Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 38
Temps de recherche: 0.0604s

humaine syntonisation

À la suite de Bernard d’Espagnat qui a proposé une interprétation permettant de résoudre les problèmes soulevés par la théorie des états relatifs d’Everett, j’ai développé une position, le solipsisme convivial, qui s’intègre dans le cadre de la théorie de la décohérence. Cette position suppose qu’on refuse de se placer dans le cadre du réalisme empirique pragmatique. Bien que défendant par ailleurs une position différente qu’il serait trop long de détailler ici, je me placerai ici dans le cadre du réalisme métaphysique.

La décohérence est alors le mécanisme qui explique l’apparence classique pour nous d’une réalité qui demeure essentiellement quantique, c’est-à-dire enchevêtrée. Le solipsisme convivial fait entrer l’observateur lui-même dans le grand système. Le raisonnement que nous avons décrit conduit alors à considérer que l’observateur est aussi dans un état enchevêtré avec le système, l’appareil et l’environnement. Du point de vue de la réalité profonde (et non de l’apparence de cette réalité pour nous), seule une fonction d’ondes globale superposée "existe". Dans cette fonction d’ondes, les différents résultats possibles de mesure sont présents et sont corrélés ainsi que tous les états correspondants de l’observateur. La décohérence intervient et permet de régler un certain nombre de problèmes que nous n’avons pas eu la possibilité d'évoquer : quelle est la grandeur mesurée par exemple, ce qui a pour effet de résoudre la difficulté que nous avons signalée à propos de l’interprétation d’Everett. Le solipsisme convivial consiste alors à considérer que la conscience de l’observateur est "accrochée" à l’une des branches de la fonction d’ondes ne lui permettant d’observer que la partie classique correspondante. La conscience joue en quelque sorte le rôle d’un filtre ne permettant de voir qu’une partie de la fonction d’ondes globale.

Une définition précise de ce processus permet de montrer que les prédictions habituelles de la mécanique quantique sont respectées malgré le fait que la fonction d’ondes n’est jamais rigoureusement réduite. Le point surprenant est alors que rien n’oblige deux observateurs différents à être accrochés à la même branche. Pour une mesure donnée, un observateur peut être accroché à la branche donnant le résultat A alors qu’un autre le sera à la branche donnant le résultat B. Comment peut-il en être ainsi alors qu’on sait que deux observateurs de la même expérience sont ”en général” d’accord sur le résultat ? La raison en est que la communication entre observateurs est elle-même un processus de mesure et que le mécanisme d’accrochage garantit la cohérence des observations pour un observateur.

Supposons qu’André a observé le résultat A et Bernard le résultat B. Les deux observations ne sont que l’accrochage de la conscience d’André et de Bernard à leur branche propre de la fonction d’ondes globale qui contient les deux possibilités. Si André demande à Bernard ce qu’il a vu, l’interaction entre André et Bernard qui en résulte contient la totalité des possibilités, donc à la fois une branche où Bernard répond A et une branche où Bernard répond B. La fonction d’ondes d’André sera après l’interaction avec Bernard dans un état enchevêtré contenant les deux réponses mais la conscience d’André s’accrochera à la branche correspondant à la réponse cohérente avec son observation précédente, il entendra donc Bernard répondre A conformément à son attente. C’est la raison pour laquelle cette interprétation porte le nom de solipsisme convivial : chaque observateur vit dans son monde qui peut être totalement différent de celui des autres, mais il n’existe aucun moyen de se rendre compte des désaccords et les observateurs sont en parfait accord. Ceci fournit une nouvelle explication de l’intersubjectivité : il n’y a aucun moyen de constater un désaccord.

Signalons pour terminer une conséquence étrange sur l’indéterminisme de la mécanique quantique. La fonction d’ondes de l’Univers évolue de manière parfaitement déterministe par l'équation de Schrödinger, seul le mécanisme d’accrochage tire au sort la branche à laquelle chaque observateur s’accroche. Ce n’est donc plus Dieu qui joue aux dés, c’est l’homme, mais avec le constat étrange que deux joueurs peuvent voir le même dé tomber sur une face différente. 

Auteur: Zwirn Hervé

Info: Mécanique quantique et connaissance du réel.

[ prospective scientifique ]

 

Commentaires: 0

Ajouté à la BD par miguel

hypothèse

Notre univers existe à l'intérieur d'un trou noir d'un univers de dimension supérieure 

Vous êtes-vous déjà demandé ce qui se trouve au-delà de l'univers observable ? Et si notre univers n'était qu'une infime partie d'une réalité beaucoup plus vaste et complexe et qu'il se trouvait en fait à l'intérieur d'un trou noir ?

Qu'est-ce qu'un trou noir ?

Un trou noir est une région de l'espace où la gravité est si forte que rien ne peut s'en échapper, pas même la lumière. Selon la théorie de la relativité générale d'Einstein, les trous noirs se forment lorsque des étoiles massives s'effondrent à la fin de leur cycle de vie. La singularité qui en résulte est un point de densité infinie et de volume nul, où les lois de la physique s'effondrent.

Des scientifiques découvrent un lien possible entre le cerveau humain et le cosmos à l'échelle quantique

La limite d'un trou noir s'appelle l'horizon des événements, elle marque le point de non-retour pour tout ce qui la traverse. La taille de l'horizon des événements dépend de la masse du trou noir. Par exemple, un trou noir ayant la masse du soleil aurait un horizon des événements d'environ 3 kilomètres de rayon.

Comment notre univers peut-il se trouver à l'intérieur d'un trou noir ?Une façon d'aborder cette question est de se demander ce qui se passe à l'intérieur d'un trou noir. Selon la physique classique, rien ne peut survivre à l'intérieur d'un trou noir. Cependant, la physique quantique suggère qu'il pourrait y avoir une forme de structure ou d'information qui persiste au-delà de l'horizon des événements.

Une éventualité est que la singularité au centre d'un trou noir n'est pas un point, mais une sphère ou un tore, qui créerait un trou de ver, un raccourci spatio-temporel reéiant deux régions éloignées de l'univers. Dans ce cas, une extrémité du trou de ver se trouverait à l'intérieur du trou noir et l'autre extrémité à l'extérieur, dans une autre région de l'espace.

Une autre possibilité est que la singularité au centre d'un trou noir ne soit pas une sphère ou un tore, mais une hyper-sphère ou un hyper-tore, qui créerait un univers-bulle, une région autonome de l'espace-temps avec ses propres lois physiques et ses propres constantes. Dans ce cas, l'univers-bulle se trouverait à l'intérieur du trou noir, notre univers par exemple.

Quelles sont les preuves de cette hypothèse ?

L'idée que notre univers soit à l'intérieur d'un trou noir est spéculative et n'a été prouvée par aucune observation ou expérience directe. Toutefois, certains indices indirects viennent étayer cette hypothèse.

L'un d'entre eux est le rayonnement électromagnétique cosmique de fond (CMB), qui est le rayonnement résiduel du Big Bang ou fond diffus cosmologique (FDC, ou cosmic microwave background, ou "fond cosmique de micro-ondes") a une température uniforme, à l'exception de minuscules fluctuations révélant la structure de l'univers primitif. Certains physiciens avancent que ces fluctuations pouvaient s'expliquer en supposant que notre univers se trouve à l'intérieur d'un trou noir et que le rayonnement de fond cosmologique est en fait le rayonnement émis par l'horizon des événements.

L'expansion de l'univers serait un autre indice. Selon le modèle standard de la cosmologie, notre univers s'expand à un rythme accéléré en raison de l'énergie noire, une force mystérieuse qui s'oppose à la gravité. Cependant, certains physiciens avancent que l'énergie noire soit une illusion causée par l'hypothèse d'un univers  plat et infini. Si notre univers est en fait courbe et fini, comme il le serait à l'intérieur d'un trou noir, l'énergie noire ne serait pas nécessaire pour expliquer l'expansion.

Quelles seraient les implications pour notre compréhension de la cosmologie et de la physique ?

Si notre univers se trouve effectivement à l'intérieur d'un trou noir, cela aura de profondes répercussions sur notre compréhension de la cosmologie et de la physique. D'une part, cela signifierait que notre univers a une origine et une fin, et qu'il n'est peut-être pas unique ou isolé. Cela signifierait également qu'il pourrait y avoir d'autres univers au-delà du nôtre, reliés par des trous de ver ou existant en tant que bulles distinctes.

Cela signifierait en outre qu'existent d'autres lois de la physique et de nouvelles dimensions de la réalité que nous n'avons pas encore découvertes ou comprises. Cela pourrait aussi expliquer certains paradoxes et autres contradictions entre la mécanique quantique et la relativité générale.

Auteur: Internet

Info: https://www.physics-astronomy.com/, 6 avril 2023

[ science-fiction ] [ niveaux vibratoires ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

épigénétique

De la biologie quantique dans la photosynthèse ? La biologie actuelle en est-elle au stade où était la physique classique avant la découverte de la physique quantique ? Certains le soupçonnent depuis quelques années, et une publication récente dans Nature Communications vient d'apporter de l'eau à leur moulin. Il y aurait bien des processus quantiques derrière l'efficacité de la photosynthèse.

(On note Ψ la fameuse fonction d'onde décrivant les amplitudes de probabilité en mécanique quantique depuis les travaux de Schrödinger sur sa célèbre équation. On a de nouvelles raisons de penser que la vie exploite les lois de la mécanique quantique pour rendre certains processus plus efficaces, en particulier la photosynthèse. © Engel Group, University of Chicago - En commentaire de la photo d'une feuille au soleil)

C'est un fait bien établi que l'existence des atomes, des molécules et des liaisons chimiques ne sont pas compréhensibles en dehors des lois de la mécanique quantique. En ce sens, la physique et la chimie d'un bloc de métal ou d'une cellule sont quantiques. Mais on sait bien que le comportement de ces objets ne manifeste pas directement la nature quantique de la matière, ils font partie du monde de la physique classique. Cependant, certains phénomènes comme la supraconductivité ou la superfluidité débordent du domaine quantique d'ordinaire réservé à la microphysique pour entrer dans le monde à notre échelle. Lorsque la nécessité de la physique quantique s'est révélée aux physiciens explorant la matière et la lumière, ce fut essentiellement avec deux phénomènes qui semblaient au départ être de simples anomalies bien localisées dans l'univers de la physique classique : le rayonnement du corps noir et l'effet photoélectrique. Nous savons aujourd'hui qu'ils étaient la pointe émergée du monde quantique et que, fondamentalement, le réel est fort différent de la vision du monde bâtie par les fondateurs de la science classique comme Galilée, Descartes et Newton.

La biologie quantique pour expliquer la photosynthèse
De nos jours, les biologistes qui réfléchissent sur le fonctionnement des cellules, de l'ADN ou des neurones considèrent que ces objets sont majoritairement décrits par les lois de la physique classique. Il n'est pas nécessaire d'utiliser l'équation de Schrödinger ou les amplitudes de probabilités qu'elle gouverne pour comprendre l'origine de la vie, les mutations, l'évolution ou l'apparition de la conscience dans un cerveau. Pourtant, ces dernières années, quelques résultats expérimentaux en biologie, notamment sur la photosynthèse, semblaient défier les lois de la physique classique.

Il était et il est encore bien trop tôt pour savoir si la photosynthèse finira par être, pour une éventuelle biologie quantique, ce que le rayonnement du corps noir a été pour la physique quantique. Toutefois, Alexandra Olaya-Castro et Edward O'Reilly, des chercheurs du célèbre University College de Londres, viennent de publier dans Nature Communications un article, également disponible en accès libre sur arxiv, dans lequel ils affirment que des macromolécules biologiques utilisent bel et bien des processus quantiques pour effectuer de la photosynthèse. Jusqu'à présent, le doute planait sur l'inadéquation des processus classiques pour décrire le comportement de chromophores attachés à des protéines qu'utilisent les cellules végétales pour capter et transporter l'énergie lumineuse.

Selon les deux physiciens, certains des états de vibrations moléculaires des chromophores facilitent le transfert d'énergie lors du processus de photosynthèse et contribuent à son efficacité. Ainsi, lorsque deux chromophores vibrent, il arrive que certaines énergies associées à ces vibrations collectives des deux molécules soient telles qu'elles correspondent à des transitions entre deux niveaux d'énergie électronique des molécules. Un phénomène de résonance se produit et un transfert d'énergie en découle entre les deux chromophores.

Distributions de probabilités quantiques négatives
Or, si le processus était purement classique, les mouvements et les positions des atomes dans les chromophores seraient toujours décrits par des distributions de probabilités positives. Alexandra Olaya-Castro et Edward O'Reilly ont découvert qu'il fallait employer des distributions négatives. C'est une signature indiscutable de l'occurrence de processus quantiques. Mieux, il s'agit dans le cas présent de la manifestation d'une superposition d'états quantiques à température ambiante assistant un transfert cohérent d'énergie. On retrouve ces vibrations collectives de macromolécules dans d'autres processus biologiques comme le transfert d'électrons dans les centres de réaction des systèmes photosynthétiques, le changement de structure d'un chromophore lors de l'absorption de photons (comme dans les phénomènes associés à la vision). Selon les chercheurs, il est donc plausible que des phénomènes quantiques assistant des processus biologiques que l'on croyait classiques soient assez répandus. Si tel est le cas, on peut s'attendre à découvrir d'autres manifestations hautement non triviales de la mécanique quantique en biologie. Cela n'aurait certainement pas surpris Werner Heisenberg, et encore moins Niels Bohr qui, il y a déjà plus de 60 ans, prédisaient que l'on pourrait bien rencontrer des limites de la physique classique avec les systèmes vivants.

Auteur: Internet

Info: https://www.futura-sciences.com/. Laurent Sacco. 20- 01-2014

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

spéculations

Les expériences d'Alain Aspect ont confirmé la réalité du phénomène d'intrication quantique (expériences sur photons intriqués). Celles-ci montrent qu'au niveau quantique la notion d'espace n'a plus de sens puisque quelle que soit la "distance", l'action sur un photon A se communique instantanément à son photon intriqué B (en violation de la limite de c = vitesse de la lumière). Cette propriété explique pourquoi les mécaniciens quantiques affirment que la physique quantique est une PHYSIQUE NON LOCALE (elle exclut la réalité objective de l'espace).

Mais cela va encore plus loin: l'intrication nie aussi le temps et les schémas de causalité classique : l'action sur un photon A modifie par "rétroaction" les propriétés du photon B intriqué, dans le passé. Cela signifie que la physique quantique ne prend pas en compte le temps et les schémas de consécution de la mécanique classique (causalité présent-futur). Comment une physique qui n’intègre pas l'espace et le temps est-elle possible ?

La réponse tient en ces termes: NOUS sommes les "porteurs" de l'espace et du temps en tant que conscience, et ceux-ci n'ont aucune réalité objective. C'est là un magnifique triomphe rétrospectif de ce que Kant avait déjà affirmé au XVIIIe siècle dans La Critique de la raison pure. Mais la nouvelle physique gravit une marche de plus: outre la "conscience transcendantale" dont parlait Kant, il faut ajouter l'information, c'est-à-dire un univers d'objets mathématiques purement intelligibles qui, dans leurs rapports à la conscience, produisent le "monde phénoménal", celui que nous percevons. La "réalité perçue" est un vaste simulacre ou comme l'écrivait David Bohm, le lieu d'une fantastique "magie cosmique".

Des consciences exogènes l'ont déjà compris et utilisent leur maîtrise de l'information pour interférer avec notre monde. La science informatique, en digitalisant la matière (c'est-à-dire en remontant aux sources mathématiques de la réalité) a, sans le savoir, reproduit via la technologie de nos ordinateurs, le mode de production "phénoménal" de notre monde.

Ces indications sont en mesure, me semble-t-il, d’aider le lecteur à investir les thèses de mon ami Philippe Guillemant qui sont d’une importance considérable. Il ne s’agit nullement de résumer sa pensée, ni de jouer au physicien que je ne suis pas, mais de fournir quelques degrés de l’escalier qui mènent à la compréhension de ses travaux. En tant que philosophe, il m’apparaît aussi légitime de mettre ces nouvelles connaissances en lien avec des doctrines philosophiques du passé, spécialement celles de Platon et de Kant. Philippe Guillemant ne se contente pas de nous dire que l’espace et le temps sont des cadres de la conscience puisqu’il montre que la conscience est active et se révèle capable de réécrire ou de modifier les données qui constituent la trame la plus intime de la réalité. Il rejette l’idée d’un "ordinateur quantique géant" qui produirait le réel phénoménal et relie cette production à l’activité de la conscience. Il ne m’appartient ici de discuter les raisons de ce "basculement", mais celui-ci me paraît décisif et permet de trancher le débat qui consiste à savoir si l’étoffe de la réalité est de nature algorithmique ou mathématique.

Si on rejette le modèle de l’ordinateur quantique, on ne peut se rallier qu’à la seconde hypothèse qui permet de résoudre un des plus anciens problèmes de l’épistémologie depuis la naissance de la physique mathématique : comment se fait-il que nos opérations sur des objets mathématiques soient en si grande "adhérence" avec le monde de la physique ? Comment expliquer que le travail sur une "écriture mathématique" puisse, bien avant sa confirmation expérimentale, "découvrir" des objets du monde physique comme l’antimatière, les trous noirs, le boson de Higgs, etc. ? Cette question, qu’Albert Einstein, avait appelé le "mystère du miracle des mathématiques" trouve ici un début de résolution si nous posons que la réalité est d’essence mathématique.

L’information pure que Pythagore, Platon et plus tard John Dee avaient identifiée à des formes intelligibles de type mathématique est cette "brique" fondamentale qui rend possible, par sa manipulation, toutes les apparences de notre monde. Certes, nous ne sommes pas au bout de nos peines car entre cette base ontologique (le réel est constitué d’essences mathématiques en interaction avec des consciences actives) et la mise en lumière du modus operandi de cette maîtrise de l’information pour produire un monde phénoménal ou interférer avec lui (comme le font à mon sens les OVNIS), il reste encore du chemin à parcourir. Je n’oublie pas cependant que Philippe Guillemant propose une solution à cette question en centrant son analyse sur la capacité pour la conscience, par excitation du vide quantique (véritable "mer d’informations"), de "travailler" sur l’information et sur les manifestations phénoménales qu’elles permettent de produire.

Mais quel prodigieux changement de perspective nous offre ce nouveau cadre ! La cosmologie antique nous parlait de mondes emboîtés dans des sphères physiques (mondes sublunaire, supralunaire, cercles concentriques décrivant des régions dans les espaces éthérés) ; le physique "classique" nous a ensuite parlé d’échelles physiques de plus en plus petites jusqu’au mur de Planck. Avec cette nouvelle approche, le véritable "emboîtement" est celui par lequel on décrit des niveaux de densité de l’information plus ou moins élevés selon une échelle qui n’est plus physique mais informationnelle : J’ai l’intime conviction que la résolution du mystère des OVNIS se trouve dans la considération de cette échelle des densités. Nous occupons, en tant que conscience humaine, un certain étage sur cette échelle, et nos "visiteurs" sont en mesure de pénétrer à notre étage tout en jouant à l’envi avec les paramètres qui définissent la structure de notre monde.

Auteur: Solal Philippe

Info: Les ovnis, la conscience et les mathématiques, 18/03/2015

[ niveaux de réalité ] [ extraterrestres ] [ inconscient ] [ projectionnistes ] [ paranormal ] [ mondes vibratoires ] [ astral ]

 

Commentaires: 0

Ajouté à la BD par miguel

chronos

Comment les physiciens explorent et repensent le temps

Le temps est inextricablement lié à ce qui pourrait être l’objectif le plus fondamental de la physique : la prédiction. Qu'ils étudient des boulets de canon, des électrons ou l'univers entier, les physiciens visent à recueillir des informations sur le passé ou le présent et à les projeter vers l'avant pour avoir un aperçu de l'avenir. Le temps est, comme l’a dit Frank Wilczek, lauréat du prix Nobel, dans un récent épisode du podcast The Joy of Why de Quanta, " la variable maîtresse sous laquelle le monde se déroule ".  Outre la prédiction, les physiciens sont confrontés au défi de comprendre le temps comme un phénomène physique à part entière. Ils développent des explications de plus en plus précises sur la caractéristique la plus évidente du temps dans notre vie quotidienne : son écoulement inexorable. Et des expériences récentes montrent des façons plus exotiques dont le temps peut se comporter selon les lois de la mécanique quantique et de la relativité générale. Alors que les chercheurs approfondissent leur compréhension du temps dans ces deux théories chères, ils se heurtent à des énigmes qui semblent surgir de niveaux de réalité plus obscurs et plus fondamentaux. Einstein a dit en plaisantant que le temps est ce que mesurent les horloges. C'est une réponse rapide. Mais alors que les physiciens manipulent des horloges de plus en plus sophistiquées, on leur rappelle fréquemment que mesurer quelque chose est très différent de le comprendre. 

Quoi de neuf et remarquable

Une réalisation majeure a été de comprendre pourquoi le temps ne s'écoule qu'en avant, alors que la plupart des faits physiques les plus simples peuvent être faits et défaits avec la même facilité.  La réponse générale semble provenir des statistiques des systèmes complexes et de la tendance de ces systèmes à passer de configurations rares et ordonnées à des configurations désordonnées plus courantes, qui ont une entropie plus élevée. Les physiciens ont ainsi défini une " flèche du temps " classique dans les années 1800, et dans les temps modernes, les physiciens ont remanié cette flèche probabiliste en termes d’intrication quantique croissante. En 2021, ma collègue Natalie Wolchover a fait état d’une nouvelle description des horloges comme de machine qui ont besoin du désordre pour fonctionner sans problème, resserrant ainsi le lien entre emps et entropie. 

Simultanément, les expérimentateurs se sont fait un plaisir d'exposer les bizarres courbures et crépitements du temps que nous ne connaissons pas, mais qui sont autorisés par les lois contre-intuitives de la relativité générale et de la mécanique quantique. En ce qui concerne la relativité, Katie McCormick a décrit en 2021 une expérience mesurant la façon dont le champ gravitationnel de la Terre ralentit le tic-tac du temps sur des distances aussi courtes qu'un millimètre. En ce qui concerne la mécanique quantique, j'ai rapporté l'année dernière comment des physiciens ont réussi à faire en sorte que des particules de lumière fassent l'expérience d'un écoulement simultané du temps vers l'avant et vers l'arrière.

C'est lorsque les physiciens sont confrontés à la formidable tâche de fusionner la théorie quantique avec la relativité générale que tout ça devient confus ; chaque théorie a sa propre conception du temps, mais les deux notions n’ont presque rien en commun.

En mécanique quantique, le temps fonctionne plus ou moins comme on peut s'y attendre : vous commencez par un état initial et utilisez une équation pour le faire avancer de manière rigide jusqu'à un état ultérieur. Des manigances quantiques peuvent se produire en raison des façons particulières dont les états quantiques peuvent se combiner, mais le concept familier du changement se produisant avec le tic-tac d’une horloge maîtresse reste intact.

En relativité générale, cependant, une telle horloge maîtresse n’existe pas. Einstein a cousu le temps dans un tissu espace-temps qui se plie et ondule, ralentissant certaines horloges et en accélérant d’autres. Dans ce tableau géométrique, le temps devient une dimension au même titre que les trois dimensions de l'espace, bien qu'il s'agisse d'une dimension bizarroïde qui ne permet de voyager que dans une seule direction.

Et dans ce contexte, les physiciens dépouillent souvent le temps de sa nature à sens unique. Bon nombre des découvertes fondamentales de Hawking sur les trous noirs – cicatrices dans le tissu spatio-temporel créées par l’effondrement violent d’étoiles géantes – sont nées de la mesure du temps avec une horloge qui marquait des nombres imaginaires, un traitement mathématique qui simplifie certaines équations gravitationnelles et considère le temps comme apparié à l'espace. Ses conclusions sont désormais considérées comme incontournables, malgré la nature non physique de l’astuce mathématique qu’il a utilisée pour y parvenir.

Plus récemment, des physiciens ont utilisé cette même astuce du temps imaginaire pour affirmer que notre univers est l'univers le plus typique, comme je l'ai rapporté en 2022. Ils se demandent encore pourquoi l'astuce semble fonctionner et ce que signifie son utilité. "Il se peut qu'il y ait ici quelque chose de profond que nous n'avons pas tout à fait compris", a écrit le célèbre physicien Anthony Zee à propos du jeu imaginaire du temps dans son manuel de théorie quantique des champs.

Mais qu’en est-il du temps réel et à sens unique dans notre univers ? Comment les physiciens peuvent-ils concilier les deux images du temps alors qu’ils se dirigent sur la pointe des pieds vers une théorie de la gravité quantique qui unit la théorie quantique à la relativité générale ? C’est l’un des problèmes les plus difficiles de la physique moderne. Même si personne ne connaît la réponse, les propositions intrigantes abondent.

Une suggestion, comme je l’ai signalé en 2022, est d’assouplir le fonctionnement restrictif du temps en mécanique quantique en permettant à l’univers de générer apparemment une variété d’avenirs à mesure qu’il grandit – une solution désagréable pour de nombreux physiciens. Natalie Wolchover a écrit sur la suspicion croissante selon laquelle le passage du temps résulte de l'enchevêtrement de particules quantiques, tout comme la température émerge de la bousculade des molécules. En 2020, elle a également évoqué une idée encore plus originale : que la physique soit reformulée en termes de nombres imprécis et abandonne ses ambitions de faire des prévisions parfaites de l’avenir.

Tout ce que les horloges mesurent continue de s’avérer insaisissable et mystérieux. 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 1 avril 2024

 

Commentaires: 0

Ajouté à la BD par miguel

nano-monde relatif

Une expérience quantique montre que la réalité objective n'existe pas

Les faits alternatifs se répandent comme un virus dans la société. Aujourd'hui, il semble qu'ils aient même infecté la science, du moins le domaine quantique. Ce qui peut sembler contre-intuitif. Après tout, la méthode scientifique est fondée sur les notions de fiabilité d'observation, de mesure et de répétabilité. Un fait, tel qu'établi par une mesure, devrait être objectif, de sorte que tous les observateurs puissent en convenir.

Mais dans un article récemment publié dans Science Advances, nous montrons que, dans le micro-monde des atomes et des particules régi par les règles étranges de la mécanique quantique, deux observateurs différents ont droit à leurs propres faits. En d'autres termes, selon nos  meilleures théories des éléments constitutifs de la nature elle-même, les faits peuvent en fait être subjectifs.

Les observateurs sont des acteurs puissants dans le monde quantique. Selon la théorie, les particules peuvent se trouver dans plusieurs endroits ou états à la fois - c'est ce qu'on appelle une superposition. Mais curieusement, ce n'est le cas que lorsqu'elles ne sont pas observées. Dès que vous observez un système quantique, il choisit un emplacement ou un état spécifique, ce qui rompt la superposition. Le fait que la nature se comporte de cette manière a été prouvé à de multiples reprises en laboratoire, par exemple dans la célèbre expérience de la double fente.

En 1961, le physicien Eugene Wigner a proposé une expérience de pensée provocante. Il s'est demandé ce qui se passerait si l'on appliquait la mécanique quantique à un observateur qui serait lui-même observé. Imaginez qu'un ami de Wigner lance une pièce de monnaie quantique - qui se trouve dans une superposition de pile ou face - dans un laboratoire fermé. Chaque fois que l'ami lance la pièce, il obtient un résultat précis. On peut dire que l'ami de Wigner établit un fait : le résultat du lancer de la pièce est définitivement pile ou face.

Wigner n'a pas accès à ce fait de l'extérieur et, conformément à la mécanique quantique, il doit décrire l'ami et la pièce comme étant dans une superposition de tous les résultats possibles de l'expérience. Tout ça parce qu'ils sont " imbriqués " - connectés de manière effrayante au point que si vous manipulez l'un, vous manipulez également l'autre. Wigner peut maintenant vérifier en principe cette superposition à l'aide d'une "expérience d'interférence", un type de mesure quantique qui permet de démêler la superposition d'un système entier, confirmant ainsi que deux objets sont intriqués.

Lorsque Wigner et son ami compareront leurs notes par la suite, l'ami insistera sur le fait qu'ils ont observé des résultats précis pour chaque lancer de pièce. Wigner, cependant, ne sera pas d'accord lorsqu'il observera l'ami et la pièce dans une superposition. 

Voilà l'énigme. La réalité perçue par l'ami ne peut être réconciliée avec la réalité extérieure. À l'origine, Wigner ne considérait pas qu'il s'agissait d'un paradoxe, il affirmait qu'il serait absurde de décrire un observateur conscient comme un objet quantique. Cependant, il s'est ensuite écarté de cette opinion. De plus et, selon les canons officiels de mécanique quantique, la description est parfaitement valide.

L'expérience

Le scénario demeura longtemps une expérience de pensée intéressante. Mais reflètait-t-il la réalité ? Sur le plan scientifique, peu de progrès ont été réalisés à ce sujet jusqu'à très récemment, lorsque Časlav Brukner, de l'université de Vienne, a montré que, sous certaines hypothèses, l'idée de Wigner peut être utilisée pour prouver formellement que les mesures en mécanique quantique sont subjectives aux observateurs.

Brukner a proposé un moyen de tester cette notion en traduisant le scénario de l'ami de Wigner dans un cadre établi pour la première fois par le physicien John Bell en 1964.

Brukner a ainsi conçu deux paires de Wigner et de ses amis, dans deux boîtes distinctes, effectuant des mesures sur un état partagé - à l'intérieur et à l'extérieur de leur boîte respective. Les résultats pouvant  être récapitulés pour être finalement utilisés pour évaluer une "inégalité de Bell". Si cette inégalité est violée, les observateurs pourraient avoir des faits alternatifs.

Pour la première fois, nous avons réalisé ce test de manière expérimentale à l'université Heriot-Watt d'Édimbourg sur un ordinateur quantique à petite échelle, composé de trois paires de photons intriqués. La première paire de photons représente les pièces de monnaie, et les deux autres sont utilisées pour effectuer le tirage au sort - en mesurant la polarisation des photons - à l'intérieur de leur boîte respective. À l'extérieur des deux boîtes, il reste deux photons de chaque côté qui peuvent également être mesurés.

Malgré l'utilisation d'une technologie quantique de pointe, il a fallu des semaines pour collecter suffisamment de données à partir de ces seuls six photons afin de générer suffisamment de statistiques. Mais finalement, nous avons réussi à montrer que la mécanique quantique peut effectivement être incompatible avec l'hypothèse de faits objectifs - nous avions violé l'inégalité.

La théorie, cependant, repose sur quelques hypothèses. Notamment que les résultats des mesures ne sont pas influencés par des signaux se déplaçant à une vitesse supérieure à celle de la lumière et que les observateurs sont libres de choisir les mesures à effectuer. Ce qui peut être le cas ou non.

Une autre question importante est de savoir si les photons uniques peuvent être considérés comme des observateurs. Dans la proposition de théorie de Brukner, les observateurs n'ont pas besoin d'être conscients, ils doivent simplement être capables d'établir des faits sous la forme d'un résultat de mesure. Un détecteur inanimé serait donc un observateur valable. Et la mécanique quantique classique ne nous donne aucune raison de croire qu'un détecteur, qui peut être conçu comme aussi petit que quelques atomes, ne devrait pas être décrit comme un objet quantique au même titre qu'un photon. Il est également possible que la mécanique quantique standard ne s'applique pas aux grandes échelles de longueur, mais tester cela reste un problème distinct.

Cette expérience montre donc que, au moins pour les modèles locaux de la mécanique quantique, nous devons repenser notre notion d'objectivité. Les faits dont nous faisons l'expérience dans notre monde macroscopique semblent ne pas être menacés, mais une question majeure se pose quant à la manière dont les interprétations existantes de la mécanique quantique peuvent tenir compte des faits subjectifs.

Certains physiciens considèrent que ces nouveaux développements renforcent les interprétations qui autorisent plus d'un résultat pour une observation, par exemple l'existence d'univers parallèles dans lesquels chaque résultat se produit. D'autres y voient une preuve irréfutable de l'existence de théories intrinsèquement dépendantes de l'observateur, comme le bayésianisme quantique, dans lequel les actions et les expériences d'un agent sont au cœur de la théorie. D'autres encore y voient un indice fort que la mécanique quantique s'effondrera peut-être au-delà de certaines échelles de complexité.

Il est clair que nous avons là de profondes questions philosophiques sur la nature fondamentale de la réalité.

Quelle que soit la réponse, un avenir intéressant nous attend.

Auteur: Internet

Info: https://www.livescience.com/objective-reality-not-exist-quantum-physicists.html. Massimiliano Proietti et Alessandro Fedrizzi, 19 janvier 2022

 

Commentaires: 0

Ajouté à la BD par miguel

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel

surnaturel

Les scientifiques ont-ils finalement démontré des phénomènes psychiques ? De nouvelles études montrent que les gens peuvent prévoir des événements futurs.
Dans "au travers du miroir" de Lewis Carroll, la reine blanche dit a Alice que dans son pays, la mémoire travaille dans deux sens. Non seulement la reine peut se rappeler de choses du passé, mais elle se rappelle également de "choses qui se produiront la semaine d'après." Alice essaye de discuter avec la reine, énonçant : "je suis sûr que la mienne ne va que dans un sens... je ne peut me rappeler de choses avant qu'elles ne se produisent." La reine répond, "c'est une sorte de faiblesse, si ta mémoire ne fonctionne qu'en arrière."
Combien nos vies seraient meilleures si nous pouvions vivre dans le royaume de la reine blanche, où notre mémoire travaillerait en arrière et en avant. Dans un tel monde, par exemple, on pourrais faire un examen et étudier après coup pour s'assurer qu'on l'a bien réussi dans le passé. Bon, la bonne nouvelle est que selon une série récente d'études scientifiques de Daryl Bem, nous vivons déjà dans pareil monde !
Le Dr.Bem, psychologue social à l'université de Cornell, a entrepris une série d'études qui seront bientôt publiées dans un des journaux de psychologie les plus prestigieux. Au travers de neuf expériences, Bem a examiné l'idée que notre cerveau a la capacité de réfléchir non seulement sur des expériences antérieures, mais peut également en prévoir de futures. Cette capacité de "voir" est souvent désignée comme phénomène psi.
Bien que des recherches antérieures aient été conduites sur de tel phénomènes - nous avons tous vu ces films où des personnes regardent fixement des cartes de Zener avec une étoile ou des lignes ondulées dessus - de telles études n'arrivent pas vraiment à atteindre le statut seuil "de recherche scientifique." Les études de Bem sont uniques du fait qu'elles présentent des méthodes scientifiques standard et se fondent sur des principes bien établis en psychologie. Cela donne essentiellement des résultats qui sont considérés comme valides et fiables en psychologie. Par exemple, l'étude améliore la mémoire, et facilite le temps de réponse - mais ici on inverse simplement l'ordre chronologique.
Par exemple, nous savons tous que répéter un ensemble de mots rend plus facile le fait de s'en souvenir dans l'avenir, mais si la répétition se produit après le rappel ?... Dans une des études, on a donné une liste de mots à lire à des étudiants et, après lecture de la liste, on les a confrontés à un test surprise pour voir de combien de mots ils se rappelaient. Ensuite, un ordinateur a aléatoirement choisi certains des mots sur la liste et on a demandé aux participants de les retaper plusieurs fois à la machine. Les résultats de l'étude ont montré que les étudiants étaient meilleurs pour se remémorer les mots apparus dans l'exercice qui avait suivi, donné par surprise et fait au hasard. Selon Bem, la pratique de ces mots après le test a permis d'une façon ou d'une autre aux participants "de revenir en arrière dans le temps pour faciliter le souvenir."
Dans une autre étude, Bem examiné si l'effet bien connu d'amorçage pouvait également être inversé. Dans une étude typique d'amorçage, on montre à des gens une photo et ils doivent rapidement indiquer si la photo représente une image négative ou positive. Si la photo est un chaton câlin, on appuie sur le bouton "positif" et si la photo représente des larves sur de la viande en décomposition, on appuie sur le bouton "négatif". Une recherche de masse a montré combien l'amorçage subliminal peut accélérer la capacité à classer ces photos. L'amorçage subliminal se produit quand un mot est clignoté sur l'écran tellement rapidement que le cerveau conscient ne l'identifie pas, mais le cerveau inconscient le fait. Ainsi on voit juste un flash, et si on vous demande de dire ce que vous avez vu, vous ne pouvez pas. Mais, profondément, votre cerveau inconscient a vu le mot et l'a traité. Dans l'étude d'amorçage, on constate uniformément que les gens qui s'amorcent avec un mot conformé à la valence de la photo la classeront par catégorie plus vite. Ainsi si on clignote rapidement le mot "heureux" avant l'image de chaton, la personne cliquera le bouton "positif" encore plus vite, mais on clignote à la place le mot "laid" avant, la personne prendra plus longtemps pour répondre. C'est parce que l'amorçage avec le mot "heureux" fait que l'esprit de la personne est prêt à recevoir un truc heureux.
Dans l'étude rétroactive d'amorçage de Bem, on a simplement inversé l'ordre du temps, faisant clignoter le mot amorcé après que la personne ait classé la photo. Ainsi on montre l'image du chaton, la personne sélectionne si elle est positive ou négative, et alors on choisit aléatoirement d'amorcer avec un bon ou mauvais mot. Les résultats ont prouvé que les gens sont plus rapides à classer des photos par catégorie quand elle était suivie d'un mot amorce cohérent. A tel point que non seulement le fait qu'on classe le chaton plus vite quand il est précédé par un bon mot, on le classera également plus vite par catégorie si il est suivit du bon mot après coup. C'est comme si, alors que les participants classaient la photo, leur cerveau savait quel mot viendrait après, qui facilite leur décision.
Voilà juste deux exemples des études que Bem conduit, mais les autres ont montrés des effets "rétroactifs" semblables. Les résultats suggèrent clairement que des gens moyens "non psychiques" semblent pouvoir prévoir des événement futurs.
La question qu'on peut se poser est "quel est l'ordre de grandeur de la différence ?" Ce fait d'étudier un essai après qu'il se soit produit, ou l'amorçage qu'on a eu avec un mot après avoir classé la photo donne un changement énorme, ou est-ce juste une légère bosse dans les statistiques ? Quelle est la taille de effet ?. Il est vrai que les tailles d'effet dans les études de Bem sont petites (par exemple, seulement légèrement plus grandes que la chance). Mais il y a plusieurs raisons pour lesquelles nous ne devons pas négliger ces résultats basés sur de petites, mais fortement conformées, tailles d'effet.
Tout d'abord, au travers ses études, Bem a constaté que certaines personnes ont des résultats plus forts que d'autres. En particulier les gens en grande quête de stimulus - aspect d'extraversion où les gens répondent plus favorablement aux nouveau stimulus. Pour des différences de l'ordre d'environ deux fois plus d'efficacité qu'une personne moyenne. Ceci suggère que des gens sont plus sensibles aux effets psi que d'autres.
Deuxièmement ces petites tailles d'effet ne sont pas rare en psychologie (et pour d'autres sciences). Par exemple la moyenne les études de Bem eut pour résultat des tailles d'effets assez petites, mais tout aussi grandes - ou plus grandes - que certains effets bien établis : lien entre l'aspirine et l'empêchement de crise cardiaque, prise de calcium et os améliorés, fumée et cancer du poumon, utilisation de condom et protection du HIV, etc.... Cohen précise que de telles tailles d'effet se produisent plus facilement quand on est dans les premiers stades d'exploration d'une matière, quand les scientifiques commencent juste à découvrir pourquoi l'effet se produit et quand il est le plus susceptible de se produire.
Ainsi si nous prenons ces phénomènes psi comme vrai, comment pouvons nous alors les expliquer sans jeter à la poubelle notre compréhension du temps et de la physique ? Bon, la vérité est que ces effets ressemblent vraiment beaucoup à ce que la physique moderne dit du temps et de l'espace. Par exemple, Einstein a cru que le seul acte d'observer quelque chose pouvait affecter cette chose là, phénomène qu'il appela "spooky action à distance."
De même, la physique quantique moderne a démontré que les particules légères semblent savoir ce qui se trouve en avant d'elles dans le temps et qu'elles ajusteront leur comportement en conséquence, quoique le futur événement ne se soit pas produit encore. Par exemple dans l'expérience classique "de la double fente" les physiciens ont découvert que les particules légères répondent différemment si elles sont observées. Mais en 1999, les chercheurs ont poussé cette expérience plus loin en se demandant "ce qui se produirait si l'observation avait lieu après que les particules légères aient été déployées. "Tout à fait curieusement, ils ont démontré que les particules agissaient de la même manière, comme si elles savaient qu'elles seraient observées plus tard..." même si cela ne s'était pas encore produit.
De tels effets, "dingues", avec le temps semblent contredire le bon sens et essayer de les comprendre peut donner un sacré mal de tête. Mais les physiciens ont simplement appris à l'accepter. Comme disait une fois le Dr. Chiao, physicien de Berkeley, au sujet de la mécanique quantique, "c'est complètement contre intuitif et extérieur à notre expérience journalière, mais nous (les physiciens) y sommes habitués"
Ainsi, alors que les humains perçoivent le temps comme linéaire, cela ne signifie pas nécessairement qu'il en soit ainsi. Donc, en tant que bons scientifiques, nous ne devrions pas nous laisser influencer par les préjugés sur ce que nous étudions, même si ces idées préconçues reflètent nos idées de base sur la façon dont le temps et l'espace fonctionnent.
Le travail du DR. Bem est un provocation pour la pensée, et comme toute science révolutionnaire est censée faire, il apporte plus de questions que de réponses. Si nous mettons entre parenthèses nos croyances sur le temps et acceptons que le cerveau est capable d'une prise sur le futur, la prochaine question est : comment le fait-il ?. Ce n'est pas parce que l'effet semble "surnaturel" que cela signifie que la cause le soit. Beaucoup de découvertes scientifiques furent considérées comme exotiques par le passé, convenant davantage à la science-fiction (par exemple : la terre est ronde, il y a des organismes microscopiques, etc...). Une recherche future est nécessaire pour explorer les causes exactes des effets de ces études
Comme beaucoup de nouvelles explorations en science, les résultats de Bem peuvent avoir un effet profond sur ce que nous savons et avons accepté comme "vrai". Mais pour certains d'entre vous, peut-être que ces effets ne sont pas une si grande surprise, parce que quelque part, profondément à l'intérieur, nous savons déjà que nous en aurions connaissance aujourd'hui !

Auteur: Internet

Info: Fortean Times, Octobre 11, 2010

[ sciences ] [ prémonition ]

 
Mis dans la chaine

Commentaires: 0

civilisation

Pour expliquer les États-Unis d'Amérique, on les a comparés, avec raison, à un creuset. L'Amérique est en effet un de ces cas où, à partir d'une matière première on ne peut plus hétérogène, a pris naissance un type d'homme dont les caractéristiques sont, dans une large mesure, uniformes et constantes. Des hommes des peuples les plus divers reçoivent donc, en s'installant en Amérique, la même empreinte. Presque toujours, après deux générations, ils perdent leurs caractéristiques originelles et reproduisent un type assez unitaire pour ce qui est de la mentalité, de la sensibilité et des modes de comportement : le type américain justement.

Mais, dans ce cas précis, des théories comme celles formulées par Frobenius et Spengler – il y a aurait une étroite relation entre les formes d'une civilisation et une sorte d' "âme" liée au milieu naturel, au "paysage" et à la population originelle – ne semblent pas pertinentes. S'il en était ainsi, en Amérique l'élément constitué par les Amérindiens, par les Peaux-Rouges, aurait dû jouer un rôle important. Les Peaux-Rouges étaient une race fière, possédant style, dignité, sensibilité et religiosité ; ce n'est pas sans raison qu'un auteur traditionaliste, F. Schuon, a parlé de la présence en eux de quelque chose "d'aquilin et de solaire". Et nous n'hésitons pas à affirmer que si leur esprit avait marqué, sous ses meilleurs aspects et sur un plan adéquat, la matière mélangée dans le "creuset américain", le niveau de la civilisation américaine aurait été probablement plus élevé. Mais, abstraction faite de la composante puritaine et protestante (qui se ressent à son tour, en raison de l'insistance fétichiste sur l'Ancien Testament, d'influences judaïsantes négatives), il semble que ce soit l'élément noir, avec son primitivisme, qui ait donné le ton à bien des traits décisifs de la mentalité américaine.

Une première chose est, à elle seule, caractéristique : quand on parle de folklore en Amérique, c'est aux Noirs qu'on pense, comme s'ils avaient été les premiers habitants du pays. Si bien qu'on traite, aux États-Unis, comme un oeuvre classique inspirée du "folklore américain", le fameux Porgy and Bess du musicien d'origine juive Gershwin, oeuvre qui ne parle que des Noirs. Cet auteur déclara d'ailleurs que, pour écrire son oeuvre, il se plongea pendant un certain temps dans l'ambiance des Noirs américains. Le phénomène représenté par la musique légère et la danse est encore plus frappant. On ne peut pas donner tort à Fitzgerald, qui a dit que, sous un de ses principaux aspects, la civilisation américaine peut être appelée une civilisation du jazz, ce qui veut dire d'une musique et d'une danse d'origine noire ou négrifiée. Dans ce domaine, des "affinités électives" très singulières ont amené l'Amérique, tout au long d'un processus de régression et de retour au primitif, à s'inspirer justement des Noirs, comme si elle n'avait pas pu trouver, dans son désir compréhensible de création de rythmes et de formes frénétiques en mesure de compenser le côté desséché de la civilisation mécanique et matérielle moderne, rien de mieux. Alors que de nombreuses sources européennes s'offraient à elle - nous avons déjà fait allusion, en une autre occasion, aux rythmes de danse de l'Europe balkanique, qui ont vraiment quelque chose de dionysiaque. Mais l'Amérique a choisi les Noirs et les rythmes afro-cubains, et la contagion, à partir d'elle, a gagné peu à peu les autres pays.

Le psychanalyste C.-G. Jung avait déjà remarqué la composante noire du psychisme américain. Certaines de ses observations méritent d'être reproduites ici : "Ce qui m'étonna beaucoup, chez les Américains, ce fut la grande influence du Noir. Influence psychologique, car je ne veux pas parler de certains mélanges de sang. Les expressions émotives de l'Américain et, en premier lieu, sa façon de rire, on peut les étudier fort bien dans les suppléments des journaux américains consacrés au society gossip. Cette façon inimitable de rire, de rire à la Roosevelt, est visible chez le Noir américain sous sa forme originelle. Cette manière caractéristique de marcher, avec les articulations relâchées ou en balançant des hanches, qu'on remarque souvent chez les Américains, vient des Noirs. La musique américaine doit aux Noirs l'essentiel de son inspiration. Les danses américaines sont des danses de Noirs. Les manifestations du sentiment religieux, les revival meetings, les holy rollers et d'autres phénomènes américains anormaux sont grandement influencés par le Noir. Le tempérament extrêmement vif en général, qui s'exprime non seulement dans un jeu comme le base ball, mais aussi, et en particulier, dans l'expression verbale – le flux continu, illimité, de bavardages, typique des journaux américains, en est un exemple remarquable –, ne provient certainement pas des ancêtres d'origine germanique, mais ressemble au chattering de village nègre. L'absence presque totale d'intimité et la vie collective qui contient tout rappellent, en Amérique, la vie primitive des cabanes ouvertes où règne une promiscuité complète entre les membres de la tribu".

Poursuivant des observations de ce genre, Jung a fini par se demander si les habitants du nouveau continent peuvent encore être considérés comme des Européens. Mais ses remarques doivent être prolongées. Cette brutalité, qui est un des traits évidents de l'Américain, on peut dire qu'elle possède une empreinte noire. D'une manière générale, le goût de la brutalité fait désormais partie de la mentalité américaine. II est exact que le sport le plus brutal, la boxe, est né en Angleterre ; mais il est tout aussi exact que c'est aux États-Unis qu'il a connu les développements les plus aberrants au point de faire l'objet d'un véritable fanatisme collectif, bien vite transmis aux autres peuples. En ce qui concerne la tendance à en venir aux mains de la façon la plus sauvage qui soit, il suffit d'ailleurs de songer à une quantité de films américains et à l'essentiel de la littérature populaire américaine, la littérature "policière" : les coups de poing y sont monnaie courante, parce qu'ils répondent évidemment aux goûts des spectateurs et des lecteurs d'outre-Atlantique, pour lesquels la brutalité semble être la marque de la vraie virilité. La nation-guide américaine a depuis longtemps relégué, plus que toute autre, parmi les ridicules antiquailles européennes, la manière de régler un différend par les voies du droit, en suivant des normes rigoureuses, sans recourir à la force brute et primitive du bras et du poing, manière qui pouvait correspondre au duel traditionnel. On ne peut que souligner l'abîme séparant ce trait de la mentalité américaine de ce que fut l'idéal de comportement du gentleman anglais, et ce, bien que les Anglais aient été une composante de la population blanche originelle des États-Unis. On peut comparer l'homme occidental moderne, qui est dans une large mesure un type humain régressif, à un crustacé : il est d'autant plus "dur" dans son comportement extérieur d'homme d'action, d'entrepreneur sans scrupules, qu'il est "mou" et inconsistant sur le plan de l'intériorité. Or, cela est éminemment vrai de l'Américain, en tant qu'il incarne le type occidental dévié jusqu'à l'extrême limite.

On rencontre ici une autre affinité avec le Noir. Un sentimentalisme fade, un pathos banal, notamment dans les relations sentimentales, rapprochent bien plus l'Américain du Noir que de l'Européen vraiment civilisé. L'observateur peut à ce sujet tirer aisément les preuves irréfutables à partir de nombreux romans américains typiques, à partir aussi des chansons, du cinéma et de la vie privée courante. Que l'érotisme de l'Américain soit aussi pandémique que techniquement primitif, c'est une chose qu'ont déplorée aussi et surtout des jeunes filles et des femmes américaines. Ce qui ramène une fois de plus aux races noires, chez lesquelles l'importance, parfois obsessionnelle, qu'ont toujours eu l'érotisme et la sexualité, s'associe, justement, à un primitivisme ; ces races, à la différence des Orientaux, du monde occidental antique et d'autres peuples encore, n'ont jamais connu un ars amatoria digne de ce nom. Les grands exploits sexuels, si vantés, des Noirs, n'ont en réalité qu'un grossier caractère quantitatif et priapique.

Un autre aspect typique du primitivisme américain concerne l'idée de "grandeur". Werner Sombart a parfaitement vu la chose en disant : they mistake bigness for greatness, phrase qu'on pourrait traduire ainsi : ils prennent la grandeur matérielle pour la vraie grandeur, pour la grandeur spirituelle. Or, ce trait n'est pas propre à tous les peuples de couleur en général. Par exemple, un Arabe de vieille race, un Peau-Rouge, un Extrême-Oriental ne se laissent pas trop impressionner par tout ce qui est grandeur de surface, matérielle, quantitative, y compris la grandeur liée aux machines, à la technique, à l'économie (abstraction faite, naturellement, des éléments déjà occidentalisés de ces peuples). Pour se laisser prendre par tout cela ; il fallait une race vraiment primitive et infantile comme la race noire. Il n'est donc pas exagéré de dire que le stupide orgueil des Américains pour la "grandeur" spectaculaire, pour les achievements de leur civilisation, se ressent lui aussi d'une disposition du psychisme nègre. On peut aussi parler d'une des bêtises que l'on entend souvent répéter, à savoir que les Américains seraient une "race jeune", avec pour corollaire tacite que c'est à eux qu'appartient l'avenir. Car un regard myope peut facilement confondre les traits d'une jeunesse effective avec ceux d'un infantilisme régressif. Du reste, il suffit de reprendre la conception traditionnelle pour que la perspective soit renversée. En dépit des apparences, les peuples récemment formés doivent être considérés comme les peuples les plus vieux et, éventuellement, comme des peuples crépusculaires, parce qu'ils sont venus en dernier justement, parce qu'ils sont encore plus éloignés des origines.

Cette manière de voir les choses trouve d'ailleurs une correspondance dans le monde des organismes vivants. Ceci explique la rencontre paradoxale des peuples présumés "jeunes" (au sens de peuples venus en dernier) avec des races vraiment primitives, toujours restées en dehors de la grande histoire ; cela explique le goût de ce qui est primitif et le retour à ce qui est primitif. Nous l'avons déjà fait remarquer à propos du choix fait par les Américains, à cause d'une affinité élective profonde, en faveur de la musique nègre et sub-tropicale ; mais le même phénomène est perceptible aussi dans d'autres domaines de la culture et de l'art. On peut se référer, par exemple, au culte assez récent de la négritude qu'avaient fondé en France des existentialistes, des intellectuels et des artistes "progressistes".

Une autre conclusion à tirer de tout cela, c'est que les Européens et les représentants de civilisations supérieures non européennes font preuve, à leur tour, de la même mentalité de primitif et de provincial lorsqu'ils admirent l'Amérique, lorsqu'ils se laissent impressionner par l'Amérique, lorsqu'ils s'américanisent avec stupidité et enthousiasme, croyant ainsi marcher au pas du progrès et témoigner d'un esprit "libre" et "ouvert". La marche du progrès concerne aussi l' "intégration" sociale et culturelle du Noir, qui se répand en Europe même et qui est favorisée, même en Italie, par une action sournoise, notamment au moyen de films importés (où Blancs et Noirs remplissent ensemble des fonctions sociales : juges, policiers, avocats, etc.) et par la télévision, avec des spectacles où danseuses et chanteuses noires sont mélangées à des blanches, afin que le grand public s'accoutume peu à peu à la promiscuité des races, perde tout reste de conscience raciale naturelle et tout sentiment de la distance. Le fanatisme collectif qu'a provoqué en Italie, lors de ses exhibitions, cette masse de chair informe et hurlante qu'est la Noire Ella Fitzgerald, est un signe aussi triste que révélateur. On peut en dire autant du fait que l'exaltation la plus délirante de la "culture" nègre, de la négritude, soit due à un Allemand, Janheinz Jahn, dont le livre Muntu, publié par une vieille et respectable maison d'édition allemande (donc dans le pays du racisme aryen !), a été immédiatement traduit et diffusé par un éditeur italien de gauche bien connu, Einaudi. Dans cet ouvrage invraisemblable, l'auteur en arrive à soutenir que la "culture" nègre serait un excellent moyen de relever et de régénérer la "civilisation matérielle" occidentale... Au sujet des affinités électives américaines, nous ferons allusion à un dernier point. On peut dire qu'il y a eu aux États-Unis d'Amérique quelque chose de valable, vraiment prometteur : le phénomène de cette jeune génération qui prônait une sorte d'existentialisme révolté, anarchiste, anticonformiste et nihiliste ; ce qu'on a appelé la beat generation, les beats, les hipsters et compagnie, sur lesquels nous reviendrons d'ailleurs. Or, même dans ce cas, la fraternisation avec les Noirs, l'instauration d'une véritable religion du jazz nègre, la promiscuité affichée, y compris sur le plan sexuel, avec les Noirs, ont fait partie des caractéristiques de ce mouvement.

Dans un essai célèbre, Norman Mailer, qui a été un des principaux représentants de la beat generation, avait même établi une sorte d'équivalence entre le Noir et le type humain de la génération en question ; il avait carrément appelé ce dernier the white Negro, le "nègre blanc". A ce propos, Fausto Gianfranceschi a écrit très justement : "En raison de la fascination exercée par la 'culture' nègre, sous la forme décrite par Mailer, on ne peut s'empêcher d'établir immédiatement un parallèle – irrespectueux – avec l'impression que fit le message de Friedrich Nietzsche au début du XIXe siècle. Le point de départ, c'est le même désir de rompre tout ce qui est fossilisé et conformiste par une prise de conscience brutale du donné vital et existentiel ; mais quelle confusion lorsqu'on met le Noir, comme on l'a fait de nos jours, avec le jazz et l'orgasme sexuel, sur le piédestal du "surhomme" !

Pour la bonne bouche nous terminerons par un témoignage significatif dû à un écrivain américain particulièrement intéressant, James Burnham (dans "The struggle for the world") : "On trouve dans la vie américaine les signes d'une indiscutable brutalité. Ces signes se révèlent aussi bien dans le lynchage et le gangstérisme que dans la prétention et la goujaterie des soldats et des touristes à l'étranger. Le provincialisme de la mentalité américaine s'exprime par un manque de compréhension pour tout autre peuple et toute autre culture. Il y a, chez de nombreux Américains, un mépris de rustre pour les idées, les traditions, l'histoire, un mépris lié à l'orgueil pour les petites choses dues au progrès matériel. Qui, après avoir écouté une radio américaine, ne sentira pas un frisson à la pensée que le prix de la survie serait l'américanisation du monde ?"

Ce qui, malheureusement, est déjà en train de se produire sous nos yeux.

Auteur: Evola Julius

Info: L'arc et la massue (1971, 275p.)

[ racialisme ] [ melting-pot ] [ nouveau monde ] [ désintégration ] [ ethno-différentialisme ]

 
Commentaires: 2