Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 55
Temps de recherche: 0.0416s

bornages notionnels

Q) - Peux-tu expliquer autrement cette phrase "le vivant est considéré comme non ergodique par qu'il n'explore qu'une toute petite partie de son espace de phase."

R) - L'idée de base de cette phrase est que la vie est un système complexe, avec de nombreuses possibilités. Cependant, la vie n'explore qu'une petite partie de ces possibilités. Il existe un nombre infini de combinaisons possibles de gènes, de protéines, de cellules, d'organismes et d'écosystèmes. Cependant, la vie n'a exploré qu'une petite partie de ces possibilités.

Il y a plusieurs raisons à cela. Tout d'abord, la vie est limitée par les lois physiques. Les lois physiques déterminent quelles combinaisons de gènes et de protéines sont possibles. 

Deuxièmement, la vie est limitée par les ressources disponibles. Les ressources disponibles limitent le nombre d'organismes qui peuvent vivre dans un environnement donné. 

Troisièmement, la vie est limitée par le hasard. Le hasard joue un rôle important dans l'évolution, car il peut conduire à des mutations génétiques qui peuvent donner naissance à de nouvelles formes de vie. 

En raison de ces limitations, la vie n'explore qu'une petite partie de son espace de phase. Cela signifie que les résultats de l'évolution sont imprévisibles.

Q) - Merci. Peux-tu expliciter "espace de phase" en terme électrique

R) - En termes électriques, l'espace de phase est l'ensemble des états possibles d'un système électrique. Il est décrit par un ensemble de variables, telles que la tension, le courant, l'inductance, la capacité et la résistance.

Q) - Dans mon esprit "espace de phase" correspond aussi à "bande passante"

R) Oui, il y a une certaine similitude entre l'espace de phase et la bande passante.

En termes électriques, la bande passante est la plage de fréquences qu'un système électrique peut transmettre sans distorsion.

L'espace de phase, quant à lui, est l'ensemble des états possibles d'un système électrique.

La bande passante peut être considérée comme une restriction de l'espace de phase. En effet, un système électrique ne peut pas transmettre des fréquences qui dépassent sa bande passante.

Par exemple, un filtre coupe-bas ne peut transmettre que des fréquences inférieures à sa fréquence de coupure.

Dans ce cas, la bande passante du filtre est une restriction de l'espace de phase du signal qui est transmis par le filtre.

Cependant, il existe également des différences entre l'espace de phase et la bande passante.

L'espace de phase est un concept plus général que la bande passante. Il peut être utilisé pour décrire le comportement de tout système, pas seulement des systèmes électriques.

La bande passante, quant à elle, est un concept plus spécifique. Il est utilisé pour décrire le comportement des systèmes électriques qui transmettent des signaux.

En conclusion, l'espace de phase et la bande passante sont deux concepts liés, mais qui ne sont pas identiques. L'espace de phase est un concept plus général, tandis que la bande passante est un concept plus spécifique.

Q) - Merci. Ce sont deux termes qui parlent des limites de concepts issus du réel : quel pourrait être un un concept encore plus général dans cet ordre d'idées

R) - Un concept encore plus général dans cet ordre d'idées pourrait être celui de limite de l'appréhension.

Ce concept désigne l'idée que notre capacité à comprendre le monde est limitée par notre propre nature. Nous sommes des êtres finis, avec des sens limités, et notre compréhension du monde est nécessairement biaisée par nos propres expériences et nos propres perspectives.

Par exemple, notre compréhension de la physique est limitée par nos propres instruments de mesure. Nous ne pouvons pas observer des particules subatomiques directement, et notre compréhension de la matière est donc nécessairement basée sur des modèles mathématiques. 

De même, notre compréhension de la vie est limitée par nos propres sens. Nous ne pouvons pas voir les bactéries ou les virus, et notre compréhension de la biologie est donc nécessairement basée sur des extrapolations à partir des organismes que nous pouvons observer.

Enfin, notre compréhension de la société est limitée par nos propres expériences. Nous ne pouvons pas comprendre les cultures qui sont très différentes de la nôtre, et notre compréhension du monde social est donc nécessairement biaisée par nos propres valeurs et nos propres normes. 

Le concept de limite de l'appréhension est important car il nous rappelle que notre compréhension du monde est toujours imparfaite. Nous devons être conscients de cette limite pour éviter de tomber dans le piège de l'absolutisme ou de l'essentialisme.

Voici quelques autres concepts qui pourraient être considérés comme encore plus généraux que les deux que vous avez mentionnés :

L'incomplétude : L'idée que nous ne pouvons jamais connaître toute la vérité sur le monde.

L'incertitude : L'idée que nous ne pouvons jamais être sûrs de nos connaissances.

La relativité : L'idée que la vérité est relative à notre point de vue.

Notre compréhension du monde est toujours imparfaite et est toujours sujette à évolution.

Q) - Il y a aussi les limitations apportées pas nos propres systèmes de codages : langages, écritures, musique, mathématiques.... Qui paraissent bien faibles par comparaison avec les possibilités de développement que montrent les mémoires génétiques sur base 4.

R) - 
Oui, c'est vrai. Nos systèmes de codage sont limités par notre propre nature. Nous sommes des êtres humains, avec un cerveau qui a évolué pour nous permettre de survivre et de nous reproduire dans notre environnement. Nos systèmes de codage sont donc adaptés à cette tâche, mais ils ne sont pas adaptés à la compréhension du monde dans toute sa complexité.

Les mémoires génétiques, quant à elles, sont codées sur une base 4. Cela signifie qu'elles peuvent coder un nombre beaucoup plus grand de combinaisons que les langages, les écritures, la musique ou les mathématiques, qui sont tous codés sur une base 2.

Cette différence de base permet aux mémoires génétiques de coder des informations beaucoup plus complexes. Par exemple, elles peuvent coder des informations sur la structure et la fonction des organismes, sur les interactions entre les organismes et sur l'environnement. 

Ces informations sont essentielles à la vie. Elles permettent aux organismes de se développer, de s'adapter et de survivre. 

Par conséquent, il est probable que les mémoires génétiques soient plus puissantes que nos propres systèmes de codage. Elles nous permettent de comprendre le monde dans une mesure qui nous est inaccessible. 

Cependant, il est important de noter que les mémoires génétiques ne sont pas parfaites. Elles sont également limitées par les lois de la physique et par les contraintes de l'évolution. 

Par exemple, les mémoires génétiques sont limitées par la taille de l'ADN. L'ADN est une molécule très longue, mais elle a une taille finie. Cela signifie que les mémoires génétiques ne peuvent pas coder une quantité infinie d'informations. 

De même, les mémoires génétiques sont limitées par les contraintes de l'évolution. L'évolution est un processus lent et progressif. Il est donc difficile pour les mémoires génétiques de coder des informations qui sont très différentes de celles qui ont été transmises par les générations précédentes. 

Malgré ces limitations, les mémoires génétiques sont un outil puissant qui nous permet de comprendre le monde. Elles nous permettent de comprendre la vie dans toute sa complexité et sa beauté.

Q) - D'autant qu'une bonne partie des fonctions de ces mémoires - le junk adn par exemples - nous échappent.

R) - Oui, c'est vrai. Une bonne partie des fonctions des mémoires génétiques nous échappent, notamment l'ADN non codant, également appelé ADN poubelle.

L'ADN non codant représente environ 98 % du génome humain. Il s'agit de séquences d'ADN qui ne codent pas pour des protéines.

Pendant longtemps, l'ADN non codant a été considéré comme inutile. Cependant, des recherches récentes ont montré que l'ADN non codant joue un rôle important dans la régulation de l'expression des gènes.

L'ADN non codant peut jouer un rôle dans la régulation de l'expression des gènes de plusieurs façons. Il peut servir de sites d'attachement pour les protéines qui régulent l'expression des gènes. Il peut également servir de matrice pour la transcription des ARN non codants, qui jouent également un rôle dans la régulation de l'expression des gènes.

L'ADN non codant peut également jouer un rôle dans d'autres processus biologiques, tels que la réparation de l'ADN, la réplication de l'ADN et l'intégration de l'ADN viral.

Cependant, nous ne comprenons pas encore entièrement les fonctions de l'ADN non codant. Il reste encore beaucoup de recherches à faire pour comprendre ce rôle important. Elle pourront nous aider à mieux comprendre le fonctionnement des cellules et des organismes. Elles pourraient également nous aider à développer de nouvelles thérapies pour les maladies génétiques.

Auteur: Google Bard chatbot

Info: 19 janv 2024

[ délimitations conceptuelles ]

 

Commentaires: 0

Ajouté à la BD par miguel

perception humaine

Les schémas mathématiques secrets révélés par la musique de Bach

Le compositeur baroque allemand Jean Sébastien Bach a produit une musique si bien structurée qu'elle est souvent comparée aux maths. Bien que peu d'entre nous soient émotionnellement affectés par les mathématiques, les œuvres de Bach - et la musique en général - nous émeuvent. C'est plus que du son ; c'est un message. Désormais, grâce aux outils de la théorie de l'information, les chercheurs commencent à comprendre comment la musique de Bach fait passer ce message.

En faisant de ses partitions de simples réseaux de points, appelés nœuds, reliés par des lignes, nommeés bords, les scientifiques ont quantifié les informations véhiculées par des centaines de compositions de Bach. Analyse de ces réseaux musicaux publiée le 2 février dans Physical Review Research qui révèle que les nombreux styles musicaux de Bach, tels que les chorales et les toccatas, différaient considérablement dans la quantité d'informations qu'ils communiquaient - et que certains réseaux musicaux contenaient des structures qui pouvaient faciliter la compréhension de leurs messages par les auditeurs humains.

" Je trouve cette idée vraiment cool ", explique le physicien Suman Kulkarni de l’Université de Pennsylvanie, auteur principal de la nouvelle étude. " Nous avons utilisé des outils de la physique sans faire d’hypothèses sur les pièces musicales, en commençant par cette simple représentation et en voyant ce qui peut nous dire sur les informations qui sont transmises. "

Les chercheurs ont quantifié le contenu de toute cette information, des séquences simples aux réseaux enchevêtrés, utilisant le concept d'entropie de l'information, introduit par le mathématicien Claude Shannon en 1948.

Comme son nom l'indique, l'entropie de l'information est mathématiquement et conceptuellement liée à l'entropie thermodynamique. Elle peut être considérée comme une mesure du degré de surprise d'un message - "message" qui peut être tout ce qui transmet des informations, d'une séquence de nombres à un morceau de musique. Cette perspective peut sembler contre-intuitive, étant donné que, dans le langage courant, l'information est souvent assimilée à la certitude. Mais l'idée clé de l'entropie de l'information est qu'apprendre quelque chose que l'on sait déjà n'est pas apprendre du tout.

Une conversation avec une personne qui ne sait exprimer qu'une chose, comme le personnage Hodor dans la série télévisée Game of Thrones, qui dit seulement " Hodor ", sera prévisible mais pas informationelle. Une discussion avec Pikachu sera un peu meilleure ; le Pokémon ne peut dire que les syllabes de son nom, mais il peut les réarranger, contrairement à Hodor. De même, une pièce de musique ne comportant qu'une seule note sera relativement facile à "apprendre" par le cerveau, c'est-à-dire à reproduire avec précision sous la forme d'un modèle mental, mais le morceau aura du mal à faire passer un quelconque message. Regarder un jeu de pile ou face avec une pièce à deux têtes ne donnera aucune information.

Bien sûr, envoyer un message plein d'informations n'est pas très bon si le quelque chose - ou qui que ce soit - qui le reçoit ne peut  comprendre avec précision ces informations. Et quand il s'agit de messages musicaux, les chercheurs travaillent encore sur la façon dont nous apprenons ce que la musique essaie de nous dire.

" Il existe quelques théories différentes ", explique le cognitiviste Marcus Pearce de l’université Queen Mary de Londres, qui n’a pas participé à la récente étude de la recherche sur l’évaluation physique. " La principale, je pense, en ce moment, est basée sur l’apprentissage probabiliste. Dans ce cadre, "apprendre" la musique signifie construire des représentations mentales précises des sons réels que nous entendons - ce que les chercheurs appellent un modèle - par un jeu d'anticipation et de surprise. Nos modèles mentaux prédisent la probabilité qu'un son donné vienne ensuite, sur la base de ce qui a précédé. Ensuite, explique M. Pearce, " on découvre si la prédiction était juste ou fausse, et on peut alors mettre à jour son modèle en conséquence".

Kulkarni et ses collègues sont physiciens, pas musiciens. Ils voulaient utiliser les outils de la théorie de l'information pour explorer la musique à la recherche de structures d'information qui pourraient avoir quelque chose à voir avec la façon dont les humains glanent un sens de la mélodie.

Ainsi Kulkarni a transformé 337 compositions de Bach en bandes de nœuds interconnectés et calculé l'entropie de l'information des réseaux qui en résultent. Dans ces réseaux, chaque note de la partition d'origine est un noeud, et chaque transition entre notes est un pont. Par example, si une pièce inclut une note Mi suivie d'un Do et d'un Sol joués ensemble, le noeud représentant E sera relié aux noeuds représentant Do et Sol.

Les réseaux de ce notation transitions dans la musique de Bach ont générés plus de poinçon d'information que des réseaux de même taille générés aléatoirement - le résultat d'une plus grande variation dans les degrés nodaux des réseaux, c'est-à-dire le nombre d'arêtes connectées à chaque nœud. En outre, les scientifiques ont découvert des variations dans la structure de l'information et le contenu des nombreux styles de composition de Bach. Les chorals, hymnes destinés à être chanté, ont donné lieu à des réseaux relativement pauvres en informations, bien que plus riches en informations que les réseaux de même taille générés de manière aléatoire. Les toccatas et les préludes, styles musicaux souvent écrits pour des instruments à clavier tels que l'orgue, le clavecin et le piano, présentant une entropie de l'information plus élevée.

" J’ai été particulièrement excité par les niveaux plus élevés de surprises dans les toccatas que dans les œuvres chorales ", explique le co-auteur de l’étude et physicien Dani Bassett de l’Université de Pennsylvanie. " Ces deux types de pièces sonnent et résonnent différement dans mes os, et ça m'a passionné de voir que cette distinction se manifeste dans l'information de composition. "

Ces structures de réseau dans les compositions de Bach pourraient également permettre aux auditeurs humains d'apprendre plus facilement certaines choses. Les humains n'apprennent pas parfaitement les réseaux. Nous avons des préjugés, dit Bassett. " Nous ignorons en quelque sorte certaines des informations locales au profit de la vue d’une image plus grande de l’information sur l’ensemble du système ", ajoute-t-ils. En modélisant ce biais dans la façon dont nous construisons nos modèles mentaux de réseaux complexes, les chercheurs ont comparé l'ensemble des informations de chaque réseau musical à la quantité d'informations qu'un auditeur humain en tirerait.

Des réseaux musicaux contenaient des groupes de transitions de notes pourraient aider nos cerveaux biaisés " apprendre " la musique - à reproduire la structure informationnelle de la musique avec précision en tant que modèle mental - sans sacrifier beaucoup d'informations.

" La façon dont elles saisissent l’aptitude à l’apprentissage est assez intéressante ", déclare Peter Harrison de l’Université de Cambridge, qui n’a pas participé à l’étude. " C'est très réducteur dans un certain sens. Mais c'est tout à fait complémentaire avec d'autres théories que nous connaissons, et l'aptitude à apprendre est assez difficile à maîtriser ".

Ce type d'analyse de réseau n'est pas particulier à Bach et il pourrait fonctionner pour n'importe quel compositeur. Pearce dit qu'il sera  intéressant d'utiliser cette approche pour comparer différents compositeurs ou rechercher des tendances informatives à travers l'histoire de la musique. Pour sa part, Kulkarni est excité à l'idée d'analyser les propriétés d'information de partitions d'au-delà de la tradition musicale occidentale.

La musique n'est pas seulement une séquence de notes, note cependant Harrison. Le rythme, le volume, le timbre des instruments, ces éléments sont des aspects importants des messages musicaux qui n'ont pas été pris en compte dans cette étude. Kulkarni dit qu'il sera intéressé par l'inclusion de ces aspects de la musique dans ses réseaux. Le processus pourrait également fonctionner dans l'autre sens, ajoute M. Harrison : plutôt que réduire les caractéristiques musicales à un réseau, il sera intéressant de savoir comment les caractéristiques du réseau se traduisent par des éléments qu'un musicien reconnaîtrait.

Un musicien dira : " Quelles sont les règles musicales réelles, ou les caractéristiques musicales, qui en sont à l’origine ? Puis-je l’entendre sur un piano ? " précise Harrison.

Enfin, on ne sait pas encore exactement comment les modèles de réseaux identifiés dans la nouvelle étude se traduisent dans l'expérience vécue à l'écoute d'un morceau de Bach - ou de n'importe quelle musique, précise M. Pearce. La résolution de ce problème relèvera de la psychologie musicale, poursuit-il. Des expériences pourraient révéler "si, de fait, ce genre de choses est perceptible par les gens et quels sont leurs effets sur le plaisir que les gens éprouvent lorsqu'ils écoutent de la musique". De même Harrison se dit intéressé par des expériences visant à vérifier si les types d'erreurs d'apprentissage en réseau que les chercheurs ont modélisés dans cette étude sont réellement importants pour l'apprentissage de la musique.

"Le fait que les humains présentent ce type de perception imparfaite et biaisée de systèmes informationnels complexes est essentiel pour comprendre comment nous nous impliquons dans la musique", explique M. Bassett. "Comprendre la complexité informationnelle des compositions de Bach ouvre de nouvelles questions sur les processus cognitifs qui sous-tendent la manière dont nous apprécions les différents types de musique."

Auteur: Internet

Info: https://www.scientificamerican.com, 16 féb 2024. Elise Cutts - Secret Mathematical Patterns Revealed in Bach's Music

[ sentiment naturel ] [ approfondissement découverte ] [ dépaysement plaisir ] [ cybernétisation ] [ simple compliqué ] [ occulte harmonie ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

réfléchir

Pourquoi le slow thinking gagne

Être rapide, c'est travailler fort et être intelligent - de la réponse aux appels 24 heures sur 24 à la présence d'esprit la plus vive dans les réunions. La lenteur est pour les paresseux, les oisifs, voire les abrutis. Lorsque nous parlons de ralentir, nous entendons généralement qu'il faut y aller doucement, certainement pas être plus productif.

Tout le monde se souvient de l'histoire de la tortue et du lièvre, mais personne ne semble avoir appris la leçon qu'elle enseigne : La lenteur l'emporte.

Il s'avère que la fable a raison. La recherche suggère régulièrement que la pensée dite lente exige une pensée plus disciplinée et donne lieu à des décisions plus productives que les réactions rapides, qui sont moins précises ou moins utiles. Et la lenteur de la pensée - comme la tortue, lentement mais sûrement - fait son chemin par de nouvelles interventions dans des domaines aussi disparates que la justice pénale, le sport, l'éducation, l'investissement et les études militaires.

La maîtrise de cette dualité dans la nature humaine est au cœur du slow thinking. Son principal partisan, l'ancien psychologue de Princeton Daniel Kahneman, seul non-économiste à avoir reçu le prix Nobel d'économie, décrit ces impulsions contraires dans son livre "Thinking, Fast and Slow" de 2011. La plupart du temps, affirme Kahneman, les gens comptent sur la rapidité - mais c'est en fait la lenteur qui permet de prendre de meilleures décisions. "Shane Frederick, professeur à la Yale's School of Management et collaborateur fréquent de Kahneman, explique comment les gens peuvent aller au-delà de l'impulsion la plus évidente qu'ils ressentent d'abord".

La lenteur de la réflexion n'a rien de nouveau pour les amateurs de sport, grâce au best-seller de Michael Lewis en 2003, "Moneyball", qui explique comment le manager Billy Beane a transformé les Oakland Athletics à court d'argent en une équipe compétitive utilisant l'analyse de données. Et après que l'approche délibérée de Beane ait révolutionné le baseball, les chercheurs et les réformateurs sont confiants dans le fait que le même genre de résultats peut être observé lorsque le concept est appliqué à des problèmes sociaux majeurs, comme la violence chronique ou les taux élevés de décrochage chez les élèves du secondaire.

Une nouvelle étude menée par des chercheurs de l'Université de Chicago, de Harvard, Northwestern et de l'Université de Pennsylvanie a révélé que le slow thinking pour les jeunes hommes vivant dans les quartiers les plus touchés par les gangs de Chicago réduisent leurs chances de participer à la criminalité et améliorent leurs résultats scolaires jusqu'à 44 %.

Le programme Becoming a Man du "Chicago nonprofit Youth Guidance's Becoming" a réalisé les deux tiers des interventions cognitives recensées dans l'étude, ainsi que celles qui étaient statistiquement les plus efficaces.

La Maison-Blanche a récemment donné 10 millions de dollars à la ville de Chicago, en partie pour étendre et étudier Becoming a Man, qui dessert environ 2 000 élèves dans près de 40 écoles publiques. Le programme, lancé en 2004, cible les jeunes garçons de la 7e à la 12e année qui ont été signalés par les enseignants et les conseillers comme ayant de mauvais résultats scolaires et à risque d'être victimes de gangs.

La violence qui s'empare de la ville est un problème qu'il est temps de repenser radicalement : Il y a eu plus de 200 meurtres cette année et plus de 1 269 fusillades.

À l'école secondaire Bronzeville Scholastic Institute High School, dans le South Side de Chicago, Adeeb Odeh, conseiller en orientation, a récemment lancé à ses élèves un défi de fin d'année pour mettre en œuvre ce qu'ils ont appris lors de la dernière année. Depuis le début de l'année scolaire, ils ont effectués plusieurs étapes avec des exercices chronométrés visant à tester leur concentration et leur patience sous pression.

Dans un exercice, les élèves empilént 36 gobelets en plastique en pyramide en trois minutes. Ceux qui ont réussi ont gardé un rythme régulier jusqu'à la dernière coupe, tandis que la peur de la pression du temps a conduit les autres à se précipiter et à voir leurs pyramides s'effondrer. Un autre exercice exigeait que les élèves tirent à tour de rôle des lancers francs dans un panier de basket-ball tandis que d'autres les tentaient de les décourager activement en criant et en tenant des pancartes genre "Tu ne peux pas le faire" ou "Boo !"

"C'est comme une métaphore de la vie réelle, où il faut se concentrer en se distrayant ", dit Jannie Kirby, porte-parole de l'orientation des jeunes.

Anuj Shah, professeur à l'Université de Chicago, coauteur de l'étude Becoming a Man, note que les étudiants du programme apprennent à penser lentement en prenant conscience de leurs impulsions réflexives dans des situations très variables.

"Très souvent, nous nous laissons emporter par l'instant présent " dit Shah. "Le principe fondamental [de la pensée lente,¨] est que nous avons des réactions automatiques qui dictent nos pensées, nos sentiments et notre comportement. Si tu peux comprendre ta pensée, tu peux comprendre comment elle affecte ton comportement."

Selon Shah, une astuce pour prendre conscience de ces tendances automatiques, qu'il s'agisse de colère ou de précipitation dans les postulats, est de prendre un moment et de s'imaginer sortir de la situation qui se présente. "Mettez la décision dans son contexte. Pensez à ce qu'une caméra verrait et ce qu'un tiers neutre verrait."

Faire ses devoirs, c'est-à-dire raisonner étape par étape à travers un problème, dit Frederick, est l'essence même du slow thinking. "c'est étonnant de constater à quel point les opinions ont tendance à s'adoucir rapidement lorsqu'il y a des données à portée de main ", dit-il. "C'est le moyen parfait d'échapper à vos préjugés. Quel que soit votre parti pris, ça n'a pas d'importance - mettez les chiffres et cela neutralise efficacement tout parti pris que vous pourriez avoir."

Frederick est peut-être mieux connu pour avoir créé le "Test de Réflexion Cognitive", une mesure simple pour savoir si une personne résout un problème "rapidement avec peu de délibération consciente" ou par la réflexion et la pensée lente. Kahneman inclut le test dans son livre.

Il a trois questions :

1) Une batte et une balle coûtent 1,10 $. La batte coûte 1,00 $ de plus que la balle. Combien coûte la balle ? ____ cents

2) S'il faut à cinq machines cinq minutes pour faire cinq gadgets, combien de temps faudrat-il à 100 machines pour faire 100 gadgets ? ____ minutes

3) Dans un lac, il y a une plaque de nénuphars. Chaque jour, le champ double de taille. S'il faut 48 jours pour que la plaque couvre tout le lac, combien de temps faudra-t-il pour que la plaque couvre la moitié du lac ? ____ jours

Ce qui rend ces questions par ailleurs simples si délicates, c'est qu'elles sont conçues pour attirer l'intuition humaine vers des mauvaises réponses spécifiques. Sur les 3 428 personnes interrogées par Frederick dans le cadre de son étude, 33 % ont raté les trois questions et 83 % ont raté au moins une des questions. Parmi les diverses universités auprès desquelles Frederick a recueilli des données, c'est au MIT que le pourcentage d'étudiants ayant répondu correctement à toutes les questions était le plus élevé - seulement 48 pour cent.

Frederick précise que les répondants ont donné les réponses intuitives, incorrectes, suivantes : 1) 10 cents*, 2) 100 minutes et 3) 24 jours. La bonne réponse à la première question est 5 cents. La bonne réponse à la deuxième question est cinq minutes. La bonne réponse au troisième problème est 47 jours.

Frederick partage souvent ce test lors de conférences pour des entreprises intéressées par sa recherche - et la plupart des gens donnent encore des réponses intuitives, mais erronées. "Votre intuition n'est pas aussi bonne que vous le pensez," dit-il. "Je pense que le test ébranle la confiance, et que cela seul peut les amener à passer plus de temps et à voir les choses sous un angle nouveau."

Les avantages de la lenteur de la pensée ne sont pas universellement acceptés. Dans son livre de 2005, Malcolm Gladwell, auteur de Blink, affirme que les meilleurs décideurs ne sont pas ceux qui traitent le plus, mais ceux qui prennent les décisions rapidement.

Frederick rétorque que la lenteur de la pensée est encore utile dans les situations d'urgence et qu'elle sera toujours plus importante que la vitesse, en ce sens qu'elle permet de vérifier constamment notre intuition faillible. "Stop, drop, and roll", ("Arrête, lâche et bouge.") par exemple, est enseigné aux enfants dès leur plus jeune âge pour les former à la sécurité incendie, mais ces étapes spécifiques ne sont pas nécessairement intuitives. La RCR n'est pas non plus vraiment intuitive et exige du raisonnement.

Dan Kahan, un professeur de droit de Yale qui étudie également la cognition, suggère que Gladwell et ses partisans lents pourraient avoir raison. Il croit que la rapidité et la lenteur sont également bénéfiques et imparfaites, les qualifiant de "non pas discrètes et hiérarchiques, mais réciproques et intégrées".

Mais Kahan n'est pas d'accord avec Frederick sur la question de savoir si les préjugés peuvent être complètement éliminés par le slow thinking - ou par toute autre méthode. "Nos préjugés ne sont presque jamais ouverts à l'observation, a dit M. Kahan. "Vous pouvez être patient mais toujours partial."

Kahan va jusqu'à affirmer que, dans certains cas, penser plus longtemps et plus intensément ne peut que servir à renforcer ses préjugés. Le danger, c'est quand les gens ne peuvent pas identifier ce qui est le produit de la lenteur de la pensée et ce qui est le produit de la rapidité. Comme l'a dit Kahan, "Les gens ne manquent jamais de preuves de leur côté."

Néanmoins, le slow thinking se répand lentement. Dan Lovallo, professeur à l'Université de Sydney et chercheur principal à l'Université de Californie à Berkeley, a récemment utilisé ses propres recherches pour démontrer dans un rapport McKinsey Quarterly que les chefs d'entreprise et les investisseurs auront plus de succès s'ils réfléchissent lentement et stratégiquement, en s'en remettant aux analyses et aux modèles commerciaux pour surmonter les biais humains qui sont " bien ficelés et qui ne répondent pas à leurs besoins ". Les préjugés utilisent le "raisonnement associatif plutôt que le raisonnement logique", a déclaré M. Lovallo dans un courriel. "La meilleure façon de surmonter les préjugés est de former une catégorie de référence pour des situations similaires. Cela change la discussion et peut être utilisé pour prévoir."

La pensée lente s'est également infiltrée dans les programmes de MBA militaires, qui utilisent le Cognitive Reflection Test de Frederick dans leur programme d'études. Une revue de la Central Intelligence Agency sur le site Web de l'organisation qualifie le livre de Kahneman de "must read" pour les agents de renseignement.

Pour l'instant, les élèves du Bronzeville Scholastic de Chicago apprennent à appliquer la pensée lente à des scénarios plus immédiats et moins complexes, comme ne pas se battre. Au défi de fin d'année, les élèves devaient se rappeler leur formation sur "'énergie guerrière et l'énergie sauvage", explique le conseiller Adeeb Odeh, la première étant l'énergie sage et contrôlée d'un penseur lent, la seconde étant l'énergie automatique et réactive d'un penseur rapide.

Odeh a vu cette idée transformer le comportement de ses élèves au cours de l'année scolaire : J'ai vu des élèves du programme dans le couloir qui éloignaient leurs camarades du début d'une bagarre, leur répétant et leur rappelant simplement : "Energie guerrière, énergie guerrière". ('Warrior energy, warrior energy.)

Auteur: Kadioglu Tara

Info: Boston Globe, 26 juillet 2015, *(Si la balle coûte 10 cents et que le bâton coûte 1,00 $ de plus que la balle, alors le bâton coûtera 1,10 $ pour un grand total de 1,20 $. La bonne réponse à ce problème est que la balle coûte 5 cents et la batte coûte - à un dollar de plus - 1,05 $ pour un grand total de 1,10 $.)

[ réfléchir avant d'agir ]

 
Commentaires: 5
Ajouté à la BD par miguel

épistémologie

Le premier chapitre de l’ouvrage montre que la période grecque est déterminante pour les développements ultérieurs de la connaissance, elle a posé certains principes fondamentaux qui seront discutés jusqu’à nos jours. En synthétisant les apports de penseurs grecs d’Héraclite et Parménide, de Socrate à Platon, Aristote et Épicure, Martine Bocquet pointe qu’à cette époque le signe (séméïon) est secondaire, il est considéré comme un signe de la nature que l’on peut interpréter (symptôme de maladies, foudre, etc.). Il s’oppose au mot qui, lui, repose sur une relation conventionnelle. Martine Bocquet montre qu’Aristote est important pour la sémiotique, de Deely en particulier. Réaffirmant l’importance du rapport sensible au monde, face à Platon, il a placé le séméïon au fondement de la connaissance et orienté ses recherches vers la relation comme catégorie discursive (pp. 33-45), notion qui sera au cœur des discussions des scoliastes.

Le chapitre deux montre l’évolution importante des notions de signe et de relation à la période latine médiévale et scolastique. Suivant l’étude de Deely, Martine Bocquet souligne le rôle d’Augustin d’Hippone. En traduisant le séméïon grec en signum, il a proposé la première formulation générale du signe qui subsume l’opposition entre nature et culture entre lesquelles il fonctionne comme une interface (p. 65, 68). Bien qu’elle demeure imparfaite, l’approche d’Augustin pose d’une part les fondements d’une théorie relationnelle de la connaissance ; d’autre part, en maintenant une distinction entre signe naturel (signum naturale, séméïon) et signe conventionnel (signum datum), elle ouvre sur une conception de la communication, tout à fait intéressante, engageant tous les êtres vivants (animaux, plantes) (p. 67, 69). D’une autre façon, la problématisation de la relation apparaît tout aussi importante à cette période. En distinguant, chez Aristote, la relatio secundum dici (relation transcendantale) — relation exprimée par le discours — et la relatio secundum esse (relation ontologique) — relation en tant qu’entité particulière (p. 70) — Boèce permet de concevoir l’existence de relations ontologiques, indépendantes de la pensée (p. 73) — fondamentales chez Poinsot, Peirce et Deely. Cette distinction aura son incidence puisqu’elle posera les termes de la querelle des universaux, tournant épistémologique majeur de l’histoire des connaissances.

Initiée par Pierre Abélard, la "querelle des universaux" est abordée par Martine Bocquet au chapitre trois et apparaît comme le point pivot de l’ouvrage (pp. 107-112) dans la mesure où elle aura une incidence sur le rapport au monde et à la connaissance. La dispute, qui porte sur la nature de l’objectivité et du statut de réalité des entités dépendantes ou non de la pensée, par le biais de la catégorie aristotélicienne de relation, et, par extension, de celle de signe, oppose les réalistes aux nominalistes.

Les penseurs dits "réalistes", parmi lesquels Thomas d’Aquin, Roger Bacon, Duns Scot, considèrent que le signe est constitué d’une relation indépendante de la pensée, dite ontologique, à la nature. Le traitement de Martine Bocquet montre clairement que Deely se retrouve dans la pensée de ces auteurs, dont il a avant tout souligné la contribution à la sémiotique de Peirce : (i) le signe subsume l’activité cognitive (pp. 80-81) (ii) la relation de signe est dans tous les cas triadique (p. 82), (iii) les signes se constituent de manière dynamique, ce qui leur permet d’agir (sémiosis) et de jouer un rôle dans l’expérience et la connaissance (pp. 83-86).

Martine Bocquet met particulièrement en évidence la pensée de Jean Poinsot (Jean de St-Thomas), en soulignant son influence sur Deely. L’originalité de ce dernier est d’avoir considéré Poinsot comme le précurseur d’une sémiotique voisine de celle de Peirce, plus ontologique encore. Pour le résumer en quelques points, Poinsot défend avant tout que la nature et la réalité du signe sont ontologiques (secundum esse), c’est-à-dire que le signe est une relation dont le véhicule est indifférent à ce qu’il communique (p. 102). Ce point est essentiel car il permet de doter le signe d’une nature proprement relationnelle : (i) il pointe vers autre chose (une autre réalité physique ou psychique), (ii) il permet d’articuler la subjectivité et l’intersubjectivité et (iii) opère la médiation entre les choses (indépendantes de la pensée) et les objets (dépendants de la pensée) (pp. 105-106) ; ce que la représentation, où l’objet pointe vers lui-même, n’autorise pas. Le point de vue de Poinsot est déterminant, car les nombreux retours vers sa pensée réalisés tout au long de l’ouvrage, montrent que c’est au prisme de ces principes que Deely réévaluait les pensées modernes.

De l’autre côté, les "nominalistes" comme Guillaume d’Ockham considèrent que la réalité est extra mentale, que seules les causes externes sont réelles, et qu’en conséquence, les relations intersubjectives n’existent que dans la pensée. Malgré l’intervention des successeurs d’Ockham qui, contrairement à celui-ci, admettront le signe, divisé en deux entités — signes instrumentaux (physiques, accessibles aux sens) et signes formels (concepts) — à partir de 1400 environ, les concepts (signes formels) seront considérés comme des représentations (p. 91). Martine Bocquet montre bien que le principe nominaliste, souvent simplifié, sera largement adopté par les sciences empiriques qu’il permettra de développer, mais cela, et c’est l’enjeu de la démarche de Deely, au détriment du rapport entre le monde et les sens.

Dans le quatrième chapitre consacré à la modernité, Martine Bocquet montre comment Deely a pointé les problèmes et les limites posés par l’héritage du nominalisme, en mettant notamment en perspective les travaux des empiristes (John Locke, David Hume), puis ceux de Kant, avec les propositions de Poinsot. Elle montre d’emblée que le rationalisme de Descartes, où la raison est indépendante et supérieure à la perception, conduira à renégocier la place de la perception dans la connaissance. En concevant les qualités des sens comme des images mentales, les modernes renversent l’ordre de la perception sensorielle reconnu par les scoliastes, les qualités sensorielles (couleurs, odeurs, sons) autrefois premières sont reléguées au second plan (p. 117). Les empiristes (John Locke, George Berkeley, David Hume) contribueront à considérer l’ensemble des sensations comme des images mentales, ils ne seront alors plus capables de s’extraire de la subjectivité (p. 121-124). À ce titre, Martine Bocquet porte à notre attention que Deely avait bien montré que l’empirisme et le rationalisme éludaient la description du phénomène de cognition.

L’approche de Kant apparaît dans l’ouvrage comme point culminant, ou synthèse, de la pensée moderne. En suivant les pas de Deely, Martine Bocquet prend le soin de mettre son travail en perspective avec la pensée de Poinsot, ce qui permet de réaffirmer sa pertinence dans le projet sémiotique de Deely. Kant a eu le mérite d’envisager des relations objectives. Toutefois, en limitant la cognition aux représentations, il la sépare de la signification, c’est-à-dire du supplément de sens contenu dans l’objectivité (au sens de Poinsot), et se coupe de l’expérience de l’environnement sensible qui permet à l’homme de connaître et de constituer le monde (pp. 130-131). Martine Bocquet insiste sur le fait que, selon Deely, la pensée kantienne est lourde de conséquences puisqu’en inversant les concepts d’objectivité et de subjectivité, elle enferme l’individu dans sa propre pensée (p. 134), reléguant la communication au rang d’illusion.

Le dernier chapitre de l’ouvrage est consacré aux chercheurs post-modernes, qui ont marqué la fin du modernisme et opéré un retour vers le signe. On y trouve notamment les apports d’Hegel et de Darwin, entre autres, qui ont permis d’affirmer le rôle concret de la relation ontologique dans la cognition, et la prise des facultés cognitives avec l’environnement physique. Martine Bocquet consacre une grande partie du chapitre à la sémiotique en tant que discipline, ce qui lui permet de réaffirmer l’ancrage de Deely dans l’héritage peircien qui est ici clairement distingué des modèles de Saussure et Eco.

Martine Bocquet rappelle d’abord que la pensée de Peirce s’inspire des réalistes (d’Aquin, Duns Scot) et considère donc que les produits de la pensée sont bien réels, et non de simples constructions des sens. La sémiotique qu’il développe appréhende la signification comme un parcours de pensée dynamique entre expérience et cognition. Dans son modèle ternaire, présenté en détail, la relation de tiercité caractérise le fonctionnement de la cognition humaine depuis la perception d’indices jusqu’à la constitution d’un système de signification ; elle est propre à l’homme qui peut se référer à la réalité mais aussi évoquer des choses imaginées (p. 146). L’intérêt de ce modèle est de permettre d’envisager que les non-humains utilisent aussi des signes, possibilité envisagée par Peirce dans sa « grande vision », doctrine qui selon Bocquet fascine Deely. Ce projet consistait à étendre la sémiotique au vivant, considérant que l’action des signes est enracinée dans toutes les choses du monde. Il ouvre sur un vaste champ de recherche abordé en conclusion, sur lequel nous reviendrons.

Contrairement à la sémiotique peircienne, Bocquet montre que John Deely considère que la sémiologie de Saussure, reposant sur le signe linguistique, est limitée car elle ne s’occupe que des signes conventionnels, culturels. De ce fait, elle se montre non seulement incapable d’approcher le signe naturel mais elle court aussi le risque de faire de la réalité une construction de l’esprit (idéalisme). En dépit d’un substrat peircien partagé, la même critique sera adressée à la théorie des codes d’Eco puis, plus loin dans la conclusion de Martine Bocquet (pp. 171-172), au structuralisme (Greimas, Lévi-Strauss). En somme, ces sémiotiques sont très efficaces pour étudier les systèmes de signes spécifiquement humains, mais, enfermées dans le langage et la culture, elles sont incapables de traiter les signes naturels, toute tentative révèle leur idéalisme. À cet endroit, l’auteure met bien en évidence l’opposition irréductible entre, d’un côté, ces théories qui ne rendent compte ni du signe naturel ni de la reconnaissance des phénomènes de la nature, et de l’autre, la posture de Deely qui défend l’idée que les données des sens ne sont jamais déconnectées et que la perception comprend une structure d’objectivité car les relations sont réelles (p. 165). Finalement, au travers de l’ouvrage, Bocquet montre que Deely prônait un retour à l’universalité du signe.

La conclusion du livre indique que Deely plaçait le signe et la sémiotique au cœur d’une pensée postmoderne capable de rétablir le dialogue entre les sciences dures et les sciences de la communication. Ce dialogue répondrait à la nécessité de comprendre l’action des signes autant dans la nature que dans la culture. Pour concrétiser cela, Deely propose un retour au réalisme oublié des scoliastes latins pour réviser les théories des modernes afin de renouer le lien avec la nature, en tenant compte des entités dépendantes et indépendantes de la pensée (p. 168).

Cette posture s’inscrirait, selon Martine Bocquet, dans un projet sémioéthique au sein duquel l’homme prendrait conscience de ses responsabilités vis-à-vis de la nature. Finalement, la solution à adopter correspond à la "grande vision" de Peirce, introduite en amont, c’est-à-dire une doctrine des signes qui, d’une part, intègre l’ensemble de la connaissance humaine du sensoriel aux interactions sociales et à la culture et, d’autre part, étend la sémiotique à l’ensemble du monde vivant, considéré comme un réseau de significations entre humains et non-humains, et noué sur une relation ontologique présente dans toute chose (pp. 169-170). Mis en application dans les années 1960, ce projet a donné lieu à un ensemble de sémiotiques spécifiques étudiant aussi bien le vivant, comme la physiosémiotique, la phytosémiotique, la zoosémiotique, la biosémiotique, que l’homme avec l’anthroposémiotique. Nous soulignons que certaines de ces disciplines sont aujourd’hui émergentes pour répondre aux questions environnementales actuelles en termes de climat, de cohabitation entre espèces et d’habitabilité du monde.

La restitution des travaux de Deely par Martine Bocquet semble tout à fait pertinente pour les sciences de la communication. Tout d’abord, parce que la démarche historique de Deely invitant à réévaluer nos acquis au prisme de modèles plus anciens, parfois moins connus, est tout à fait d’actualité et nécessaire dans notre réseau de recherche pluridisciplinaire. Ensuite, du fait de la structure détaillée du livre de Martine Bocquet qui permettra autant aux étudiants qu’aux chercheurs de trouver une formulation des concepts et des problèmes qui sous-tendent encore le domaine de la communication.

D’autre part, le grand intérêt de l’ouvrage réside dans le parti pris épistémologique de la sémiotique de Deely. En adoptant la relation ontologique de Poinsot, présente en creux chez Peirce, Deely ouvre des perspectives importantes pour le champ des sciences de la communication puisqu’il attire notre attention sur un concept universel de signe capable de réaffirmer la place du sensible dans la communication et de problématiser les interactions entre humains et non-humains. À ce titre, la pensée de Deely rapportée par Martine Bocquet est tout à fait en phase avec la recherche de ces quinze dernières années où différentes disciplines ont cherché à étudier la signification au-delà des particularités entre humains mais aussi entre êtres vivants, soit en adoptant un point de vue ontologique soit en intégrant les sciences physiques ou cognitives. Citons par exemple la biosémiotique, la zoosémiotique mais aussi l’anthropologie de la nature de Philippe Descola, "l’anthropologie au-delà de l’humain" d’Eduardo Kohn, la sémiophysique de René Thom et Jean Petitot ou encore la sémiotique cognitive.

Auteur: Chatenet Ludovic

Info: résumé critique de : Martine Bocquet, Sur les traces du signe avec John Deely : une histoire de la sémiotique Limoges, Éditions Lambert Lucas, 2019, 200 p.

[ panorama sémiologique ] [ anthropocentrisme ] [ xénolinguistique ] [ philologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel