Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 12
Temps de recherche: 0.0387s

mort

Quand un humain disparaît, une partie du décor s'en va. Nous sommes touchés, d'abord par l'effet miroir mais, plus profondément encore, parce que nous sommes surtout interconnectés entre nous. Peut-être que les arbres nous regrettent ?. Me comprenez-vous ?

Auteur: MG

Info: 29 mars 2011

[ être humain ]

 

Commentaires: 0

ouverture

Les sciences sont la tentative organisée de l'humanité pour découvrir comment les choses fonctionnent en tant que systèmes interconnectés (causalité). Tel est l'abord de ces questions par un esprit scientifique. Cette manière de faire peut être mise en perspective avec d'autres attitudes, d'autres appétences; par exemple pour le magique, qui en quelque sorte fait fonctionner les choses non pas comme de simples systèmes matériels mais via des forces immatérielles potentiellement contrôlées par des sorts. Ou pour le religieux, qui s'intéresse au monde comme révélant la nature de Dieu.

Auteur: Waddington Conrad Hal

Info:

[ épigénétique ] [ corps-esprit ] [ esprit-matière ] [ quête ] [ ouverture ] [ triade ]

 

Commentaires: 0

matière grise

La "matière condensée" du cerveau est l'objet le plus complexe de l'univers. Rien à voir, en effet, avec la structure d'un gaz ou d'un cristal : dans le cerveau humain s'emboîte, comme une série de poupées russes, toute une hiérarchie de niveaux d'organisation. La pensée émerge d'une architecture sophistiquée de routines mentales, un assemblage de processeurs élémentaires interconnectés en circuits distribués dans plusieurs régions du cerveau, eux-mêmes formés de dizaines de types de neurones. Chaque neurone, avec ses dizaines de milliers de synapses, est à lui seul un univers de molécules en interaction permanente, qui donnera sans doute du travail aux modélisateurs pour quelques siècles.

Auteur: Dehaene Stanislas

Info: Le code de la conscience

[ complication ] [ multiplicité ] [ enchevêtrement ] [ intrication ]

 

Commentaires: 0

théorie du tout

Le biocentrisme est une théorie philosophique et scientifique selon laquelle toutes les formes de vie et de conscience sont fondamentales pour la nature de l'univers. Selon le biocentrisme, la vie et la conscience ne sont pas simplement le résultat de processus physiques, mais plutôt des aspects fondamentaux de l'univers qui façonnent et influencent la façon dont le monde fonctionne. Le biocentrisme suggère que l'univers n'est pas une collection d'objets séparés, mais plutôt un réseau complexe de processus interconnectés qui impliquent des systèmes vivants et non vivants. Cette théorie est souvent associée aux travaux du scientifique et philosophe américain Robert Lanza, qui a soutenu que le biocentrisme offre une compréhension plus complète et plus holistique de l'univers que les modèles scientifiques traditionnels.

Auteur: OpenAI

Info:

[ définition ]

 
Commentaires: 5
Ajouté à la BD par miguel

décentralisation

La vérité, c'est que personne n'est responsable. C'est la chose la plus difficile à laquelle les êtres humains peuvent s'habituer, mais le monde est plein de systèmes complexes, intelligemment conçus et interconnectés qui n'ont pas de centres de contrôle. L'économie est un système du même genre. L'illusion que les économies fonctionnent mieux si quelqu'un se charge d'elles - et décide de ce qui est fabriqué, où et par qui - fait un tort dévastateur à la richesse et à la santé des gens partout dans le monde, non seulement dans l'ex-Union soviétique mais aussi à l'Ouest.... C'est la même chose avec le corps. Vous n'êtes pas un cerveau qui fait fonctionner un corps en activant les hormones. Vous n'êtes pas non plus un corps qui fait fonctionner un génome en activant les récepteurs hormonaux. Vous n'êtes pas non plus un génome qui fait fonctionner un cerveau en activant des gènes qui activent les hormones. Vous êtes tout cela à la fois.

Auteur: Matt Ridley

Info: Genome: The Autobiography of a Species in 23 Chapters. Chapter 10 (p. 151) HarperCollins Publishers. New York, New York, USA. 2000

[ biologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

Gaïa

La planète était un organisme pensant multi complexe qui harmonisait en virtuose une infinité de plans interconnectés. Il suffisait de se concentrer sur un point pour pouvoir en déguster des détails : lunaire attente de la grande araignée contemplative des cavernes, accroupie au coin de sa toile obscures. Réflexions lentes parce que fouillées émanant des grandes strates minérales continentales, occupées sans cesse, épaule contre épaule, à trouver une place confortable. Gamberges exploratoires inquiètes secrétées par d'organisées et craintives sociétés de fourmis. Profonde méditation verticale d'un sequoia isolé sous la pluie. Puis d'un deuxième, d'un troisième... Vive insouciance miroitante projetée par d'innombrables et bondissants dauphins blanc argent. Envahissante arrogance égocentrée d'une société humaine tentaculaire et compulsive qui faisait penser à un vernis non adapté sur une mappemonde. Admiratives incrédulités pensives de milliards et de milliards d'extrémités végétales caressées par les vents, rassemblées en marées douces. Interminables litanies dubitatives sourdant des nuages, de toutes tailles, isolés ou en groupes... Oniriques ruminations rêveuses d'ours de l'hémisphère nord en hibernation. Electriques pulsions de colère interne de chats domestiques indument sortis de leurs sommeils... Avec en arrière-plan toujours, toujours...

La pesante et maternelle pulsion de l'océan terrestre.

Auteur: Mg

Info: 4 septembre 2015

[ simultanéité ]

 

Commentaires: 0

question

Jeune adulte une interrogation revenait souvent : Nous vivons dans un monde dual, femmes-hommes, blanc-noir, haut-bas, etc. Existe-t'il dès lors un monde, une planète, un univers... où ça marche sur une base différente, genre : il faut être trois pour se reproduire ?
Truisme : "deux" représentant la manière la plus simple d'être plusieurs, moins mauvaise façon d'être seul sans l'être.
Séparation duale opérée bien avant que ne se pointe le singe dépoilé et ses petites papattes à cinq doigts qui nous ont amené jusqu'ici. (Grâce aussi aux champignons hallucinogènes selon certains comme Mckenna.)
Sans oublier que nous sommes tous interconnectés avec tout, si on pense évolution : chacun constitués des mêmes particules, frères des mammifères, cousins des insectes, petits cousins des végétaux, arrière arrières petits-fils du soleil, etc.
On croit donc savoir que le la reproduction sexuée fut l'astuce que la nature développa pour améliorer le mélange des gènes, permettant ainsi une meilleure souplesse adaptative aux espèces. Ensuite la vie exploratoire améliora son tâtonnement pour porter un peu plus loin sa quête du réel via nous les hommes. La preuve nous sommes en posture de nous s'installer sur mars. Mais c'est peut être aller trop loin déjà.

Donc, lors du développement et des innombrables émergences aléatoires de son incommensurable potentiel de complexité, la vie semble faire des pauses, retournant vers le simple. Ici "à plusieurs". DEUX.
Pourquoi pas TROIS ? Ou CINQ ? Il existe certainement des écrivains de science-fiction qui on théorisé de telles espèces.

Auteur: Mg

Info: sept 2018

[ évolution ]

 

Commentaires: 0

advaita

Au cours de cette même période de sa vie, Bohm continua également d'affiner son approche alternative de la physique quantique. En examinant plus attentivement la signification du potentiel quantique, il se rendit compte qu'il présentait un certain nombre de caractéristiques qui impliquaient une rupture encore plus radicale avec la pensée orthodoxe. L'une d'elles est l'importance de l'intégralité. La science classique avait toujours considéré l'état d'un système dans son ensemble comme le simple résultat de l'interaction de ses parties. Cependant, le potentiel quantique remettait en cause cette vision et indiquait que le comportement des parties était en fait organisé par le tout. Non seulement l'affirmation de Bohr selon laquelle les particules subatomiques ne sont pas des "choses" indépendantes, mais font partie d'un système indivisible, fut poussée plus loin, mais on suggéra même que la totalité était en quelque sorte la réalité la plus primaire. Il expliqua également comment les électrons dans les plasmas (et d'autres états spécialisés tels que la supraconductivité) pouvaient se comporter comme des ensembles interconnectés. Comme l'affirme Bohm, ces "électrons ne sont pas dispersés car, grâce à l'action du potentiel quantique, l'ensemble du système subit un mouvement coordonné qui ressemble davantage à une danse de ballet qu'à une foule de personnes non organisées". Il note une fois de plus qu'"une telle activité globale quantique est plus proche de l'unité du fonctionnement organisé des parties d'un être vivant que du type d'unité que l'on obtient en assemblant les pièces d'une machine."

Une caractéristique encore plus surprenante du potentiel quantique était ses implications au niveau de la localisation. Dans notre vie quotidienne, les choses ont des emplacements spécifiques, mais l'interprétation de la physique quantique par Bohm indiquait qu'à l'échelle subquantique, celle où le potentiel quantique opère, la notion d'emplacement n'existe plus. Tous les points de l'espace sont alors égaux à tous les autres points de l'espace, et il est inutile de parler d'une chose comme étant séparée d'une autre. Les physiciens appellent cette propriété "non-localité". Aspect non local du potentiel quantique qui a permis à Bohm d'expliquer la connexion entre des particules jumelles sans que celà viole l'interdiction faite par la relativité restreinte pour tout ce qui se déplace plus vite que la vitesse de la lumière. Pour illustrer comment, il propose l'analogie suivante : Imaginez un poisson qui nage dans un aquarium. Imaginez également que vous n'avez jamais vu de poisson ou d'aquarium auparavant et que votre seule connaissance à leur sujet provient de deux caméras de télévision, l'une dirigée vers l'avant de l'aquarium et l'autre vers son côté. Lorsque vous regardez les deux écrans de télévision, vous pouvez penser à tort que les poissons qui s'y trouvent sont des entités distinctes. Après tout, comme les caméras sont placées à des angles différents, chacune des images sera légèrement différente. Mais en continuant à regarder, vous finirez par réaliser qu'il existe une relation entre les deux poissons. Quand l'un se tourne, l'autre fait un tour légèrement différent mais correspondant. Quand l'un fait face à l'avant, l'autre fait face à l'arrière, et ainsi de suite. Si vous n'avez pas conscience de l'ampleur de la situation, vous pourriez conclure à tort que les poissons communiquent instantanément entre eux, mais ce n'est pas le cas. Il n'y a pas de communication parce qu'à un niveau plus profond de la réalité, la réalité de l'aquarium, les deux poissons sont en fait une seule et même chose. Selon Bohm, c'est précisément ce qui se passe entre des particules telles que les deux photons émis lors de la désintégration d'un atome de positronium. 


Auteur: Talbot Michael Coleman

Info: L'univers holographique

[ brahman ] [ biais dual ]

 

Commentaires: 0

Ajouté à la BD par miguel

portrait

Maryam Mirzakhani était mathématicienne, mais elle oeuvrait  comme une artiste, toujours en train de dessiner. Elle aimait s'accroupir sur le sol avec de grandes feuilles de papier, les remplissant de gribouillages : figures florales répétées et corps bulbeux et caoutchouteux, leurs appendices coupés proprement, comme les habitants d'un dessin animé, égarés,  de Miyazaki. L’un de ses étudiants diplômés de l’Université de Stanford a déclaré que Mirzakhani décrivait les problèmes mathématiques non pas comme des énigmes logiques intimidantes mais comme des tableaux animés. "C'est presque comme si elle avait une fenêtre sur le paysage mathématique et qu'elle essayait de décrire comment les choses qui y vivaient interagissaient les unes avec les autres", explique Jenya Sapir, aujourd'hui professeure adjointe à l'Université de Binghamton. "Pour elle, tout arrive en même temps."

Mirzakhani a grandi à Téhéran avec le rêve de devenir écrivain. En sixième année, elle a commencé à Farzanegan, une école pour les filles les plus douées de la ville, et a obtenu les meilleures notes dans toutes ses classes, à l'exception des mathématiques. Vers la fin de l'année scolaire, l'instructeur lui a rendu un test de mathématiques noté 16 sur 20, et Mirzakhani l'a déchiré et a fourré les morceaux dans son sac. Elle a dit à une amie qu’elle en avait assez en mathématiques : " Je ne vais même pas essayer de faire mieux. " Mirzakhani, cependant, était constitutionnellement incapable de ne pas essayer, et elle tomba bientôt amoureuse de la poésie épurée du sujet. Alors qu'elle était au lycée, elle et sa meilleure amie, Roya Beheshti, sont devenues les premières femmes iraniennes à se qualifier pour l'Olympiade internationale de mathématiques, et l'année suivante, en 1995, Mirzakhani a remporté une médaille d'or avec un score parfait.

Mirzakhani a déménagé aux États-Unis à l'automne 1999 pour poursuivre ses études supérieures à Harvard. Sa passion était la géométrie et elle était particulièrement attirée par les " surfaces hyperboliques ", qui ont la forme de chips Pringles. Elle a exploré un univers extrême dans son abstraction – avec des " espaces de modules ", où chaque point représente une surface – et des dimensions qui dépassent les nôtres. D'une manière ou d'une autre, Mirzakhani était capable d'évoquer des aspects de tels espaces à considérer, en griffonnant sur une feuille de papier blanc pour essayer une idée, s'en souvenir ou en rechercher une nouvelle ; ce n'est que plus tard qu'elle transcrira ses aventures dans les symboles conventionnels des mathématiques. "on ne veut pas écrire tous les détails ", a-t-elle dit un jour à un journaliste. "Mais le processus du dessin de quelque chose vous aide d'une manière ou d'une autre à rester connecté." Son doctorat : thèse commencée en dénombrant des boucles simples sur des surfaces, a conduit à un calcul du volume total des espaces de modules. Cela a permis à la jeune chercheuse de publier trois articles distincts dans des revues mathématiques de premier plan, dont l'un contenait une nouvelle preuve surprenante de la célèbre " conjecture de Witten ", une étape importante dans la physique théorique reliant les mathématiques et la gravité quantique. Les mathématiques de Mirzakhani sont appréciées pour leurs grands sauts créatifs, pour les liens qu'elles ont révélés entre des domaines éloignés, pour leur sens de la grandeur.

Lorsque Jan Vondrak, qui deviendra son mari, la rencontre en 2003, il ne savait pas, dit-il, qu'" elle était une superstar ". Mirzakhani terminait ses études à Harvard et Vondrak, aujourd'hui professeur de mathématiques à Stanford, étudiait au MIT ; ils se sont rencontrés lors d'une fête, chacun reconnaissant une âme sœur qui n'aimait pas particulièrement les fêtes. Vondrak l'a initiée au jazz et les deux ont fait de longues courses le long de la rivière Charles. Mirzakhani était à la fois modeste – Vondrak a appris de ses nombreuses réalisations grâce à des amis communs – et extrêmement ambitieuse. Vondrak se souvient de ses rêves de découvertes futures dans l'espace des modules, mais aussi de sa détermination à explorer des domaines plus lointains, comme la théorie des nombres, la combinatoire et la " théorie ergodique ". Elle avait, selon Vondrak, " 100 ans de projets ".

Il y a trois ans, Mirzakhani, 37 ans, est devenue la première femme à remporter la médaille Fields, le prix Nobel de mathématiques. La nouvelle de cette récompense et le symbolisme évident (première femme, première Iranienne, immigrante d'un pays musulman) la troublaient. Elle fut très perplexe lorsqu’elle a découvert que certaines personnes pensaient que les mathématiques n’étaient pas pour les femmes – ce n’était pas une idée qu’elle ou ses amis avaient rencontrée en grandissant en Iran – mais elle n’était pas encline, de par sa personnalité, à dire aux autres quoi penser. À mesure qu’elle devenait une célébrité parmi les Iraniens, les gens l’approchaient pour lui demander une photo, ce qu’elle détestait. La médaille Fields a également été annoncée alors qu'elle venait de terminer un traitement épuisant contre le cancer du sein.

En 2016, le cancer est réapparu, se propageant au foie et aux os de Mirzakhani. Tous ceux qui ont connu Mirzakhani la décrivent comme étant d’un optimisme inébranlable ; ils quittaient toujours les conversations avec un sentiment d'énergie. Mais finalement, il est devenu impossible pour Mirzakhani de continuer ce que sa jeune fille, Anahita, appelait sa " peinture ". Lors d'un service commémoratif à Stanford, Curtis McMullen, directeur de thèse de Mirzakhani et président du département de mathématiques de Harvard, a déclaré que lorsqu'elle était étudiante, elle venait à son bureau et posait des questions qui étaient " comme des histoires de science-fiction ", des scènes vivantes qu'elle avait entrevues. dans un coin inexploré de l’univers mathématique – des structures étranges et des motifs séduisants, tous en mouvement et interconnectés. Puis elle le regardait de ses yeux bleu-gris. " Est ce bien? " demanderait-elle, comme s'il pouvait connaître la réponse.

Auteur: Internet

Info: Nytimes, by Gareth Cook, 2017

[ syntropie ] [ visualisation ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

perception humaine

Les schémas mathématiques secrets révélés par la musique de Bach

Le compositeur baroque allemand Jean Sébastien Bach a produit une musique si bien structurée qu'elle est souvent comparée aux maths. Bien que peu d'entre nous soient émotionnellement affectés par les mathématiques, les œuvres de Bach - et la musique en général - nous émeuvent. C'est plus que du son ; c'est un message. Désormais, grâce aux outils de la théorie de l'information, les chercheurs commencent à comprendre comment la musique de Bach fait passer ce message.

En faisant de ses partitions de simples réseaux de points, appelés nœuds, reliés par des lignes, nommeés bords, les scientifiques ont quantifié les informations véhiculées par des centaines de compositions de Bach. Analyse de ces réseaux musicaux publiée le 2 février dans Physical Review Research qui révèle que les nombreux styles musicaux de Bach, tels que les chorales et les toccatas, différaient considérablement dans la quantité d'informations qu'ils communiquaient - et que certains réseaux musicaux contenaient des structures qui pouvaient faciliter la compréhension de leurs messages par les auditeurs humains.

" Je trouve cette idée vraiment cool ", explique le physicien Suman Kulkarni de l’Université de Pennsylvanie, auteur principal de la nouvelle étude. " Nous avons utilisé des outils de la physique sans faire d’hypothèses sur les pièces musicales, en commençant par cette simple représentation et en voyant ce qui peut nous dire sur les informations qui sont transmises. "

Les chercheurs ont quantifié le contenu de toute cette information, des séquences simples aux réseaux enchevêtrés, utilisant le concept d'entropie de l'information, introduit par le mathématicien Claude Shannon en 1948.

Comme son nom l'indique, l'entropie de l'information est mathématiquement et conceptuellement liée à l'entropie thermodynamique. Elle peut être considérée comme une mesure du degré de surprise d'un message - "message" qui peut être tout ce qui transmet des informations, d'une séquence de nombres à un morceau de musique. Cette perspective peut sembler contre-intuitive, étant donné que, dans le langage courant, l'information est souvent assimilée à la certitude. Mais l'idée clé de l'entropie de l'information est qu'apprendre quelque chose que l'on sait déjà n'est pas apprendre du tout.

Une conversation avec une personne qui ne sait exprimer qu'une chose, comme le personnage Hodor dans la série télévisée Game of Thrones, qui dit seulement " Hodor ", sera prévisible mais pas informationelle. Une discussion avec Pikachu sera un peu meilleure ; le Pokémon ne peut dire que les syllabes de son nom, mais il peut les réarranger, contrairement à Hodor. De même, une pièce de musique ne comportant qu'une seule note sera relativement facile à "apprendre" par le cerveau, c'est-à-dire à reproduire avec précision sous la forme d'un modèle mental, mais le morceau aura du mal à faire passer un quelconque message. Regarder un jeu de pile ou face avec une pièce à deux têtes ne donnera aucune information.

Bien sûr, envoyer un message plein d'informations n'est pas très bon si le quelque chose - ou qui que ce soit - qui le reçoit ne peut  comprendre avec précision ces informations. Et quand il s'agit de messages musicaux, les chercheurs travaillent encore sur la façon dont nous apprenons ce que la musique essaie de nous dire.

" Il existe quelques théories différentes ", explique le cognitiviste Marcus Pearce de l’université Queen Mary de Londres, qui n’a pas participé à la récente étude de la recherche sur l’évaluation physique. " La principale, je pense, en ce moment, est basée sur l’apprentissage probabiliste. Dans ce cadre, "apprendre" la musique signifie construire des représentations mentales précises des sons réels que nous entendons - ce que les chercheurs appellent un modèle - par un jeu d'anticipation et de surprise. Nos modèles mentaux prédisent la probabilité qu'un son donné vienne ensuite, sur la base de ce qui a précédé. Ensuite, explique M. Pearce, " on découvre si la prédiction était juste ou fausse, et on peut alors mettre à jour son modèle en conséquence".

Kulkarni et ses collègues sont physiciens, pas musiciens. Ils voulaient utiliser les outils de la théorie de l'information pour explorer la musique à la recherche de structures d'information qui pourraient avoir quelque chose à voir avec la façon dont les humains glanent un sens de la mélodie.

Ainsi Kulkarni a transformé 337 compositions de Bach en bandes de nœuds interconnectés et calculé l'entropie de l'information des réseaux qui en résultent. Dans ces réseaux, chaque note de la partition d'origine est un noeud, et chaque transition entre notes est un pont. Par example, si une pièce inclut une note Mi suivie d'un Do et d'un Sol joués ensemble, le noeud représentant E sera relié aux noeuds représentant Do et Sol.

Les réseaux de ce notation transitions dans la musique de Bach ont générés plus de poinçon d'information que des réseaux de même taille générés aléatoirement - le résultat d'une plus grande variation dans les degrés nodaux des réseaux, c'est-à-dire le nombre d'arêtes connectées à chaque nœud. En outre, les scientifiques ont découvert des variations dans la structure de l'information et le contenu des nombreux styles de composition de Bach. Les chorals, hymnes destinés à être chanté, ont donné lieu à des réseaux relativement pauvres en informations, bien que plus riches en informations que les réseaux de même taille générés de manière aléatoire. Les toccatas et les préludes, styles musicaux souvent écrits pour des instruments à clavier tels que l'orgue, le clavecin et le piano, présentant une entropie de l'information plus élevée.

" J’ai été particulièrement excité par les niveaux plus élevés de surprises dans les toccatas que dans les œuvres chorales ", explique le co-auteur de l’étude et physicien Dani Bassett de l’Université de Pennsylvanie. " Ces deux types de pièces sonnent et résonnent différement dans mes os, et ça m'a passionné de voir que cette distinction se manifeste dans l'information de composition. "

Ces structures de réseau dans les compositions de Bach pourraient également permettre aux auditeurs humains d'apprendre plus facilement certaines choses. Les humains n'apprennent pas parfaitement les réseaux. Nous avons des préjugés, dit Bassett. " Nous ignorons en quelque sorte certaines des informations locales au profit de la vue d’une image plus grande de l’information sur l’ensemble du système ", ajoute-t-ils. En modélisant ce biais dans la façon dont nous construisons nos modèles mentaux de réseaux complexes, les chercheurs ont comparé l'ensemble des informations de chaque réseau musical à la quantité d'informations qu'un auditeur humain en tirerait.

Des réseaux musicaux contenaient des groupes de transitions de notes pourraient aider nos cerveaux biaisés " apprendre " la musique - à reproduire la structure informationnelle de la musique avec précision en tant que modèle mental - sans sacrifier beaucoup d'informations.

" La façon dont elles saisissent l’aptitude à l’apprentissage est assez intéressante ", déclare Peter Harrison de l’Université de Cambridge, qui n’a pas participé à l’étude. " C'est très réducteur dans un certain sens. Mais c'est tout à fait complémentaire avec d'autres théories que nous connaissons, et l'aptitude à apprendre est assez difficile à maîtriser ".

Ce type d'analyse de réseau n'est pas particulier à Bach et il pourrait fonctionner pour n'importe quel compositeur. Pearce dit qu'il sera  intéressant d'utiliser cette approche pour comparer différents compositeurs ou rechercher des tendances informatives à travers l'histoire de la musique. Pour sa part, Kulkarni est excité à l'idée d'analyser les propriétés d'information de partitions d'au-delà de la tradition musicale occidentale.

La musique n'est pas seulement une séquence de notes, note cependant Harrison. Le rythme, le volume, le timbre des instruments, ces éléments sont des aspects importants des messages musicaux qui n'ont pas été pris en compte dans cette étude. Kulkarni dit qu'il sera intéressé par l'inclusion de ces aspects de la musique dans ses réseaux. Le processus pourrait également fonctionner dans l'autre sens, ajoute M. Harrison : plutôt que réduire les caractéristiques musicales à un réseau, il sera intéressant de savoir comment les caractéristiques du réseau se traduisent par des éléments qu'un musicien reconnaîtrait.

Un musicien dira : " Quelles sont les règles musicales réelles, ou les caractéristiques musicales, qui en sont à l’origine ? Puis-je l’entendre sur un piano ? " précise Harrison.

Enfin, on ne sait pas encore exactement comment les modèles de réseaux identifiés dans la nouvelle étude se traduisent dans l'expérience vécue à l'écoute d'un morceau de Bach - ou de n'importe quelle musique, précise M. Pearce. La résolution de ce problème relèvera de la psychologie musicale, poursuit-il. Des expériences pourraient révéler "si, de fait, ce genre de choses est perceptible par les gens et quels sont leurs effets sur le plaisir que les gens éprouvent lorsqu'ils écoutent de la musique". De même Harrison se dit intéressé par des expériences visant à vérifier si les types d'erreurs d'apprentissage en réseau que les chercheurs ont modélisés dans cette étude sont réellement importants pour l'apprentissage de la musique.

"Le fait que les humains présentent ce type de perception imparfaite et biaisée de systèmes informationnels complexes est essentiel pour comprendre comment nous nous impliquons dans la musique", explique M. Bassett. "Comprendre la complexité informationnelle des compositions de Bach ouvre de nouvelles questions sur les processus cognitifs qui sous-tendent la manière dont nous apprécions les différents types de musique."

Auteur: Internet

Info: https://www.scientificamerican.com, 16 féb 2024. Elise Cutts - Secret Mathematical Patterns Revealed in Bach's Music

[ sentiment naturel ] [ approfondissement découverte ] [ dépaysement plaisir ] [ cybernétisation ] [ simple compliqué ] [ occulte harmonie ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste