Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 42
Temps de recherche: 0.0407s

intelligence artificielle

La vérité sur la soupe acronymique de l'IA (ANI, AGI, ASI)

(désambiguïser le jargon et les mythes qui entourent l'IA.)

L'IA est souvent expliquée à l'aide des catégories suivantes : intelligence artificielle étroite (ANI), intelligence artificielle générale (AGI) et superintelligence artificielle (ASI)[1]. Bien que ce cadre conceptuel étrange n'apporte aucune valeur réelle, il se retrouve dans de nombreuses discussions[2]. Si vous n'êtes pas familier avec ces catégories, considérez-vous chanceux et passez à un autre article, plus conséquent. Sinon, je vous invite à poursuivre votre lecture.

Tout d'abord, déplorer les catégorisations - comme je m'apprête à le faire - n'a qu'une valeur limitée car les catégories sont arbitrairement similaires et distinctes, en fonction de la manière dont nous classons les choses. Par exemple, le théorème du vilain petit canard démontre que les cygnes et les canetons sont identiques si l'on souhaite manipuler les propriétés à des fins de comparaison. Toutes les différences n'ont pas de sens si nous n'avons pas de connaissances préalables sur ces différences. Hélas, cet article décortique ces catégories suspectes d'un point de vue commercial.

L'intelligence artificielle étroite (ANI) est souvent confondue avec l'intelligence artificielle faible. John Searle, philosophe et professeur à l'université de Californie, a expliqué dans son article fondateur de 1980, "Minds, Brains, and Programs", que l'intelligence artificielle faible serait toute solution à la fois étroite et ressemblant superficiellement à l'intelligence. Searle explique qu'une telle recherche serait utile pour tester des hypothèses sur des segments d'esprits mais ne serait pas des esprits[3]. L'ANI réduit cela de moitié et permet aux chercheurs de se concentrer sur l'étroitesse et la superficialité et d'ignorer les hypothèses sur les esprits. En d'autres termes, l'ANI purge l'intelligence et les esprits et rend l'intelligence artificielle "possible" sans rien faire. Après tout, tout est étroit, et si l'on louche suffisamment, tout peut ressembler superficiellement à de l'intelligence.

L'intelligence artificielle générale (AGI) est la solution idéalisée que beaucoup imaginent lorsqu'ils pensent à l'IA. Alors que les chercheurs travaillent plus sur l'étroitesse et la superficialité, ils parlent de l'AGI, comme une représentation histoirique, d'une IA unique qui remonte aux années 1950, avec un renouveau au cours de la dernière décennie. L'AGI implique deux choses à propos d'une solution qui ne devraient pas s'appliquer à la résolution de problèmes centrés sur l'entreprise. Primo, un tel programme possède l'aptitude générale à l'intelligence humaine (voire toute l'intelligence humaine). Deuxio l'AGI peut résoudre des problèmes généraux ou remplir une ardoise vierge, ce qui signifie que toute connaissance d'un problème est rhétorique et indépendante d'une stratégie de résolution de ce problème[4]. Au lieu de cela, la connaissance dépend d'une aptitude vague et mal définie liée à la structure multidimensionnelle de l'intelligence naturelle. Si cela semble ostentatoire, c'est parce que c'est le cas.

La superintelligence artificielle (ASI) est un sous-produit de la réalisation de l'objectif de l'AGI. L'idée communément admise est que l'intelligence générale déclenchera une "explosion de l'intelligence" qui entraînera rapidement l'apparition de la superintelligence. On pense que l'ASI est "possible" en raison de l'auto-amélioration récursive, dont les limites ne sont limitées que par l'imagination débridée d'un programme. L'ASI s'accélère pour atteindre et dépasser rapidement l'intelligence collective de l'humanité. Le seul problème pour ASI est qu'il n'y a plus de problèmes. Quand ASI résout un problème, elle en demande un autre avec le dynamisme d'un Newton au berceau. Une accélération de ce type se demandera quelle est la prochaine étape à l'infini, jusqu'à ce que les lois de la physique ou de l'informatique théorique s'imposent.

Nick Bostrom, chercheur à l'Université d'Oxford, affirme que nous aurons atteint l'ASI lorsque les machines sont plus intelligentes que les meilleurs humains dans tous les domaines, y compris la créativité scientifique, la sagesse générale et les compétences sociales[5]. La description de l'ASI par Bostrom a une signification religieuse. Comme leurs homologues religieux, les adeptes de l'ASI prédisent même des dates précises auxquelles le second avènement révélera notre sauveur. Curieusement, Bostrom n'est pas en mesure d'expliquer comment créer une intelligence artificielle. Son argument est régressif et dépend de lui-même pour son explication. Qu'est-ce qui créera l'ASI ? Eh bien, l'AGI. Qui créera l'AGI ? Quelqu'un d'autre, bien sûr. Les catégories d'IA suggèrent un faux continuum à l'extrémité duquel se trouve l'ASI, et personne ne semble particulièrement contrarié par son ignorance. Cependant, le fanatisme est un processus d'innovation douteux.

Une partie de notre problème collectif lorsque nous parlons d'IA est que nous ancrons notre pensée dans des dichotomies prévalentes mais inutiles[6]. Les fausses dichotomies créent un sentiment artificiel qu'il existe une alternative. L'ANI, l'AGI et l'ASI suggèrent un faux équilibre entre diverses technologies en présentant plusieurs aspects d'un argument qui n'existe pas. Même si nous acceptons la définition de l'ANI et ignorons sa trivialité, l'AGI et l'ASI n'ont rien de convaincant. Mentionner quelque chose qui n'existera pas pour évaluer la technologie d'aujourd'hui avec un nom plus accrocheur comme ANI est étrange. Nous ne comparons pas les oiseaux aux griffons, les chevaux aux licornes ou les poissons aux serpents de mer. Pourquoi comparerions-nous (ou mettrions-nous à l'échelle) l'informatique à l'intelligence humaine ou à l'intelligence de tous les humains ?

Toute explication qui inclut l'AGI ou l'ASI déforme la réalité. L'ancrage est un biais cognitif dans lequel un individu se fie trop à un élément d'information initial (connu sous le nom d'"ancre") lorsqu'il prend des décisions. Des études ont montré qu'il est difficile d'éviter l'ancrage, même en le recherchant[7]. Même si nous reconnaissons que l'AGI et l'ASI sont significativement erronées ou mal placées, elles peuvent encore déformer la réalité et créer des désalignements. Nous ne devons pas nous laisser abuser par une fausse dichotomie et un faux équilibre.

L'IA ne se résume pas à trois choses. Ce n'est pas quelque chose qui s'échelonne en fonction de l'"intelligence" ou qui se range proprement dans trois catégories. Ces catégories ne délimitent pas des technologies spécifiques, ne mettent pas en évidence des domaines de recherche ou ne représentent pas un continuum où l'on commence par travailler sur l'ANI et où l'on termine avec l'ASI. Elles sont absurdes. L'IA est une chose : un objectif singulier et sans précédent de recréer l'intelligence ex nihilo. Cependant, cet objectif est en décalage permanent avec le monde des affaires.

Les objectifs commerciaux ne peuvent pas être totalisés et absorber tout ce qui les entoure, car la communication d'entreprise, qui comprend toutes les stratégies, n'est efficace que lorsqu'elle ne peut pas être mal comprise. À moins que vous n'envisagiez d'aligner votre entreprise sur l'objectif unique et sans précédent de l'IA, vous devez faire attention lorsque vous appelez vos objectifs "IA", car vous ne pouvez pas dire "IA" de nos jours si vous voulez être compris. Comme nous appelons de plus en plus de choses "IA", la tâche de communiquer un but et une direction devient encore plus difficile. Cependant, dire ANI, AGI ou ASI n'arrange pas les choses. Cela nuit à la communication. Le meilleur conseil que l'on puisse donner aux responsables techniques est d'éviter les faux continuums, les fausses dichotomies et les faux équilibres. Comme l'explique Jay Rosen, critique des médias, en empruntant une phrase au philosophe américain Thomas Nagel, "le faux équilibre est un point de vue de nulle part'".

Auteur: Heimann Richard

Info: 3 novembre 2022

[ limitation consumériste ] [ rationalisation restrictive ] [ normalisation commerciale ] [ délimitation normative ] [ bridage marchand ] [ chambre chinoise mercantile ] [ impossibilité holistique ]

 

Commentaires: 0

Ajouté à la BD par miguel

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel