Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 9
Temps de recherche: 0.0302s

inéluctable

L’Univers était régenté par la mort. Aucun merveilleux mécanisme d’horlogerie au monde ne pouvait stopper l’entropie. On pouvait collaborer avec la mort ou on pouvait la laisser faire, c’était tout.

Auteur: Yoon Ha Lee

Info: Le Gambit du Renard

[ incontournable ]

 

Commentaires: 0

Ajouté à la BD par miguel

question

Alors que la croissance de l’entropie entraîne dispersion et imprévisibilité, la loi de convergence des parties nous parle de rangement et de rassemblement de tout ce qui se ressemble ! Quelle assemblée préféreriez-vous élire pour décider comment l’univers doit se comporter ? Celle qui prône le désordre et la dispersion, ou celle qui fait tout pour rétablir le bon ordre des choses ?

Auteur: Guillemant Philippe

Info: Dans "La route du temps" page 76

[ biais cognitif ] [ erreur catégorielle ] [ évaluation anthropocentrique ] [ attirance idéologique ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

exception

Une configuration moléculaire est stable en vertu des mêmes principes quantiques qui produisent les mutations mais qui, normalement, mettent un barrage énergétique entre une configuration et une autre. Comme la structure de l’organisme est gouvernée par les gènes, l’organisme tout entier est donc un cristal a-périodique, stable comme une molécule au zéro absolu ; il échappe au principe de Carnot et à la marche vers l’entropie maxima et la désorganisation. Il ne va pas "de l’ordre au désordre". Il ne va pas non plus "du désordre à l’ordre". En d’autres termes, son ordre n’est pas statistique comme celui des lois secondaires de la physique. Il va "de l’ordre à l’ordre" ; l’ordre fondamental étant celui des chromosomes, qui a la propriété, non seulement de conserver la structure organisée, mais de s’imposer et de s’accroître, en "extrayant de l’ordre" du milieu extérieur, "en se nourrissant d’entropie négative". L’organisme est, par là, un "mécanisme pur", pareil à un système planétaire sans marées, ou à une horloge qui fonctionnerait sans aucune friction ni échauffement, et sans aucune décadence statistique.

Auteur: Ruyer Raymond

Info: Néo-finalisme, pages 187-188

[ monade ] [ singularité ] [ perfection ] [ épigénétique ] [ métaphore ] [ sur-sens ] [ contre-sens ] [ spéculation ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

réductionnisme biologique

En 2011, je me suis fait transfuser du sérum de cheval pour montrer que la barrière entre espèces n’était plus tenable sur les plans éthique, émotionnel et symbolique. J’ai poussé l’hybridation à son extrémité, pour obtenir une modification de conscience, me sentir autrement que comme primate. C’était un acte politique, et un élargissement du champ de conscience. Sur le plan biologique, nous sommes de plus en plus hybrides, simplement car nous sommes livrés à la globalisation qui entraîne un croisement de nos microbiotes [ensemble des microorganismes tels que bactéries, virus… vivant dans un environnement donné, ndlr] avec ceux issus d’écosystèmes étrangers. Ces présences nous rendent plus complexes et hybrides, à notre insu. L’entropie du monde est présente en nous. Je me suis fait greffer le microbiote d’un Pygmée pour pouvoir penser comme une personne vivant dans un contexte écologique différent et menacé. Une expérience extrême… qui m’a surtout rendue très malade. J’ai compris que j’avais fixé en moi des bactéries du monde entier. La globalisation avait fait de moi un être extrêmement hybride, qui n’avait probablement plus rien à voir avec sa lignée génétique. On empile toutes ces existences en nous sans avoir conscience des conséquences possibles, et sans doute nombreuses.

Auteur: Laval-Jeantet Marion

Info: https://www.neonmag.fr/transhumanisme-metissage-allons-nous-tous-devenir-hybride-dans-le-futur-523430.html

[ scientisme ] [ amalgame ] [ chair-esprit ] [ évolution ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

anti-égalitarisme

Votre délire d’égalité était une attaque meurtrière contre l’être, contre toutes ses richesses et ses valeurs ; c’était la soif de piller le monde divin et d’anéantir toute grandeur ici-bas. L’esprit du néant vous anime, c’est lui qui vous a inspiré ces idées et ces passions égalitaires. La loi de l’entropie, qui mène à la mort par une diffusion égale de la chaleur, agit à travers vous dans la vie sociale […]

Exiger l’égalité absolue, c’est vouloir retourner à l’état originel, chaotique, ténébreux, au nivellement et à la non-différenciation ; c’est vouloir le néant. L’exigence révolutionnaire du retour à l’égalité dans le néant est née du refus d’assumer les sacrifices et les souffrances par lesquels passe la voie de la vie supérieure. Voilà la réaction la plus effrayante, la négation du sens de tout le processus créateur du monde. L’enthousiasme de la révolution est  un enthousiasme réactionnaire. L’exigence contraignante de l’égalisation qui procède de l’obscurité chaotique est une tentative pour détruire la structure hiérarchique du cosmos formé par la naissance créatrice de la lumière dans les ténèbres ; c’est un essai pour détruire la personne même de l’homme en tant que degré hiérarchique né dans l’inégalité ; c’est un attentat contre la place royale de l’homme dans l’ordre cosmique.

Auteur: Berdiaev Nicolas

Info: De l’inégalité, Éditions L’Âge d’homme, 2008

[ dénigrement ]

 

Commentaires: 0

Ajouté à la BD par miguel

occultisme

Le genre humain a longtemps eu peur de retomber en inceste comme on retombe en enfance : pour éviter ce danger, il a mis en place toutes sortes d’obligations et de rituels (à commencer par le lien conjugal dont le principal bénéfice est de constituer un renoncement catégorique à l’attachement premier du sujet pour son géniteur de sexe opposé), il s’est abrité sous le parapluie de la transcendance et sous le nom de Dieu (lequel n’est pas un homme, comme on voudrait le faire croire dans le Da Vinci Code, mais un nom dont l’ "illisibilité" rend insaisissable la réalité divine, donc garantit l’illusion du monde et le monde en tant qu’illusion). L’humanité ne veut plus respecter la règle du jeu. Mais elle ne peut encore se le dire ainsi parce qu’elle ne veut pas prendre la mesure de l’entropie concrète à laquelle elle aspire. Il faut qu’elle se cache son dessein ultime. Même pour ceux qui l’entreprennent de gaieté de cœur, le grand voyage de retour vers l’animalité ne va pas de soi, il faut donc qu’on leur dissimule habilement la vérité de leur désir en leur faisant croire qu’ils sont en guerre contre des forces maléfiques (l’Eglise, le Dieu-Père, etc.) qui ont juré leur perte. Pour que la véritable révélation ne soit jamais proférée, il faut la remplacer par une infinité de pseudo-révélations bien combinées : d’où ce fatras de cryptogrammes, dans le Da Vinci Code, toute cette accumulation de symbologie, d’anagrammes, de cloîtres, de cryptes et de meurtres qui ne servent qu’à transfigurer en jeu de piste initiatique une volonté générale de sortir du jeu humain, ou de l’humanité en tant que jeu, c’est-à-dire en tant qu’artifice et convention opposés à la nature maternelle (les Grandes Déesses, le Féminin sacré) désormais considérée comme unique promesse de bonheur.

Auteur: Muray Philippe

Info: Dans "Exorcismes spirituels, tome 4", Les Belles Lettres, Paris, 2010, pages 1498-1499

[ retour en enfance ] [ fantasmes de fusion ] [ abolition de la castration ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

green washing

La "transition écologique" promise par le numérique, le tout électrique et le photovoltaïque exige beaucoup d’électricité. Selon le Bureau de recherches géologiques et minières (BRGM), l'affinage du silicium en polysilicium consomme 150 MWh par tonne de produit fini. La transformation du polysilicium en lingot monocristallin, 31 MWh par tonne. Enfin, la découpe des plaquettes, 42,5 MWh par tonne. Voilà pour les économies d’énergie.

Du côté de la matière, il faut 7,14 tonnes de quartz pour une tonne de silicium monocristallin. Et la découpe de celui-ci en tranches produit des déchets de sciage (le "kerf") perdus pour les puces, estimés à 40 % du lingot. Mais on ne rebouche pas les carrières avec. Quant aux produits chimiques utilisés tout au long du procédé, la filière est pudique à ce sujet. Difficile d’en établir une liste précise et quantifiée. Le CNRS donnait en 2010 le chiffre de 280 kg de produits chimiques par kilo de silicium produit (acides, ammoniaque, chlore, acétone, etc.).

Tout de même, pensent les électeurs Verts, si les ingénieurs assurent que les technologies issues du silicium permettent la "transition écologique", il doit bien y avoir une raison ? La raison, c’est une de ces duperies dont les technocrates sont coutumiers et que les écocitoyens sont trop heureux de gober. Leur "transition écologique" repose sur le seul indicateur des émissions de gaz à effet de serre. Leur unique objectif, la "décarbonation" de l’économie, ignore l’entropie de la matière et de l’énergie, c’est-à-dire la réalité physique du désastre industriel, sans parler de la dévastation des milieux par les pollutions industrielles et l’artificialisation.

Les ingénieurs parviendront peut-être à maintenir un mode de vie techno-consommateur sans émission de carbone (quid du méthane, autre gaz à effet de serre ?), avec une hausse des températures limitée à 2°, c’est-à-dire des catastrophes climatiques en chaîne, tout de même. Ce sera au prix d’une Terre dévastée par la production énergétique. Des millions d’éoliennes à perte de vue, sur terre et en mer, des océans de panneaux solaires, des installations électriques partout, sans oublier le nucléaire, ses déchets éternels, son poison et sa menace. Quant aux barrages alpins, à la vitesse où fondent les glaciers, qui peut garantir que l’eau y sera suffisante ? La Romanche coulera-t-elle aussi impétueusement dans les périodes de sécheresse de la vertueuse économie décarbonée ?

Votre voiture électrique n’émet certes pas de CO2 et votre smartphone vous économise des déplacements, mais la société numérique et automobile dévore les ressources naturelles – matière et énergie – qui nous permettent de vivre. Un détail. Et on ne vous parle pas de la faune, de la flore et des paysages - pas de sensiblerie.

Auteur: PMO Pièces et main-d'oeuvre

Info: https://www.piecesetmaindoeuvre.com/IMG/pdf/cycle_silicium.pdf

[ développement durable ] [ coûts cachés ] [ conséquences ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

extension

La conscience humaine pourrait être un effet de l’entropie 

Une nouvelle étude suggère que la conscience pourrait être une caractéristique émergente découlant de l’effet d’entropie, soit le mécanisme physique faisant que le désordre au sein de tout système ne peut faire qu’augmenter, et par le biais duquel le cerveau maximiserait les échanges d’informations. Cette conclusion a été déduite de l’analyse de l’activité cérébrale de patients épileptiques ou non, indiquant que les états d’éveil normaux (ou conscients) sont associés à des valeurs entropiques maximales.

En thermodynamique, l’entropie se traduit par le passage inéluctable d’un système d’un agencement ordonné à désordonné. La valeur entropique est le niveau de désorganisation de ce système. Les physiciens suggèrent qu’après le Big Bang, l’Univers est progressivement passé d’un état entropique faible à élevé et qu’à l’instar du temps, l’entropie ne peut qu’augmenter au sein d’un système. De leur côté, les neurobiologistes estiment que le principe est transposable à l’organisation de nos connexions neuronales.

La question est de savoir quel type d’organisation neuronale sous-tend les valeurs de synchronisation observées dans les états d’alerte normaux ou non. C’est ce que des chercheurs de l’Université de Toronto et de l’Université de Paris Descartes ont exploré. " Nous avons cherché à identifier les caractéristiques globales de l’organisation du cerveau qui sont optimales pour le traitement sensoriel et qui peuvent guider l’émergence de la conscience ", expliquent-ils dans leur étude, publiée dans la revue Physical Review E.

Les observations de l’activité cérébrale chez l’Homme ont montré qu’elle est sujette à une importante fluctuation au niveau des interactions cellulaires. Cette variabilité serait à la base d’un large éventail d’états, incluant la conscience. D’un autre côté, des travaux antérieurs traitant du fonctionnement cérébral ont suggéré que l’état conscient n’est pas nécessairement associé à des degrés élevés de synchronisation entre les neurones, mais davantage à des niveaux moyens. Les chercheurs de la nouvelle étude ont alors supposé que ce qui est maximisé au cours de cet état n’est pas la connectivité neuronale, mais le nombre de configurations par lesquelles un certain degré de connectivité peut être atteint.

État de conscience = entropie élevée ?

Dans le cadre de leur analyse, les scientifiques ont utilisé la mécanique statistique pour l’appliquer à la modélisation de réseaux neuronaux. Ainsi, cette méthode permet de calculer des caractéristiques thermodynamiques complexes. Parmi ces propriétés figure la manière dont l’activité électrique d’un ensemble de neurones oscille de façon synchronisée avec celle d’un autre ensemble. Cette évaluation permet de déterminer précisément de quelle façon les cellules cérébrales sont liées entre elles.

Selon les chercheurs, il existerait une multitude de façons d’organiser les connexions synaptiques en fonction de la taille de l’ensemble de neurones. Afin de tester leur hypothèse, des données d’émission de champs électriques et magnétiques provenant de 9 personnes distinctes ont été collectées. Parmi les participants, 7 souffraient d’épilepsie. Dans un premier temps, les modèles de connectivité ont été évalués et comparés lorsqu’une partie des volontaires était endormie ou éveillée. Dans un deuxième temps, la connectivité de 5 des patients épileptiques a été analysée, lorsqu’ils avaient des crises de convulsions ainsi que lorsqu’ils étaient en état d’alerte normal. Ces paramètres ont ensuite été rassemblés afin de calculer leurs niveaux d’entropie cérébrale. Le résultat est le même dans l’ensemble des cas : le cerveau affiche une entropie plus élevée lorsqu’il est dans un état de conscience.

Les chercheurs estiment qu’en maximisant l’entropie, le cerveau optimise l’échange d’informations entre les neurones. Cela nous permettrait de percevoir et d’interagir de manière optimale avec notre environnement. Quant à la conscience, ils en ont déduit qu’elle pourrait tout simplement être une caractéristique émergente découlant de cette entropie. Toutefois, ces conclusions sont encore hautement spéculatives en raison des limites que comporte l’étude, telles que le nombre restreint de participants à l’étude. Le terme " entropie " devrait même être considéré avec parcimonie dans ce cadre, selon l’auteur principal de l’étude, Ramon Guevarra Erra de l’Université de Paris Descartes.

De nouvelles expériences sur un échantillon plus large sont nécessaires afin de véritablement corroborer ces résultats. On pourrait aussi évaluer d’autres caractéristiques thermodynamiques par le biais de l’imagerie par résonance magnétique, qui peut être utilisée pour mesurer l’oxygénation — une propriété directement liée au métabolisme et donc à la génération de chaleur (et de ce fait d’augmentation de l’entropie). Des investigations menées en dehors de conditions d’hôpital seraient également intéressantes afin d’évaluer des états de conscience associés à des comportements cognitifs plus subtils. On pourrait par exemple analyser l’activité cérébrale de personnes exécutant une tâche spécifique, comme écouter ou jouer de la musique.

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano - 19 octobre 2023

[ complexification ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel