Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 143
Temps de recherche: 0.0471s

exactitude

Avant d'aborder quelques constatations théoriques sur le langage, le sens et la vérité, il faut examiner de plus près le concept sous un angle historique. Tout d'abord la classification d'un grand nombre de philosophes du 20e siècle en deux grands camps opposés est, au mieux, une entreprise hasardeuse. Les philosophes sont des individualistes notoires et les écoles ou mouvements philosophiques sont, pour cette raison, caractérisés aussi souvent par leurs tensions et divisions internes que par leurs accords. Mais le langage, le sens et la vérité, sont des préoccupations omniprésentes dans la pensée du 20e siècle - au-delà des frontières des écoles individuelles - et que les différences dans la façon dont ces concepts sont compris deviennent parfois définitives pour certaines écoles philosophiques. On notera aussi qu'une grande partie de la philosophie du 20e siècle montre un intérêt particulier pour le concept de vérité, dû à une insatisfaction à grande échelle de la conception classique de la vérité en tant que correspondance, et que différents philosophes cherchent à appréhender le concept de vérité de manière très différente. Une brève liste de ce que les philosophes et groupes de philosophes ont dit sur la vérité rend cela évident :

Les pragmatistes : la vérité est l'utilité.

Nietzsche : la vérité est interprétation.

Frege : la vérité est simple et indéfinissable et ne ressemble à aucun autre prédicat.

Moore et Russell à leurs débuts : la vérité est simple, indéfinissable et exactement comme tout autre prédicat.

Les positivistes logiques : il faut remplacer le concept de vérité par celui de vérification/falsification.

Heidegger : la vérité est la non-divulgation (a-letheia qui, selon Parménide, oppose le domaine de la Vérité - alètheia - à celui de l'opinion, ou doxa. Selon les Définitions jointes aux manuscrits de Platon, l’alètheia est la "disposition qui permet l’affirmation et la négation". Selon Parménide, on peut opposer le domaine de la Vérité alètheia à celui de l'opinion, ou doxa

Wittgenstein à ses débuts : la vérité est un miroir, mais dire cela n'a vraiment aucun sens.

Wittgenstein plus tard : les tentatives de caractériser la vérité sont vides.

Foucault : la vérité est un système de procédures liées dans une relation circulaire au pouvoir.

Ces variations montrent non seulement l'intensité des discussions sur le concept de vérité, mais aussi qu'on ne peut pas facilement réduire cette multiplicité à une opposition entre ceux qui considèrent que la vérité est définissable et ceux qui ne le font pas. Le caractère définissable ou indéfinissable de la vérité n'est qu'une des questions qui divisent les philosophes. Des divisions tout aussi fondamentales découlent de la question de savoir si la vérité doit être considérée comme un concept sémantique, pragmatique ou ontologique.

Une autre division fondamentale semble exister entre ceux qui veulent adhérer à une certaine notion de la vérité et ceux, comme les positivistes logiques, qui cherchent à la mettre de côté comme un résidu de la métaphysique traditionnelle.

Auteur: Hintikka Jaakko

Info: Tel que rapporté par Hans Sluga sur http://www.truthandpower.com/

[ étymologie ] [ relativité ] [ langage ] [ mathématiques ] [ synthèse ] [ aléthique ] [ triade ]

 

Commentaires: 0

Ajouté à la BD par miguel

citation s'appliquant à ce logiciel

Pour entamer cette chaîne (approche d'une systématique des pensées) nous voulons partir de la création du signe (voir la chaîne évolution de la lecture) parce que nous sommes acquis à l'idée de C.S. Peirce comme quoi il n'est pas de pensée sans signe.

Ensuite se pose la question de la clarté ; l'idée étant qu'il faudrait, dans l'absolu, qu'on puisse expliquer notre cheminement à un Bonobo (voire à un aveugle sourd muet) pour, petit à petit et avec beaucoup de temps, la développer plus avant. Parce qu'à y regarder de près, ça ne s'est pas passé différemment pour l'homme. Moi ou toi lecteur, sommes "assis" sur quelques dizaines de milliers d'années de développement et d'accumulation d'un processus comme celui-ci.

On imagine d'abord la domestication du feu qu'on suppose couplée d'une manière ou d'une autre au développement d'un langage, c'est à dire de "conventions" quand à la signification de gestes ou de sons proférés par le groupe - ce qu'il se passe chez l'animal depuis lurette. Et il y a ce saut incroyable - tout aussi extraordinaire que la maîtrise du feu - avec l'apparition des conventions écrites (ici on imagine un bipède en train de tracer un trait sur la roche avec le charbon de l'extrémité d'une branche à demi consumée - ce qui ramène aussi aux pigments de l'encre noire d'imprimerie, encore de nos jours à base de suie. Le feu est toujours là). Conventions écrites "externes" qui correspondent à l'apparition d'une conscience humaine tribale et donc en même temps à une forme d'isolement solipsiste de son espèce, début d'une manière de "séparation formelle" d'avec les autres mammifères. Passons. Où que ce soit ces conventions, traces/signes/mots, seront d'abord beaucoup utilisées sous forme de listes/inventaires, bien plus que comme supports d'histoires, ces dernières restant principalement orales. Allons vite ici et constatons les quelques milliers d'années de développement des langages "écrits" et l'apparition subséquente de recueils (alphabets, lexiques, dictionnaires "interlangues", etc) apportent et rassemblent tout un arsenal idiomatique qui précède/accompagne l'émergences des concepts, mots-concepts, idées, notions... "Representamen" étant la terminologie usée par C.S. Peirce pour cerner une "entité sémiotique" qui est en réalité un carrefour sémantique. Au-delà de l'alphabet font surface ces "machins bizarres", accommodables quasiment à toutes les sauces, les mots. Voyez plutôt. Nous sommes ici dans l'idée du "mot univers", ou, vu de l'autre bout de la lorgnette, du "terme monade". Le signe originel est devenu immense.

Continuons à grande vitesse. La civilisation des mots et des nombres a aussi fait émerger la logique formelle et ses développements mathématiques et puis, grâce à la musique et au puissant instinct de Jean-Sébastien Bach, une logique plus profonde, quasiment mécanique, utilisée dans le développement contrapuntique de ses fugues - elles-mêmes pensées de manière symétriques - ou graphiques - par le maître, si j'ai bien saisi ce qu'on en dit. Une symétrie très bien exposée par Anton Webern (qui, à la suite du traité de l'harmonie de Schoenberg, enfonçait ainsi un clou définitif dans l'extension théorique du système tonal), avec ses 4 parties renversables : l'original (vérité), le renversement de l'original (mensonge), le miroir de l'original (vérité pessimiste) et le renversement du miroir de l'original (mensonge optimiste). Les mots entre parenthèses sont ici de notre crû, afin transférer l'idée dans le langage. 1) motif original 2) miroir de l'original (rétrograde) 3) inversion de l'original (intervalles) 4) miroir du renversement de l'original. Lien vers les 4 exemples graphiques sur portée musicale. Tout ceci a base de concordances, c'est à dire d'imitations et de répétitions de motifs, car le désordre n'est pas le fondement du fonctionnement d'un système tonal - 12 demi-tons tempérés avec une gamme centrale à 7 notes - déjà fortement établi depuis les grecs.

On notera au passage que toute notion d'ordre ne s'impose que subjectivement par rapport à un chaos (désordre). Suivant où l'on se situe le désordre va être libérateur ou... dérangeant. L'ordre réconfortant... ou assommant.  Ici on a envie de penser aux fonctionnalités de la tétravalence du carbone, sur base de quatre valeurs de vérités, qui engendre, une fois appliqué au mathématiques, une logique formelle beaucoup plus puissante que celle du tiers exclus. (Qui représente les bases du calcul quantique) 4 valeurs auxquelles nous appliquerons la triade de C.S. Peirce ; objet (representamen - mot - concept) - interprétant (récepteur - raisonneur - arbitre des élégances) - signe (média utilisé - écrit - visuel - sonore - mélange).

Nous voilà avec une base à sept pôles, (l'homme en son centre, tout comme au centre du représentamen), déclinable ad infinitum, et que nous allons nous amuser à mettre en concordance avec le développement - très primitif à ce jour - de nos représentations et d'une pensée articulée. Mais avant cela nous allons nous intéresser à l'homme et à son fonctionnement de récepteur-émetteur. Comment fonctionne la bio-machine qui se situe au centre de ce jeu ? Comment définir les paramètres qui nous concernent en ce domaine, nous autres lecteurs, surfeurs, écrivains... pauvres mammifères évolués et instables. Donc, dans une certaine mesure, libres. C.S. Peirce, et d'autres, nous indiquent quelques pistes.

Auteur: Mg

Info: 12 nov. 2019

[ mathématiques mystiques ] [ septénaire ] [ sociolinguistique ] [ pré-mémétique ] [ théandrie ]

 
Mis dans la chaine
Commentaires: 2
Ajouté à la BD par miguel

méta-moteur

Le comportement de cet animal est programmé mécaniquement.

Des interactions biomécaniques, plutôt que des neurones, contrôlent les mouvements de l'un des animaux les plus simples. Cette découverte offre un aperçu de la façon dont le comportement animal fonctionnait avant l'apparition des neurones.

L'animal extrêmement simple Trichoplax adhaerens se déplace et réagit à son environnement avec agilité et avec un but apparent, mais il n'a pas de neurones ou de muscles pour coordonner ses mouvements. De nouveaux travaux montrent que les interactions biomécaniques entre les cils de l'animal suffisent à en expliquer ses mouvements.

Le biophysicien Manu Prakash se souvient très bien du moment où, tard dans la nuit, dans le laboratoire d'un collègue, il y a une douzaine d'années, il a regardé dans un microscope et a rencontré sa nouvelle obsession. L'animal sous les lentilles n'était pas très beau à voir, ressemblant plus à une amibe qu'à autre chose : une tache multicellulaire aplatie, de 20 microns d'épaisseur et de quelques millimètres de diamètre, sans tête ni queue. Elle se déplaçait grâce à des milliers de cils qui recouvraient sa face inférieure pour former la "plaque velue collante" qui lui a inspiré son nom latin, Trichoplax adhaerens.

Cette étrange créature marine, classée dans la catégorie des placozoaires, dispose pratiquement d'une branche entière de l'arbre de l'évolution de la vie pour elle-même, ainsi que du plus petit génome connu du règne animal. Mais ce qui a le plus intrigué Prakash, c'est la grâce, l'agilité et l'efficacité bien orchestrées avec lesquelles les milliers ou les millions de cellules du Trichoplax se déplacent.

Après tout, une telle coordination nécessite habituellement des neurones et des muscles - et le Trichoplax n'en a pas.

Prakash s'est ensuite associé à Matthew Storm Bull, alors étudiant diplômé de l'université de Stanford, pour faire de cet étrange organisme la vedette d'un projet ambitieux visant à comprendre comment les systèmes neuromusculaires ont pu évoluer et comment les premières créatures multicellulaires ont réussi à se déplacer, à trouver de la nourriture et à se reproduire avant l'existence des neurones.

"J'appelle souvent ce projet, en plaisantant, la neuroscience sans les neurones", a déclaré M. Prakash.

Dans un trio de prétirés totalisant plus de 100 pages - publiés simultanément sur le serveur arxiv.org l'année dernière - lui et Bull ont montré que le comportement de Trichoplax pouvait être décrit entièrement dans le langage de la physique et des systèmes dynamiques. Les interactions mécaniques qui commencent au niveau d'un seul cilium, puis se multiplient sur des millions de cellules et s'étendent à des niveaux supérieurs de structure, expliquent entièrement la locomotion coordonnée de l'animal tout entier. L'organisme ne "choisit" pas ce qu'il doit faire. Au contraire, la horde de cils individuels se déplace simplement - et l'animal dans son ensemble se comporte comme s'il était dirigé par un système nerveux. Les chercheurs ont même montré que la dynamique des cils présente des propriétés qui sont généralement considérées comme des signes distinctifs des neurones.

Ces travaux démontrent non seulement comment de simples interactions mécaniques peuvent générer une incroyable complexité, mais ils racontent également une histoire fascinante sur ce qui aurait pu précéder l'évolution du système nerveux.

"C'est un tour de force de la biophysique", a déclaré Orit Peleg, de l'université du Colorado à Boulder, qui n'a pas participé aux études. Ces découvertes ont déjà commencé à inspirer la conception de machines mécaniques et de robots, et peut-être même une nouvelle façon de penser au rôle des systèmes nerveux dans le comportement animal. 

La frontière entre le simple et le complexe

Les cerveaux sont surestimés. "Un cerveau est quelque chose qui ne fonctionne que dans le contexte très spécifique de son corps", a déclaré Bull. Dans les domaines connus sous le nom de "robotique douce" et de "matière active", la recherche a démontré que la bonne dynamique mécanique peut suffire à accomplir des tâches complexes sans contrôle centralisé. En fait, les cellules seules sont capables de comportements remarquables, et elles peuvent s'assembler en systèmes collectifs (comme les moisissures ou les xénobots) qui peuvent accomplir encore plus, le tout sans l'aide de neurones ou de muscles.

Mais est-ce possible à l'échelle d'un animal multicellulaire entier ?

Le Trichoplax fut un cas d'étude parfait : assez simple pour être étudié dans les moindres détails, mais aussi assez compliqué pour offrir quelque chose de nouveau aux chercheurs. En l'observant, "vous regardez simplement une danse", a déclaré Prakash. "Elle est d'une incroyable complexité". Elle tourne et se déplace sur des surfaces. Elle s'accroche à des plaques d'algues pour les piéger et les consommer comme nourriture. Elle se reproduit asexuellement en se divisant en deux.

"Un organisme comme celui-ci se situe dans un régime intermédiaire entre quelque chose de réellement complexe, comme un vertébré, et quelque chose qui commence à devenir complexe, comme les eucaryotes unicellulaires", explique Kirsty Wan, chercheur à l'université d'Exeter en Angleterre, qui étudie la locomotion ciliaire.

Ce terrain intermédiaire entre les cellules uniques et les animaux dotés de muscles et de systèmes nerveux semblait être l'endroit idéal pour que Prakash et Bull posent leurs questions. "Pour moi, un organisme est une idée", a déclaré Prakash, un terrain de jeu pour tester des hypothèses et un berceau de connaissances potentielles.

Prakash a d'abord construit de nouveaux microscopes permettant d'examiner le Trichoplax par en dessous et sur le côté, et a trouvé comment suivre le mouvement à grande vitesse de ses cils. (Ce n'était pas un terrain entièrement nouveau pour lui, puisqu'il était déjà célèbre pour ses travaux sur le Foldscope, un microscope facile à assembler et dont la fabrication coûte moins d'un dollar). Il pouvait alors voir et suivre des millions de cils individuels, chacun apparaissant comme une minuscule étincelle dans le champ de vision du microscope pendant une fraction de seconde à la fois. "Vous ne voyez que les empreintes lorsqu'elles se posent sur la surface", a déclaré Prakash.

Lui-même - et plus tard Bull, qui a rejoint son laboratoire il y a six ans - ont passé des heures à observer l'orientation de ces petites empreintes. Pour que ces motifs complexes soient possibles, les scientifiques savaient que les cils devaient être engagés dans une sorte de communication à longue distance. Mais ils ne savaient pas comment.

Ils ont donc commencé à rassembler les pièces du puzzle, jusqu'à ce que, l'année dernière, ils décident enfin qu'ils avaient leur histoire.

Une marche en pilote automatique

Au départ, Prakash et Bull s'attendaient à ce que les cils glissent sur des surfaces, avec une fine couche de liquide séparant l'animal du substrat. Après tout, les cils sont généralement vus dans le contexte des fluides : ils propulsent des bactéries ou d'autres organismes dans l'eau, ou déplacent le mucus ou les fluides cérébrospinaux dans un corps. Mais lorsque les chercheurs ont regardé dans leurs microscopes, ils ont constaté que les cils semblaient marcher, et non nager.

Bien que l'on sache que certains organismes unicellulaires utilisent les cils pour ramper, ce type de coordination n'avait jamais été observé à cette échelle. "Plutôt qu'utiliser les cils pour propulser un fluide, il s'agit de mécanique, de friction, d'adhésion et de toutes sortes de mécanismes solides très intéressants", a-t-elle déclaré.

Prakash, Bull et Laurel Kroo, une étudiante diplômée en génie mécanique de Stanford, ont donc entrepris de caractériser la démarche des cils. Ils ont suivi la trajectoire de l'extrémité de chaque cilium au fil du temps, l'observant tracer des cercles et pousser contre des surfaces. Ils ont défini trois types d'interactions : le glissement, au cours duquel les cils effleurent à peine la surface ; la marche, lorsque les cils adhèrent brièvement à la surface avant de se détacher ; et le calage, lorsque les cils restent coincés contre la surface.

Dans leurs modèles, l'activité de marche émergeait naturellement de l'interaction entre les forces motrices internes des cils et l'énergie de leur adhésion à la surface. Le bon équilibre entre ces deux paramètres (calculé à partir de mesures expérimentales de l'orientation, de la hauteur et de la fréquence des battements des cils) permettant une locomotion régulière, chaque cilium se collant puis se soulevant, comme une jambe. Un mauvais équilibre produisant les phases de glissement ou de décrochage.

Nous pensons généralement, lorsque quelque chose se passe comme ça, qu'il y a un signal interne semblable à une horloge qui dit : "OK, allez-y, arrêtez-vous, allez-y, arrêtez-vous", a déclaré Simon Sponberg, biophysicien à l'Institut de technologie de Géorgie. "Ce n'est pas ce qui se passe ici. Les cils ne sont pas rythmés. Il n'y a pas une chose centrale qui dit 'Go, go, go' ou autre. Ce sont les interactions mécaniques qui mettent en place quelque chose qui va, qui va, qui va."

De plus, la marche pourrait être modélisée comme un système excitable, c'est-à-dire un système dans lequel, sous certaines conditions, les signaux se propagent et s'amplifient au lieu de s'atténuer progressivement et de s'arrêter. Un neurone est un exemple classique de système excitable : De petites perturbations de tension peuvent provoquer une décharge soudaine et, au-delà d'un certain seuil, le nouvel état stimulé se propage au reste du système. Le même phénomène semble se produire ici avec les cils. Dans les expériences et les simulations, de petites perturbations de hauteur, plutôt que de tension, entraînent des changements relativement importants dans l'activité des cils voisins : Ils peuvent soudainement changer d'orientation, et même passer d'un état de stase à un état de marche. "C'est incroyablement non linéaire", a déclaré Prakash.

En fait, les modèles de cils de Prakash, Bull et Kroo se sont avérés très bien adaptés aux modèles établis pour les potentiels d'action au sein des neurones. "Ce type de phénomène unique se prête à une analogie très intéressante avec ce que l'on observe dans la dynamique non linéaire des neurones individuels", a déclaré Bull. Sponberg est d'accord. "C'est en fait très similaire. Il y a une accumulation de l'énergie, et puis pop, et puis pop, et puis pop".

Les cils s'assemblent comme des oiseaux

Forts de cette description mathématique, Prakash et Bull ont examiné comment chaque cilium pousse et tire sur ses voisins lors de son interaction avec la surface, et comment toute ces activités indépendantes peuvent se transformer en quelque chose de synchronisé et cohérent.

Ils ont mesuré comment la démarche mécanique de chaque cilium entraînait de petites fluctuations locales de la hauteur du tissu. Ils ont ensuite écrit des équations pour expliquer comment ces fluctuations pouvaient influencer le comportement des cellules voisines, alors même que les cils de ces cellules effectuaient leurs propres mouvements, comme un réseau de ressorts reliant de minuscules moteurs oscillants.

Lorsque les chercheurs ont modélisé "cette danse entre élasticité et activité", ils ont constaté que les interactions mécaniques - de cils poussant contre un substrat et de cellules se tirant les unes les autres - transmettaient rapidement des informations à travers l'organisme. La stimulation d'une région entraînait des vagues d'orientation synchronisée des cils qui se déplaçaient dans le tissu. "Cette élasticité et cette tension dans la physique d'un cilium qui marche, maintenant multipliées par des millions d'entre eux dans une feuille, donnent en fait lieu à un comportement mobile cohérent", a déclaré Prakash.

Et ces modèles d'orientation synchronisés peuvent être complexes : parfois, l'activité du système produit des tourbillons, les cils étant orientés autour d'un seul point. Dans d'autres cas, les cils se réorientent en quelques fractions de seconde, pointant d'abord dans une direction puis dans une autre - se regroupant comme le ferait un groupe d'étourneaux ou un banc de poissons, et donnant lieu à une agilité qui permet à l'animal de changer de direction en un clin d'œil.

"Nous avons été très surpris lorsque nous avons vu pour la première fois ces cils se réorienter en une seconde", a déclaré M. Bull.

Ce flocage agile est particulièrement intriguant. Le flocage se produit généralement dans des systèmes qui se comportent comme des fluides : les oiseaux et les poissons individuels, par exemple, peuvent échanger librement leurs positions avec leurs compagnons. Mais cela ne peut pas se produire chez Trichoplax, car ses cils sont des composants de cellules qui ont des positions fixes. Les cils se déplacent comme "un troupeau solide", explique Ricard Alert, physicien à l'Institut Max Planck pour la physique des systèmes complexes.

Prakash et Bull ont également constaté dans leurs simulations que la transmission d'informations était sélective : Après certains stimuli, l'énergie injectée dans le système par les cils se dissipe tout simplement, au lieu de se propager et de modifier le comportement de l'organisme. Nous utilisons notre cerveau pour faire cela tout le temps, pour observer avec nos yeux et reconnaître une situation et dire : "Je dois soit ignorer ça, soit y répondre", a déclaré M. Sponberg.

Finalement, Prakash et Bull ont découvert qu'ils pouvaient écrire un ensemble de règles mécaniques indiquant quand le Trichoplax peut tourner sur place ou se déplacer en cercles asymétriques, quand il peut suivre une trajectoire rectiligne ou dévier soudainement vers la gauche, et quand il peut même utiliser sa propre mécanique pour se déchirer en deux organismes distincts.

"Les trajectoires des animaux eux-mêmes sont littéralement codées" via ces simples propriétés mécaniques, a déclaré Prakash.

Il suppose que l'animal pourrait tirer parti de ces dynamiques de rotation et de reptation dans le cadre d'une stratégie de "course et culbute" pour trouver de la nourriture ou d'autres ressources dans son environnement. Lorsque les cils s'alignent, l'organisme peut "courir", en continuant dans la direction qui vient de lui apporter quelque chose de bénéfique ; lorsque cette ressource semble s'épuiser, Trichoplax peut utiliser son état de vortex ciliaire pour se retourner et tracer une nouvelle route.

Si d'autres études démontrent que c'est le cas, "ce sera très excitant", a déclaré Jordi Garcia-Ojalvo, professeur de biologie systémique à l'université Pompeu Fabra de Barcelone. Ce mécanisme permettrait de faire le lien entre beaucoups d'échelles, non seulement entre la structure moléculaire, le tissu et l'organisme, mais aussi pour ce qui concerne écologie et environnement.

En fait, pour de nombreux chercheurs, c'est en grande partie ce qui rend ce travail unique et fascinant. Habituellement, les approches des systèmes biologiques basées sur la physique décrivent l'activité à une ou deux échelles de complexité, mais pas au niveau du comportement d'un animal entier. "C'est une réussite...  vraiment rare", a déclaré M. Alert.

Plus gratifiant encore, à chacune de ces échelles, la mécanique exploite des principes qui font écho à la dynamique des neurones. "Ce modèle est purement mécanique. Néanmoins, le système dans son ensemble possède un grand nombre des propriétés que nous associons aux systèmes neuro-mécaniques : il est construit sur une base d'excitabilité, il trouve constamment un équilibre délicat entre sensibilité et stabilité et il est capable de comportements collectifs complexes." a déclaré Sponberg.

"Jusqu'où ces systèmes mécaniques peuvent-ils nous mener ?... Très loin." a-t-il ajouté.

Cela a des implications sur la façon dont les neuroscientifiques pensent au lien entre l'activité neuronale et le comportement de manière plus générale. "Les organismes sont de véritables objets dans l'espace", a déclaré Ricard Solé, biophysicien à l'ICREA, l'institution catalane pour la recherche et les études avancées, en Espagne. Si la mécanique seule peut expliquer entièrement certains comportements simples, les neuroscientifiques voudront peut-être examiner de plus près comment le système nerveux tire parti de la biophysique d'un animal pour obtenir des comportements complexes dans d'autres situations.

"Ce que fait le système nerveux n'est peut-être pas ce que nous pensions qu'il faisait", a déclaré M. Sponberg.

Un pas vers la multicellularité

"L'étude de Trichoplax peut nous donner un aperçu de ce qu'il a fallu faire pour développer des mécanismes de contrôle plus complexes comme les muscles et les systèmes nerveux", a déclaré Wan. "Avant d'arriver à ça, quelle est le meilleur truc à suivre ? Ca pourrait bien être ça".

Alert est d'accord. "C'est une façon si simple d'avoir des comportements organisationnels tels que l'agilité que c'est peut-être ainsi qu'ils ont émergé au début et  au cours de l'évolution, avant que les systèmes neuronaux ne se développent. Peut-être que ce que nous voyons n'est qu'un fossile vivant de ce qui était la norme à l'époque".

Solé considère que Trichoplax occupe une "twilight zone... au centre des grandes transitions vers la multicellularité complexe". L'animal semble commencer à mettre en place "les conditions préalables pour atteindre la vraie complexité, celle où les neurones semblent être nécessaires."

Prakash, Bull et leurs collaborateurs cherchent maintenant à savoir si Trichoplax pourrait être capable d'autres types de comportements ou même d'apprentissage. Que pourrait-il réaliser d'autre dans différents contextes environnementaux ? La prise en compte de sa biochimie en plus de sa mécanique ouvrirait-elle vers un autre niveau de comportement ?

Les étudiants du laboratoire de Prakash ont déjà commencé à construire des exemples fonctionnels de ces machines. Kroo, par exemple, a construit un dispositif de natation robotisé actionné par un matériau viscoélastique appelé mousse active : placée dans des fluides non newtoniens comme des suspensions d'amidon de maïs, elle peut se propulser vers l'avant.

"Jusqu'où voulez-vous aller ? a demandé Peleg. "Pouvez-vous construire un cerveau, juste à partir de ce genre de réseaux mécaniques ?"

Prakash considère que ce n'est que le premier chapitre de ce qui sera probablement une saga de plusieurs décennies. "Essayer de vraiment comprendre cet animal est pour moi un voyage de 30 ou 40 ans", a-t-il dit. "Nous avons terminé notre première décennie... C'est la fin d'une époque et le début d'une autre".

Auteur: Internet

Info: https://www.quantamagazine.org/before-brains-mechanics-may-have-ruled-animal-behavior. Jordana Cepelewicz, 16 mars 2022. Trad Mg

[ cerveau rétroactif ] [ échelles mélangées ] [ action-réaction ] [ plus petit dénominateur commun ] [ grégarisme ] [ essaims ] [ murmurations mathématiques ]

 

Commentaires: 0

Ajouté à la BD par miguel