Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 77
Temps de recherche: 0.0535s

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

homme-machine

Un pas de géant pour une machine à jouer aux échecs

Le succès stupéfiant d’AlphaZero, un algorithme d’apprentissage profond, annonce une nouvelle ère de la compréhension – une ère qui, en ce qui concerne les humains, qui pourrait ne pas durer longtemps. Début décembre, des chercheurs de DeepMind, la société d’intelligence artificielle appartenant à la société mère de Google, Alphabet Inc. ont diffusé une dépêche depuis les zones avancées du monde des échecs.

Un an plus tôt, le 5 décembre 2017, l’équipe avait stupéfié ce monde des échecs en annonçant AlphaZero, un algorithme d’apprentissage machine qui maîtrisait non seulement les échecs mais aussi le shogi, ou échecs japonais, et le Go. L’algorithme a commencé sans aucune connaissance des jeux hormis leurs règles de base. Il a ensuite joué contre lui-même des millions de fois et a appris par essais et erreurs. Il a suffi de quelques heures pour que l’algorithme devienne le meilleur joueur, humain ou ordinateur, que le monde ait jamais vu.

Les détails des capacités d’AlphaZero et de son fonctionnement interne ont maintenant été officiellement examinés par des pairs et publiés dans la revue Science ce mois-ci. Le nouvel article aborde plusieurs critiques graves à l’égard de l’allégation initiale (entre autres choses, il était difficile de dire si AlphaZero jouait l’adversaire qu’il s’était choisi, une entité computationnelle nommée Stockfish, en toute équité). Considérez que ces soucis sont maintenant dissipés. AlphaZero ne s’est pas amélioré davantage au cours des douze derniers mois, mais la preuve de sa supériorité s’est bien renforcée. Il fait clairement montre d’un type d’intellect que les humains n’ont jamais vue auparavant, et que nous allons avoir à méditer encore longtemps.

Les échecs par ordinateur ont fait beaucoup de chemin au cours des vingt dernières années. En 1997, le programme de jeu d’échecs d’I.B.M., Deep Blue, a réussi à battre le champion du monde humain en titre, Garry Kasparov, dans un match en six parties. Rétrospectivement, il y avait peu de mystère dans cette réalisation. Deep Blue pouvait évaluer 200 millions de positions par seconde. Il ne s’est jamais senti fatigué, n’a jamais fait d’erreur de calcul et n’a jamais oublié ce qu’il pensait un instant auparavant.

Pour le meilleur et pour le pire, il a joué comme une machine, brutalement et matériellement. Il pouvait dépasser M. Kasparov par le calcul, mais il ne pouvait pas le dépasser sur le plan de la pensée elle-même. Dans la première partie de leur match, Deep Blue a accepté avec avidité le sacrifice d’une tour par M. Kasparov pour un fou, mais a perdu la partie 16 coups plus tard. La génération actuelle des programmes d’échecs les plus forts du monde, tels que Stockfish et Komodo, joue toujours dans ce style inhumain. Ils aiment à capturer les pièces de l’adversaire. Ils ont une défense d’acier. Mais bien qu’ils soient beaucoup plus forts que n’importe quel joueur humain, ces "moteurs" d’échecs n’ont aucune réelle compréhension du jeu. Ils doivent être instruits explicitement pour ce qui touche aux principes de base des échecs. Ces principes, qui ont été raffinés au fil de décennies d’expérience de grands maîtres humains, sont programmés dans les moteurs comme des fonctions d’év

aluation complexes qui indiquent ce qu’il faut rechercher dans une position et ce qu’il faut éviter : comment évaluer le degré de sécurité du roi, l’activité des pièces, la structure dessinée par les pions, le contrôle du centre de l’échiquier, et plus encore, comment trouver le meilleur compromis entre tous ces facteurs. Les moteurs d’échecs d’aujourd’hui, inconscients de façon innée de ces principes, apparaissent comme des brutes : extrêmement rapides et forts, mais sans aucune perspicacité.

Tout cela a changé avec l’essor du machine-learning. En jouant contre lui-même et en mettant à jour son réseau neuronal au fil de son apprentissage, AlphaZero a découvert les principes des échecs par lui-même et est rapidement devenu le meilleur joueur connu. Non seulement il aurait pu facilement vaincre tous les maîtres humains les plus forts – il n’a même pas pris la peine d’essayer – mais il a écrasé Stockfish, le champion du monde d’échecs en titre par ordinateur. Dans un match de cent parties contre un moteur véritablement impressionnant, AlphaZero a remporté vingt-huit victoires et fait soixante-douze matchs nuls. Il n’a pas perdu une seule partie.

Le plus troublant, c’est qu’AlphaZero semblait être perspicace. Il a joué comme aucun ordinateur ne l’a jamais fait, intuitivement et magnifiquement, avec un style romantique et offensif. Il acceptait de sacrifier des pions et prenait des risques. Dans certaines parties, cela paralysait Stockfish et il s’est joué de lui. Lors de son attaque dans la partie n°10, AlphaZero a replacé sa reine dans le coin du plateau de jeu de son propre côté, loin du roi de Stockfish, pas là où une reine à l’offensive devrait normalement être placée.

Et cependant, cette retraite inattendue s’avéra venimeuse : peu importe comment Stockfish y répondait, ses tentatives étaient vouées à l’échec. C’était presque comme si AlphaZero attendait que Stockfish se rende compte, après des milliards de calculs intensifs bruts, à quel point sa position était vraiment désespérée, pour que la bête abandonne toute résistance et expire paisiblement, comme un taureau vaincu devant un matador. Les grands maîtres n’avaient jamais rien vu de tel. AlphaZero avait la finesse d’un virtuose et la puissance d’une machine. Il s’agissait du premier regard posé par l’humanité sur un nouveau type prodigieux d’intelligence.

Lorsque AlphaZero fut dévoilé pour la première fois, certains observateurs se sont plaints que Stockfish avait été lobotomisé en ne lui donnant pas accès à son livre des ouvertures mémorisées. Cette fois-ci, même avec son livre, il a encore été écrasé. Et quand AlphaZero s’est handicapé en donnant dix fois plus de temps à Stockfish qu’à lui pour réfléchir, il a quand même démoli la bête.

Ce qui est révélateur, c’est qu’AlphaZero a gagné en pensant plus intelligemment, pas plus vite ; il n’a examiné que 60 000 positions par seconde, contre 60 millions pour Stockfish. Il était plus avisé, sachant ce à quoi on devait penser et ce qu’on pouvait ignorer. En découvrant les principes des échecs par lui-même, AlphaZero a développé un style de jeu qui "reflète la vérité profonde" du jeu plutôt que "les priorités et les préjugés des programmeurs", a expliqué M. Kasparov dans un commentaire qui accompagne et introduit l’article dans Science.

La question est maintenant de savoir si l’apprentissage automatique peut aider les humains à découvrir des vérités similaires sur les choses qui nous tiennent vraiment à coeur : les grands problèmes non résolus de la science et de la médecine, comme le cancer et la conscience ; les énigmes du système immunitaire, les mystères du génome.

Les premiers signes sont encourageants. En août dernier, deux articles parus dans Nature Medicine ont exploré comment l’apprentissage automatique pouvait être appliqué au diagnostic médical. Dans l’un d’entre eux, des chercheurs de DeepMind se sont associés à des cliniciens du Moorfields Eye Hospital de Londres pour mettre au point un algorithme d’apprentissage profond qui pourrait classer un large éventail de pathologies de la rétine aussi précisément que le font les experts humains (l’ophtalmologie souffre en effet d’une grave pénurie d’experts à même d’interpréter les millions de scans ophtalmologiques effectués chaque année en vue d’un diagnostic ; des assistants numériques intelligents pourraient apporter une aide énorme).

L’autre article concernait un algorithme d’apprentissage machine qui décide si un tomodensitogramme (CT scan) d’un patient admis en urgence montre des signes d’un accident vasculaire cérébral (AVC), ou d’une hémorragie intracrânienne ou encore d’un autre événement neurologique critique. Pour les victimes d’AVC, chaque minute compte ; plus le traitement tarde, plus le résultat clinique se dégrade. (Les neurologistes ont ce sombre dicton: "time is brain"). Le nouvel algorithme a étiqueté ces diagnostics et d’autres diagnostics critiques avec une précision comparable à celle des experts humains – mais il l’a fait 150 fois plus rapidement. Un diagnostic plus rapide pourrait permettre aux cas les plus urgents d’être aiguillés plus tôt, avec une vérification par un radiologiste humain.

Ce qui est frustrant à propos de l’apprentissage machine, cependant, c’est que les algorithmes ne peuvent pas exprimer ce qu’ils pensent. Nous ne savons pas pourquoi ils marchent, donc nous ne savons pas si on peut leur faire confiance. AlphaZero donne l’impression d’avoir découvert quelques principes importants sur les échecs, mais il ne peut pas partager cette compréhension avec nous. Pas encore, en tout cas. En tant qu’êtres humains, nous voulons plus que des réponses. Nous voulons de la perspicacité. Voilà qui va créer à partir de maintenant une source de tension dans nos interactions avec ces ordinateurs.

De fait, en mathématiques, c’est une chose qui s’est déjà produite depuis des années. Considérez le problème mathématique du "théorème des quatre couleurs", qui défie de longue date les cerveaux des mathématiciens. Il énonce que, sous certaines contraintes raisonnables, toute carte de pays contigus puisse toujours être coloriée avec seulement quatre couleurs, en n’ayant jamais deux fois la même couleur pour des pays adjacents.

Bien que le théorème des quatre couleurs ait été prouvé en 1977 avec l’aide d’un ordinateur, aucun humain ne pouvait vérifier toutes les étapes de la démonstration. Depuis lors, la preuve a été validée et simplifiée, mais il y a encore des parties qui impliquent un calcul de force brute, du genre de celui employé par les ancêtres informatiques d’AlphaZero qui jouent aux échecs. Ce développement a gêné de nombreux mathématiciens. Ils n’avaient pas besoin d’être rassurés que le théorème des quatre couleurs était vrai ; ils le croyaient déjà. Ils voulaient comprendre pourquoi c’était vrai, et cette démonstration ne les y a pas aidés.

Mais imaginez un jour, peut-être dans un avenir pas si lointain, où AlphaZero aura évolué vers un algorithme de résolution de problèmes plus général ; appelez-le AlphaInfinity. Comme son ancêtre, il aurait une perspicacité suprême : il pourrait trouver de belles démonstrations, aussi élégantes que les parties d’échecs qu’AlphaZero jouait contre Stockfish. Et chaque démonstration révélerait pourquoi un théorème était vrai ; l’AlphaInfinity ne vous l’enfoncerait pas juste dans la tête avec une démonstration moche et ardue.

Pour les mathématiciens et les scientifiques humains, ce jour marquerait l’aube d’une nouvelle ère de perspicacité. Mais ça ne durera peut-être pas. Alors que les machines deviennent de plus en plus rapides et que les humains restent en place avec leurs neurones fonctionnant à des échelles de temps de quelques millisecondes, un autre jour viendra où nous ne pourrons plus suivre. L’aube de la perspicacité humaine peut rapidement se transformer en crépuscule.

Supposons qu’il existe des régularités ou des modèles plus profonds à découvrir – dans la façon dont les gènes sont régulés ou dont le cancer progresse ; dans l’orchestration du système immunitaire ; dans la danse des particules subatomiques. Et supposons que ces schémas puissent être prédits, mais seulement par une intelligence bien supérieure à la nôtre. Si AlphaInfinity pouvait les identifier et les comprendre, cela nous semblerait être un oracle.

Nous nous assiérions à ses pieds et écouterions attentivement. Nous ne comprendrions pas pourquoi l’oracle a toujours raison, mais nous pourrions vérifier ses calculs et ses prédictions par rapport aux expériences et aux observations, et confirmer ses révélations. La science, cette entreprise de l’homme qui le caractérise par-dessus tout, aurait réduit notre rôle à celui de spectateurs, bouches bées dans l’émerveillement et la confusion.

Peut-être qu’un jour, notre manque de perspicacité ne nous dérangerait plus. Après tout, AlphaInfinity pourrait guérir toutes nos maladies, résoudre tous nos problèmes scientifiques et faire arriver tous nos autres trains intellectuels à l’heure avec succès. Nous nous sommes assez bien débrouillés sans trop de perspicacité pendant les quelque 300.000 premières années de notre existence en tant qu’Homo sapiens. Et nous ne manquerons pas de mémoire : nous nous souviendrons avec fierté de l’âge d’or de la perspicacité humaine, cet intermède glorieux, long de quelques milliers d’années, entre un passé où nous ne pouvions rien appréhender et un avenir où nous ne pourrons rien comprendre.

Auteur: Strogatz Steven

Info: Infinite Powers : How Calculus Reveals the Secrets of the Universe, dont cet essai est adapté sur le blog de Jorion

[ singularité ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

De quoi l'espace-temps est-il réellement fait ?

L'espace-temps pourrait émerger d'une réalité plus fondamentale. La découverte de cette réalité pourrait débloquer l'objectif le plus urgent de la physique

Natalie Paquette passe son temps à réfléchir à la manière de faire croître une dimension supplémentaire. Elle commence par de petits cercles, dispersés en tout point de l'espace et du temps - une dimension en forme de boucle, qui se referme sur elle-même. Puis on rétrécit ces cercles, de plus en plus petits, en resserrant la boucle, jusqu'à ce qu'une curieuse transformation se produise : la dimension cesse de sembler minuscule et devient énorme, comme lorsqu'on réalise que quelque chose qui semble petit et proche est en fait énorme et distant. "Nous réduisons une direction spatiale", explique Paquette. "Mais lorsque nous essayons de la rétrécir au-delà d'un certain point, une nouvelle et grande direction spatiale émerge à la place."

Paquette, physicien théoricien à l'université de Washington, n'est pas le seul à penser à cette étrange sorte de transmutation dimensionnelle. Un nombre croissant de physiciens, travaillant dans différents domaines de la discipline avec des approches différentes, convergent de plus en plus vers une idée profonde : l'espace - et peut-être même le temps - n'est pas fondamental. Au contraire, l'espace et le temps pourraient être émergents : ils pourraient découler de la structure et du comportement de composants plus fondamentaux de la nature. Au niveau le plus profond de la réalité, des questions comme "Où ?" et "Quand ?" n'ont peut-être aucune réponse. "La physique nous donne de nombreux indices selon lesquels l'espace-temps tel que nous le concevons n'est pas la chose fondamentale", déclare M. Paquette.

Ces notions radicales proviennent des derniers rebondissements de la chasse à la théorie de la gravité quantique, qui dure depuis un siècle. La meilleure théorie des physiciens sur la gravité est la relativité générale, la célèbre conception d'Albert Einstein sur la façon dont la matière déforme l'espace et le temps. Leur meilleure théorie sur tout le reste est la physique quantique, qui est d'une précision étonnante en ce qui concerne les propriétés de la matière, de l'énergie et des particules subatomiques. Les deux théories ont facilement passé tous les tests que les physiciens ont pu concevoir au cours du siècle dernier. On pourrait penser qu'en les réunissant, on obtiendrait une "théorie du tout".

Mais les deux théories ne s'entendent pas bien. Demandez à la relativité générale ce qui se passe dans le contexte de la physique quantique, et vous obtiendrez des réponses contradictoires, avec des infinis indomptés se déchaînant sur vos calculs. La nature sait comment appliquer la gravité dans des contextes quantiques - cela s'est produit dans les premiers instants du big bang, et cela se produit encore au cœur des trous noirs - mais nous, les humains, avons encore du mal à comprendre comment le tour se joue. Une partie du problème réside dans la manière dont les deux théories traitent l'espace et le temps. Alors que la physique quantique considère l'espace et le temps comme immuables, la relativité générale les déforme au petit déjeuner.

D'une manière ou d'une autre, une théorie de la gravité quantique devrait concilier ces idées sur l'espace et le temps. Une façon d'y parvenir serait d'éliminer le problème à sa source, l'espace-temps lui-même, en faisant émerger l'espace et le temps de quelque chose de plus fondamental. Ces dernières années, plusieurs pistes de recherche différentes ont toutes suggéré qu'au niveau le plus profond de la réalité, l'espace et le temps n'existent pas de la même manière que dans notre monde quotidien. Au cours de la dernière décennie, ces idées ont radicalement changé la façon dont les physiciens envisagent les trous noirs. Aujourd'hui, les chercheurs utilisent ces concepts pour élucider le fonctionnement d'un phénomène encore plus exotique : les trous de ver, connexions hypothétiques en forme de tunnel entre des points distants de l'espace-temps. Ces succès ont entretenu l'espoir d'une percée encore plus profonde. Si l'espace-temps est émergent, alors comprendre d'où il vient - et comment il pourrait naître de n'importe quoi d'autre - pourrait être la clé manquante qui ouvrirait enfin la porte à une théorie du tout.

LE MONDE DANS UN DUO DE CORDES

Aujourd'hui, la théorie candidate à la gravité quantique la plus populaire parmi les physiciens est la théorie des cordes. Selon cette idée, les cordes éponymes sont les constituants fondamentaux de la matière et de l'énergie, donnant naissance à la myriade de particules subatomiques fondamentales observées dans les accélérateurs de particules du monde entier. Elles sont même responsables de la gravité - une particule hypothétique porteuse de la force gravitationnelle, un "graviton", est une conséquence inévitable de la théorie.

Mais la théorie des cordes est difficile à comprendre : elle se situe dans un territoire mathématique que les physiciens et les mathématiciens ont mis des décennies à explorer. Une grande partie de la structure de la théorie est encore inexplorée, des expéditions sont encore prévues et des cartes restent à établir. Dans ce nouveau domaine, la principale technique de navigation consiste à utiliser des dualités mathématiques, c'est-à-dire des correspondances entre un type de système et un autre.

La dualité évoquée au début de cet article, entre les petites dimensions et les grandes, en est un exemple. Si vous essayez de faire entrer une dimension dans un petit espace, la théorie des cordes vous dit que vous obtiendrez quelque chose de mathématiquement identique à un monde où cette dimension est énorme. Selon la théorie des cordes, les deux situations sont identiques : vous pouvez aller et venir librement de l'une à l'autre et utiliser les techniques d'une situation pour comprendre le fonctionnement de l'autre. "Si vous gardez soigneusement la trace des éléments fondamentaux de la théorie, dit Paquette, vous pouvez naturellement trouver parfois que... vous pourriez faire croître une nouvelle dimension spatiale."

Une dualité similaire suggère à de nombreux théoriciens des cordes que l'espace lui-même est émergeant. L'idée a germé en 1997, lorsque Juan Maldacena, physicien à l'Institute for Advanced Study, a découvert une dualité entre une théorie quantique bien comprise, connue sous le nom de théorie des champs conforme (CFT), et un type particulier d'espace-temps issu de la relativité générale, appelé espace anti-de Sitter (AdS). Ces deux théories semblent très différentes : la CFT ne comporte aucune gravité, tandis que l'espace AdS intègre toute la théorie de la gravité d'Einstein. Pourtant, les mêmes mathématiques peuvent décrire les deux mondes. Lorsqu'elle a été découverte, cette correspondance AdS/CFT a fourni un lien mathématique tangible entre une théorie quantique et un univers complet comportant une gravité.

Curieusement, l'espace AdS dans la correspondance AdS/CFT comportait une dimension de plus que la CFT quantique. Mais les physiciens se sont délectés de ce décalage, car il s'agissait d'un exemple parfaitement élaboré d'un autre type de correspondance conçu quelques années plus tôt par les physiciens Gerard 't Hooft de l'université d'Utrecht aux Pays-Bas et Leonard Susskind de l'université de Stanford, connu sous le nom de principe holographique. Se fondant sur certaines des caractéristiques particulières des trous noirs, Gerard 't Hooft et Leonard Susskind soupçonnaient que les propriétés d'une région de l'espace pouvaient être entièrement "codées" par sa frontière. En d'autres termes, la surface bidimensionnelle d'un trou noir contiendrait toutes les informations nécessaires pour savoir ce qui se trouve dans son intérieur tridimensionnel, comme un hologramme. "Je pense que beaucoup de gens ont pensé que nous étions fous", dit Susskind. "Deux bons physiciens devenusdingues".

De même, dans la correspondance AdS/CFT, la CFT quadridimensionnelle encode tout ce qui concerne l'espace AdS à cinq dimensions auquel elle est associée. Dans ce système, la région entière de l'espace-temps est construite à partir des interactions entre les composants du système quantique dans la théorie des champs conforme. Maldacena compare ce processus à la lecture d'un roman. "Si vous racontez une histoire dans un livre, il y a les personnages du livre qui font quelque chose", dit-il. "Mais tout ce qu'il y a, c'est une ligne de texte, non ? Ce que font les personnages est déduit de cette ligne de texte. Les personnages du livre seraient comme la théorie [AdS] globale. Et la ligne de texte est la [CFT]."

Mais d'où vient l'espace de l'espace AdS ? Si cet espace est émergent, de quoi émerge-t-il ? La réponse est un type d'interaction spécial et étrangement quantique dans la CFT : l'intrication, une connexion à longue distance entre des objets, corrélant instantanément leur comportement de manière statistiquement improbable. L'intrication a beaucoup troublé Einstein, qui l'a qualifiée d'"action étrange à distance".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ?

 Pourtant, malgré son caractère effrayant, l'intrication est une caractéristique essentielle de la physique quantique. Lorsque deux objets interagissent en mécanique quantique, ils s'intriquent généralement et le resteront tant qu'ils resteront isolés du reste du monde, quelle que soit la distance qui les sépare. Dans des expériences, les physiciens ont maintenu l'intrication entre des particules distantes de plus de 1 000 kilomètres et même entre des particules au sol et d'autres envoyées vers des satellites en orbite. En principe, deux particules intriquées pourraient maintenir leur connexion sur des côtés opposés de la galaxie ou de l'univers. La distance ne semble tout simplement pas avoir d'importance pour l'intrication, une énigme qui a troublé de nombreux physiciens pendant des décennies.

Mais si l'espace est émergent, la capacité de l'intrication à persister sur de grandes distances n'est peut-être pas si mystérieuse - après tout, la distance est une construction. Selon les études de la correspondance AdS/CFT menées par les physiciens Shinsei Ryu de l'université de Princeton et Tadashi Takayanagi de l'université de Kyoto, l'intrication est ce qui produit les distances dans l'espace AdS en premier lieu. Deux régions d'espace proches du côté AdS de la dualité correspondent à deux composantes quantiques hautement intriquées de la CFT. Plus elles sont intriquées, plus les régions de l'espace sont proches les unes des autres.

Ces dernières années, les physiciens en sont venus à soupçonner que cette relation pourrait également s'appliquer à notre univers. "Qu'est-ce qui maintient l'espace ensemble et l'empêche de se désagréger en sous-régions distinctes ? La réponse est l'intrication entre deux parties de l'espace", déclare Susskind. "La continuité et la connectivité de l'espace doivent leur existence à l'intrication quantique-mécanique". L'intrication pourrait donc sous-tendre la structure de l'espace lui-même, formant la chaîne et la trame qui donnent naissance à la géométrie du monde. "Si l'on pouvait, d'une manière ou d'une autre, détruire l'intrication entre deux parties [de l'espace], l'espace se désagrégerait", déclare Susskind. "Il ferait le contraire de l'émergence. Il désémergerait."

Si l'espace est fait d'intrication, l'énigme de la gravité quantique semble beaucoup plus facile à résoudre : au lieu d'essayer de rendre compte de la déformation de l'espace de manière quantique, l'espace lui-même émerge d'un phénomène fondamentalement quantique. Susskind pense que c'est la raison pour laquelle une théorie de la gravité quantique a été si difficile à trouver en premier lieu. "Je pense que la raison pour laquelle elle n'a jamais très bien fonctionné est qu'elle a commencé par une image de deux choses différentes, [la relativité générale] et la mécanique quantique, et qu'elle les a mises ensemble", dit-il. "Et je pense que l'idée est qu'elles sont beaucoup trop étroitement liées pour être séparées puis réunies à nouveau. La gravité n'existe pas sans la mécanique quantique".

Pourtant, la prise en compte de l'espace émergent ne représente que la moitié du travail. L'espace et le temps étant si intimement liés dans la relativité, tout compte rendu de l'émergence de l'espace doit également expliquer le temps. "Le temps doit également émerger d'une manière ou d'une autre", déclare Mark van Raamsdonk, physicien à l'université de Colombie-Britannique et pionnier du lien entre intrication et espace-temps. "Mais cela n'est pas bien compris et constitue un domaine de recherche actif".

Un autre domaine actif, dit-il, consiste à utiliser des modèles d'espace-temps émergent pour comprendre les trous de ver. Auparavant, de nombreux physiciens pensaient que l'envoi d'objets à travers un trou de ver était impossible, même en théorie. Mais ces dernières années, les physiciens travaillant sur la correspondance AdS/CFT et sur des modèles similaires ont trouvé de nouvelles façons de construire des trous de ver. "Nous ne savons pas si nous pourrions le faire dans notre univers", dit van Raamsdonk. "Mais ce que nous savons maintenant, c'est que certains types de trous de ver traversables sont théoriquement possibles". Deux articles - l'un en 2016 et l'autre en 2018 - ont conduit à une rafale de travaux en cours dans ce domaine. Mais même si des trous de ver traversables pouvaient être construits, ils ne seraient pas d'une grande utilité pour les voyages spatiaux. Comme le souligne Susskind, "on ne peut pas traverser ce trou de ver plus vite qu'il ne faudrait à [la lumière] pour faire le chemin inverse."

Si les théoriciens des cordes ont raison, alors l'espace est construit à partir de l'intrication quantique, et le temps pourrait l'être aussi. Mais qu'est-ce que cela signifie vraiment ? Comment l'espace peut-il être "fait" d'intrication entre des objets, à moins que ces objets ne soient eux-mêmes quelque part ? Comment ces objets peuvent-ils s'enchevêtrer s'ils ne connaissent pas le temps et le changement ? Et quel type d'existence les choses pourraient-elles avoir sans habiter un espace et un temps véritables ?

Ces questions frisent la philosophie, et les philosophes de la physique les prennent au sérieux. "Comment diable l'espace-temps pourrait-il être le genre de chose qui pourrait être émergent ?" demande Eleanor Knox, philosophe de la physique au King's College de Londres. Intuitivement, dit-elle, cela semble impossible. Mais Knox ne pense pas que ce soit un problème. "Nos intuitions sont parfois catastrophiques", dit-elle. Elles "ont évolué dans la savane africaine en interagissant avec des macro-objets, des macro-fluides et des animaux biologiques" et ont tendance à ne pas être transférées au monde de la mécanique quantique. En ce qui concerne la gravité quantique, "Où sont les objets ?" et "Où vivent-ils ?" ne sont pas les bonnes questions à poser", conclut Mme Knox.

Il est certainement vrai que les objets vivent dans des lieux dans la vie de tous les jours. Mais comme Knox et bien d'autres le soulignent, cela ne signifie pas que l'espace et le temps doivent être fondamentaux, mais simplement qu'ils doivent émerger de manière fiable de ce qui est fondamental. Prenons un liquide, explique Christian Wüthrich, philosophe de la physique à l'université de Genève. "En fin de compte, il s'agit de particules élémentaires, comme les électrons, les protons et les neutrons ou, plus fondamental encore, les quarks et les leptons. Les quarks et les leptons ont-ils des propriétés liquides ? Cela n'a aucun sens... Néanmoins, lorsque ces particules fondamentales se rassemblent en nombre suffisant et montrent un certain comportement ensemble, un comportement collectif, alors elles agiront d'une manière qui ressemble à un liquide."

Selon Wüthrich, l'espace et le temps pourraient fonctionner de la même manière dans la théorie des cordes et d'autres théories de la gravité quantique. Plus précisément, l'espace-temps pourrait émerger des matériaux que nous considérons habituellement comme vivant dans l'univers - la matière et l'énergie elles-mêmes. "Ce n'est pas que nous ayons d'abord l'espace et le temps, puis nous ajoutons de la matière", explique Wüthrich. "Au contraire, quelque chose de matériel peut être une condition nécessaire pour qu'il y ait de l'espace et du temps. Cela reste un lien très étroit, mais c'est juste l'inverse de ce que l'on aurait pu penser à l'origine."

Mais il existe d'autres façons d'interpréter les dernières découvertes. La correspondance AdS/CFT est souvent considérée comme un exemple de la façon dont l'espace-temps pourrait émerger d'un système quantique, mais ce n'est peut-être pas vraiment ce qu'elle montre, selon Alyssa Ney, philosophe de la physique à l'université de Californie, à Davis. "AdS/CFT vous donne cette capacité de fournir un manuel de traduction entre les faits concernant l'espace-temps et les faits de la théorie quantique", dit Ney. "C'est compatible avec l'affirmation selon laquelle l'espace-temps est émergent, et une certaine théorie quantique est fondamentale." Mais l'inverse est également vrai, dit-elle. La correspondance pourrait signifier que la théorie quantique est émergente et que l'espace-temps est fondamental, ou qu'aucun des deux n'est fondamental et qu'il existe une théorie fondamentale encore plus profonde. L'émergence est une affirmation forte, dit Ney, et elle est ouverte à la possibilité qu'elle soit vraie. "Mais, du moins si l'on s'en tient à AdS/CFT, je ne vois toujours pas d'argument clair en faveur de l'émergence."

Un défi sans doute plus important pour l'image de la théorie des cordes de l'espace-temps émergent est caché à la vue de tous, juste au nom de la correspondance AdS/CFT elle-même. "Nous ne vivons pas dans un espace anti-de Sitter", dit Susskind. "Nous vivons dans quelque chose de beaucoup plus proche de l'espace de Sitter". L'espace de Sitter décrit un univers en accélération et en expansion, comme le nôtre. "Nous n'avons pas la moindre idée de la façon dont [l'holographie] s'y applique", conclut M. Susskind. Trouver comment établir ce type de correspondance pour un espace qui ressemble davantage à l'univers réel est l'un des problèmes les plus urgents pour les théoriciens des cordes. "Je pense que nous allons être en mesure de mieux comprendre comment entrer dans une version cosmologique de ceci", dit van Raamsdonk.

Enfin, il y a les nouvelles - ou l'absence de nouvelles - provenant des derniers accélérateurs de particules, qui n'ont trouvé aucune preuve de l'existence des particules supplémentaires prévues par la supersymétrie, une idée sur laquelle repose la théorie des cordes. Selon la supersymétrie, toutes les particules connues auraient leurs propres "superpartenaires", ce qui doublerait le nombre de particules fondamentales. Mais le Grand collisionneur de hadrons du CERN, près de Genève, conçu en partie pour rechercher des superpartenaires, n'en a vu aucun signe. "Toutes les versions vraiment précises de [l'espace-temps émergent] dont nous disposons se trouvent dans des théories supersymétriques", déclare Susskind. "Une fois que vous n'avez plus de supersymétrie, la capacité à suivre mathématiquement les équations s'évapore tout simplement de vos mains".

LES ATOMES DE L'ESPACE-TEMPS

La théorie des cordes n'est pas la seule idée qui suggère que l'espace-temps est émergent. La théorie des cordes "n'a pas réussi à tenir [ses] promesses en tant que moyen d'unir la gravité et la mécanique quantique", déclare Abhay Ashtekar, physicien à l'université d'État de Pennsylvanie. "La puissance de la théorie des cordes réside désormais dans le fait qu'elle fournit un ensemble d'outils extrêmement riche, qui ont été largement utilisés dans tout le spectre de la physique." Ashtekar est l'un des pionniers originaux de l'alternative la plus populaire à la théorie des cordes, connue sous le nom de gravité quantique à boucles. Dans la gravité quantique à boucles, l'espace et le temps ne sont pas lisses et continus, comme c'est le cas dans la relativité générale, mais ils sont constitués de composants discrets, ce qu'Ashtekar appelle des "morceaux ou atomes d'espace-temps".

Ces atomes d'espace-temps sont connectés en réseau, avec des surfaces unidimensionnelles et bidimensionnelles qui les réunissent en ce que les praticiens de la gravité quantique à boucle appellent une mousse de spin. Et bien que cette mousse soit limitée à deux dimensions, elle donne naissance à notre monde quadridimensionnel, avec trois dimensions d'espace et une de temps. Ashtekar compare ce monde à un vêtement. "Si vous regardez votre chemise, elle ressemble à une surface bidimensionnelle", dit-il. "Si vous prenez une loupe, vous verrez immédiatement qu'il s'agit de fils unidimensionnels. C'est juste que ces fils sont si denses que, pour des raisons pratiques, vous pouvez considérer la chemise comme une surface bidimensionnelle. De même, l'espace qui nous entoure ressemble à un continuum tridimensionnel. Mais il y a vraiment un entrecroisement par ces [atomes d'espace-temps]".

Bien que la théorie des cordes et la gravité quantique à boucles suggèrent toutes deux que l'espace-temps est émergent, le type d'émergence est différent dans les deux théories. La théorie des cordes suggère que l'espace-temps (ou du moins l'espace) émerge du comportement d'un système apparemment sans rapport, sous forme d'intrication. Pensez à la façon dont les embouteillages émergent des décisions collectives des conducteurs individuels. Les voitures ne sont pas faites de la circulation - ce sont les voitures qui font la circulation. Dans la gravité quantique à boucles, par contre, l'émergence de l'espace-temps ressemble davantage à une dune de sable en pente émergeant du mouvement collectif des grains de sable dans le vent. L'espace-temps lisse et familier provient du comportement collectif de minuscules "grains" d'espace-temps ; comme les dunes, les grains sont toujours du sable, même si les gros grains cristallins n'ont pas l'apparence ou le comportement des dunes ondulantes.

Malgré ces différences, gravité quantique à boucles et  théorie des cordes suggèrent toutes deux que l'espace-temps émerge d'une réalité sous-jacente. Elles ne sont pas non plus les seules théories proposées de la gravité quantique qui vont dans ce sens. La théorie de l'ensemble causal, un autre prétendant à une théorie de la gravité quantique, postule que l'espace et le temps sont également constitués de composants plus fondamentaux. "Il est vraiment frappant de constater que, pour la plupart des théories plausibles de la gravité quantique dont nous disposons, leur message est, en quelque sorte, que l'espace-temps relativiste général n'existe pas au niveau fondamental", déclare Knox. "Les gens sont très enthousiastes lorsque différentes théories de la gravité quantique s'accordent au moins sur quelque chose."

L'AVENIR DE L'ESPACE AUX CONFINS DU TEMPS

La physique moderne est victime de son propre succès. La physique quantique et la relativité générale étant toutes deux d'une précision phénoménale, la gravité quantique n'est nécessaire que pour décrire des situations extrêmes, lorsque des masses énormes sont entassées dans des espaces insondables. Ces conditions n'existent que dans quelques endroits de la nature, comme le centre d'un trou noir, et surtout pas dans les laboratoires de physique, même les plus grands et les plus puissants. Il faudrait un accélérateur de particules de la taille d'une galaxie pour tester directement le comportement de la nature dans des conditions où règne la gravité quantique. Ce manque de données expérimentales directes explique en grande partie pourquoi la recherche d'une théorie de la gravité quantique par les scientifiques a été si longue.

Face à l'absence de preuves, la plupart des physiciens ont placé leurs espoirs dans le ciel. Dans les premiers instants du big bang, l'univers entier était phénoménalement petit et dense - une situation qui exige une gravité quantique pour le décrire. Et des échos de cette époque peuvent subsister dans le ciel aujourd'hui. "Je pense que notre meilleure chance [de tester la gravité quantique] passe par la cosmologie", déclare Maldacena. "Peut-être quelque chose en cosmologie que nous pensons maintenant être imprévisible, qui pourra peut-être être prédit une fois que nous aurons compris la théorie complète, ou une nouvelle chose à laquelle nous n'avions même pas pensé."

Les expériences de laboratoire pourraient toutefois s'avérer utiles pour tester la théorie des cordes, du moins indirectement. Les scientifiques espèrent étudier la correspondance AdS/CFT non pas en sondant l'espace-temps, mais en construisant des systèmes d'atomes fortement intriqués et en observant si un analogue à l'espace-temps et à la gravité apparaît dans leur comportement. De telles expériences pourraient "présenter certaines caractéristiques de la gravité, mais peut-être pas toutes", déclare Maldacena. "Cela dépend aussi de ce que l'on appelle exactement la gravité".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ? Les données d'observation du ciel ne seront peut-être pas disponibles de sitôt. Les expériences en laboratoire pourraient être un échec. Et comme les philosophes le savent bien, les questions sur la véritable nature de l'espace et du temps sont très anciennes. Ce qui existe "est maintenant tout ensemble, un, continu", disait le philosophe Parménide il y a 2 500 ans. "Tout est plein de ce qui est". Parménide insistait sur le fait que le temps et le changement étaient des illusions, que tout partout était un et le même. Son élève Zénon a créé de célèbres paradoxes pour prouver le point de vue de son professeur, prétendant démontrer que le mouvement sur n'importe quelle distance était impossible. Leurs travaux ont soulevé la question de savoir si le temps et l'espace étaient en quelque sorte illusoires, une perspective troublante qui a hanté la philosophie occidentale pendant plus de deux millénaires.

Le fait que les Grecs de l'Antiquité aient posé des questions telles que "Qu'est-ce que l'espace ?", "Qu'est-ce que le temps ?", "Qu'est-ce que le changement ?" et que nous posions encore des versions de ces questions aujourd'hui signifie qu'il s'agissait des bonnes questions à poser", explique M. Wüthrich. "C'est en réfléchissant à ce genre de questions que nous avons appris beaucoup de choses sur la physique".

Auteur: Becker Adam

Info: Scientific American, février 2022

[ monde de l'observateur humain ] [ univers nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel