais pour les molécules plus grandes (tout ce qui est plus grand que les petits peptides, par exemple), cette relation est rompue.

Dans ces cas, les chercheurs ont découvert qu'ils pouvaient estimer l'IA à l'aide de la spectrométrie de masse, une technique déjà utilisée par le rover Curiosity de la NASA pour identifier les composés chimiques à la surface de Mars, et par la sonde Cassini de la NASA pour étudier les molécules qui jaillissent d'Encelade.

La spectrométrie de masse décompose généralement les grosses molécules en fragments. Cronin, Walker et leurs collègues ont constaté qu'au cours de ce processus, les grosses molécules à IA élevé se fracturent en mélanges de fragments plus complexes que celles à IA faible (comme les polymères simples et répétitifs). Les chercheurs ont ainsi pu déterminer de manière fiable l'IA (indice d'assemblage) en fonction de la complexité du spectre de masse de la molécule.

Lorsque les chercheurs ont ensuite testé la technique, ils ont constaté que les mélanges complexes de molécules produites par des systèmes vivants - une culture de bactéries E. coli, des produits naturels comme le taxol (un métabolite de l'if du Pacifique aux propriétés anticancéreuses), de la bière et des cellules de levure - présentaient généralement des IA moyens nettement plus élevés que les minéraux ou les simples substances organiques.

L'analyse est susceptible de donner lieu à des faux négatifs : certains produits issus de systèmes vivants, tels que le scotch Ardbeg single malt, ont des IA qui suggèrent une origine non vivante. Mais ce qui est peut-être plus important encore, c'est que l'expérience n'a produit aucun faux positif : Les systèmes abiotiques ne peuvent pas obtenir des IA suffisamment élevés pour imiter la biologie. Les chercheurs ont donc conclu que si un échantillon doté d'un IA moléculaire élevé est mesuré sur un autre monde, il est probable qu'il ait été fabriqué par une entité que l'on pourrait qualifier de vivante.

(Photo-schéma : Une échelle de la vie)

Les chercheurs ont établi/estimé l'indice d'assemblage (IA) de substance variées par des mesures répétés de leurs structures moléculaires, Seules celles assemblées biologiquement ont un AI au-dessus d'un certain palier. 

Non biologique        (vert)

Indice               bas        moyen       haut

charbon             10...    12

quarz                    11... 12

granit                 10  ..   12..   15

Biologique               (jaune)

levure                10                         24

urine                9                          ...   27

eau de mer      9                                 ....28

e-Coli                                    15                        31

bière                 10                                 ..            34

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.1038/s41467-021-23258-x)

La spectrométrie de masse ne fonctionnerait que dans le cadre de recherches astrobiologiques ayant accès à des échantillons physiques, c'est-à-dire des missions d'atterrissage ou des orbiteurs comme Europa Clipper, qui peuvent ramasser et analyser des molécules éjectées de la surface d'un monde. Mais Cronin et ses collègues viennent de montrer qu'ils peuvent mesurer l'IA moléculaire en utilisant deux autres techniques qui donnent des résultats cohérents. L'une d'entre elles, la spectroscopie infrarouge, pourrait être utilisée par des instruments tels que ceux du télescope spatial James Webb, qui étudient à distance la composition chimique de mondes lointains.

Cela ne veut pas dire que ces méthodes de détection moléculaire offrent un instrument de mesure précis permettant de passer de la pierre au reptile. Hector Zenil, informaticien et biotechnologue à l'université de Cambridge, a souligné que la substance présentant l'IA le plus élevé de tous les échantillons testés par le groupe de Glasgow - une substance qui, selon cette mesure, pourrait être considérée comme la plus "biologique" - n'était pas une bactérie.

C'était de la bière.

Se débarrasser des chaînes du déterminisme

La théorie de l'assemblage prédit que des objets comme nous ne peuvent pas naître isolément - que certains objets complexes ne peuvent émerger qu'en conjonction avec d'autres. C'est intuitivement logique : l'univers n'a jamais pu produire un seul être humain. Pour qu'il y ait des êtres humains, il faut qu'il y en ait beaucoup.

La physique traditionnelle n'a qu'une utilité limitée lorsqu'il s'agit de prendre en compte des entités spécifiques et réelles telles que les êtres humains en général (et vous et moi en particulier). Elle fournit les lois de la nature et suppose que des résultats spécifiques sont le fruit de conditions initiales spécifiques. Selon ce point de vue, nous devrions avoir été codés d'une manière ou d'une autre dans les premiers instants de l'univers. Mais il faut certainement des conditions initiales extrêmement bien réglées pour que l'Homo sapiens (et a fortiori vous) soit inévitable.

La théorie de l'assemblage, selon ses défenseurs, échappe à ce type d'image surdéterminée. Ici, les conditions initiales n'ont pas beaucoup d'importance. Les informations nécessaires à la fabrication d'objets spécifiques tels que nous n'étaient pas présentes au départ, mais se sont accumulées au cours du processus d'évolution cosmique, ce qui nous dispense de faire porter toute la responsabilité à un Big Bang incroyablement bien réglé. L'information "est dans le chemin", a déclaré M. Walker, "pas dans les conditions initiales".

Cronin et Walker ne sont pas les seuls scientifiques à tenter d'expliquer que les clés de la réalité observée pourraient bien ne pas résider dans des lois universelles, mais dans la manière dont certains objets sont assemblés et se transforment en d'autres. La physicienne théorique Chiara Marletto, de l'université d'Oxford, développe une idée similaire avec le physicien David Deutsch. Leur approche, qu'ils appellent la théorie des constructeurs et que Marletto considère comme "proche dans l'esprit" de la théorie de l'assemblage, examine quels types de transformations sont possibles et lesquels ne le sont pas.

"La théorie des constructeurs parle de l'univers des tâches capables d'effectuer certaines transformations", explique M. Cronin. "On peut considérer qu'elle limite ce qui peut se produire dans le cadre des lois de la physique. La théorie de l'assemblage, ajoute-t-il, ajoute le temps et l'histoire à cette équation.

Pour expliquer pourquoi certains objets sont fabriqués et d'autres non, la théorie de l'assemblage identifie une hiérarchie imbriquée de quatre "univers" distincts.

1 Dans l'univers de l'assemblage, toutes les permutations des éléments de base sont autorisées. 2 Dans l'univers de l'assemblage possible, les lois de la physique limitent ces combinaisons, de sorte que seuls certains objets sont réalisables. 3 L'univers de l'assemblage contingenté élague alors le vaste éventail d'objets physiquement autorisés en sélectionnant ceux qui peuvent effectivement être assemblés selon des chemins possibles. 4 Le quatrième univers est l'assemblage observé, qui comprend uniquement les processus d'assemblage qui ont généré les objets spécifiques que nous voyons actuellement.

(Photo - schéma montrant l'univers de l'assemblage dès son origine via un entonnoir inversé présentant ces 4 étapes, qui élargissent en descendant)

1 Univers assembleur

Espace non contraint contenant toutes les permutations possibles des blocs de base de l'univers

2 Assemblage possibles

Seuls les objets physiquement possibles existent, limités par les lois de la physique.

3 Assemblages contingents

Objets qui peuvent effectivement être assemblés en utilisant des chemins possibles

4 Assemblage dans le réel

Ce que nous pouvons observer

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.48550/arXiv.2206.02279)

La théorie de l'assemblage explore la structure de tous ces univers, en utilisant des idées tirées de l'étude mathématique des graphes, ou réseaux de nœuds interconnectés. Il s'agit d'une "théorie de l'objet d'abord", a déclaré M. Walker, selon laquelle "les choses [dans la théorie] sont les objets qui sont effectivement fabriqués, et non leurs composants".

Pour comprendre comment les processus d'assemblage fonctionnent dans ces univers notionnels, prenons le problème de l'évolution darwinienne. Conventionnellement, l'évolution est quelque chose qui "s'est produit" une fois que des molécules répliquées sont apparues par hasard - un point de vue qui risque d'être une tautologie (affirmation/certitude), parce qu'il semble dire que l'évolution a commencé une fois que des molécules évolutives ont existé. Les partisans de la théorie de l'assemblage et de la théorie du constructeur recherchent au contraire "une compréhension quantitative de l'évolution ancrée dans la physique", a déclaré M. Marletto.

Selon la théorie de l'assemblage, pour que l'évolution darwinienne puisse avoir lieu, il faut que quelque chose sélectionne de multiples copies d'objets à forte intelligence artificielle dans l'assemblage possible. Selon M. Cronin, la chimie à elle seule pourrait en être capable, en réduisant des molécules relativement complexes à un petit sous-ensemble. Les réactions chimiques ordinaires "sélectionnent" déjà certains produits parmi toutes les permutations possibles parce que leur vitesse de réaction est plus rapide.

Les conditions spécifiques de l'environnement prébiotique, telles que la température ou les surfaces minérales catalytiques, pourraient donc avoir commencé à vidanger/filtrer le pool des précurseurs moléculaires de la vie parmi ceux de l'assemblage possible. Selon la théorie de l'assemblage, ces préférences prébiotiques seront "mémorisées" dans les molécules biologiques actuelles : Elles encodent leur propre histoire. Une fois que la sélection darwinienne a pris le dessus, elle a favorisé les objets les plus aptes à se répliquer. Ce faisant, ce codage de l'histoire s'est encore renforcé. C'est précisément la raison pour laquelle les scientifiques peuvent utiliser les structures moléculaires des protéines et de l'ADN pour faire des déductions sur les relations évolutives des organismes.

Ainsi, la théorie de l'assemblage "fournit un cadre permettant d'unifier les descriptions de la sélection en physique et en biologie", écrivent Cronin, Walker et leurs collègues. Plus un objet est "assemblé", plus il faut de sélections successives pour qu'il parvienne à l'existence.

"Nous essayons d'élaborer une théorie qui explique comment la vie naît de la chimie", a déclaré M. Cronin, "et de le faire d'une manière rigoureuse et vérifiable sur le plan empirique".

Une mesure pour tous les gouverner ?

Krakauer estime que la théorie de l'assemblage et la théorie du constructeur offrent toutes deux de nouvelles façons stimulantes de réfléchir à la manière dont les objets complexes prennent naissance. "Ces théories sont davantage des télescopes que des laboratoires de chimie", a-t-il déclaré. "Elles nous permettent de voir les choses, pas de les fabriquer. Ce n'est pas du tout une mauvaise chose et cela pourrait être très puissant".

Mais il prévient que "comme pour toute la science, la preuve sera dans le pudding".

Zenil, quant à lui, estime que, compte tenu de l'existence d'une liste déjà considérable de mesures de la complexité telles que la complexité de Kolmogorov, la théorie de l'assemblage ne fait que réinventer la roue. Marletto n'est pas d'accord. "Il existe plusieurs mesures de la complexité, chacune capturant une notion différente de cette dernière", a-t-elle déclaré. Mais la plupart de ces mesures ne sont pas liées à des processus réels. Par exemple, la complexité de Kolmogorov suppose une sorte d'appareil capable d'assembler tout ce que les lois de la physique permettent. Il s'agit d'une mesure appropriée à l'assemblage possible, a déclaré Mme Marletto, mais pas nécessairement à l'assemblage observé. En revanche, la théorie de l'assemblage est "une approche prometteuse parce qu'elle se concentre sur des propriétés physiques définies de manière opérationnelle", a-t-elle déclaré, "plutôt que sur des notions abstraites de complexité".

Selon M. Cronin, ce qui manque dans les mesures de complexité précédentes, c'est un sens de l'histoire de l'objet complexe - les mesures ne font pas la distinction entre une enzyme et un polypeptide aléatoire.

Cronin et Walker espèrent que la théorie de l'assemblage permettra à terme de répondre à des questions très vastes en physique, telles que la nature du temps et l'origine de la deuxième loi de la thermodynamique. Mais ces objectifs sont encore lointains. "Le programme de la théorie de l'assemblage n'en est qu'à ses débuts", a déclaré Mme Marletto. Elle espère voir la théorie mise à l'épreuve en laboratoire. Mais cela pourrait aussi se produire dans la nature, dans le cadre de la recherche de processus réalistes se déroulant sur des mondes extraterrestres.

 

Auteur: Internet

Info: https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=78bedba296 - Philip Ball , contributing Writer,  4 mai 2023. *Qui peut être répété un nombre indéfini de fois par l'application de la même règle.

[ ergodicité mystère ] [ exobiologie ] [ astrobiologie ] [ exploration spatiale ] [ origine de la vie ] [ xénobiologie ] [ itération nécessaire ] [ ordre caché ] [ univers mécanique ] [ théorie-pratique ] [ macromolécules ] [ progression orthogonale ] [ décentrement anthropique ]

 

Commentaires: 0

Ajouté à la BD par miguel