Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 32
Temps de recherche: 0.0499s

résilience

Les limites de la vie sur Terre une nouvelle fois repoussées...
Une nouvelle espèce d'archaebactérie, Pyrococcus CH1, vivant dans un milieu allant de 85 à 105°C et capable de se diviser jusqu'à une pression hydrostatique de 1200 bars (soit plus de 1000 fois supérieure à la pression atmosphérique), vient d'être découverte par les microbiologistes du Laboratoire de microbiologie.
Cette archaebactérie a été isolée à partir d'échantillons de la campagne Serpentine, au cours de laquelle une équipe franco-russe a exploré pendant six semaines la dorsale médio-Atlantique à la découverte de nouvelles sources hydrothermales.
En termes de biodiversité d'abord, ces formes de vie, a priori "inimaginables", montrent que l'inventaire de toutes les espèces vivant sur Terre n'est pas prêt d'être fini. Les micro-organismes extrêmophiles sont également une illustration des capacités étonnantes d'adaptation du vivant, ce qui renforce l'hypothèse de l'existence de formes de vie sur des planètes dont on pensait que les conditions environnementales ne le permettaient pas.
Les microorganismes piézophiles, également appelés barophiles (aimant la pression), constituent un des sous-ensembles des extrêmophiles. Découverte sur le site "Ashadze" situé à 4100 mètres de profondeur, la souche CH1 est le premier organisme hyperthermophile et piézophile obligatoire connu. Cette archaebactérie vit entre 85 et 105°C, avec un optimum à 98°C. Mais, surtout, elle se divise entre 150 et 1200 bars de pression hydrostatique, 520 bars étant sa pression optimum.
Cette découverte repousse une nouvelle fois les limites physico-chimiques de la vie sur Terre et conforte l'idée de l'existence d'une biosphère hyper-thermophile dans les profondeurs de notre planète.

Auteur: Internet

Info:

[ extraterrestre ]

 

Commentaires: 0

survie

Les océans sont responsables de plus de la moitié de la production d'oxygène de la planète grâce à l'activité de photosynthèse du plancton végétal marin. Responsables de la majorité de cette photosynthèse océanique, les protistes, des micro-organismes marins eucaryotes (avec un noyau), unicellulaires et parfois photosynthétiques. Ni bactérie, ni virus, ni plante, ni animal à proprement parler, les protistes présentent une grande plasticité tant anatomique que physiologique, et un métabolisme complexe.
Emiliania huxleyi est un protiste appartenant à la lignée des haptophytes. De par son extrême abondance, cette toute petite cellule planctonique forme une espèce emblématique du phytoplancton marin. Dotée de métabolismes fondamentaux variés (photosynthèse, calcification, etc.), elle est connue pour son micro-squelette calcaire qui rend l'océan blanc-laiteux et visible depuis l'espace, lorsque les cellules se multiplient en gigantesques efflorescences.
Pour décrypter le génome d'Emiliania, premier génome d'haptophyte séquencé, les scientifiques ont utilisé treize souches de cette espèce provenant de tous les océans qui ont ensuite été isolées dans différents laboratoires.
Première découverte, le génome d'Emiliania huxleyi est vingt fois plus petit que le génome humain: il est constitué de 141 millions de bases (le génome des diatomées a environ 24 millions de bases et le génome humain environ 3 200 millions). Mais, surprise, il contient au moins un tiers de gènes en plus que le génome humain. Le consortium international a mis en évidence la présence de plus de 30 000 gènes codant pour toutes sortes de protéines et de fonctions, dont plus de la moitié sont totalement inconnues dans les bases de données génétiques existantes.
D'autre part, les treize souches séquencées, que l'on croyait relativement proches, ne partagent en moyenne que 75% de leurs gènes: on pourrait parler de génome-coeur d'Emiliania. Ainsi, 25% des gènes ne sont présents que dans certaines souches: ce génome "permutable" est composé des gènes spécifiques à certaines souches. Cette configuration en "pan-génome" (avec un génome-coeur entouré d'un génome permutable) est typique des bactéries et des archées. La présence d'une telle proportion de gènes spécifiques à certaines souches est remarquable pour un organisme eucaryote sexué. Elle offre sans nul doute à Emiliania une flexibilité génomique et des capacités d'adaptation élevées.

Auteur: Internet

Info: 14 juin 2013

[ sciences ] [ génétique ]

 

Commentaires: 0

matière

Une bactérie qui fabrique des minéraux dans ses cellules
Une nouvelle espèce de bactérie photosynthétique vient d'être mise en évidence: elle est capable de contrôler la formation de minéraux (carbonates de calcium, magnésium, baryum, strontium), à l'intérieur même de son organisme. Publiée dans Science le 27 avril 2012, une étude qui révèle l'existence de ce nouveau type de biominéralisation dont le mécanisme est encore inconnu. Cette découverte a d'importantes implications pour l'interprétation du registre fossile ancien.
Les cyanobactéries focalisent depuis longtemps l'attention des scientifiques. Capables de photosynthèse, ces micro-organismes ont joué un rôle majeur dans l'histoire de la Terre, conduisant notamment à l'oxygénation de l'atmosphère. Certaines cyanobactéries sont capables de former des carbonates de calcium à l'extérieur de leur cellule, notamment celles associées aux stromatolites, des roches carbonées qui datent d'environ 3,5 milliards d'années et comptent parmi les plus anciennes traces de vie sur Terre. Des cyanobactéries fossiles pourraient donc se retrouver au sein de ce type de formation. Pourtant, les premières cyanobactéries fossiles datent seulement de 700 millions d'années bien après le début de l'oxygénation de la Terre qui remonterait à 2,3 milliards d'années. Pourquoi un tel laps de temps ?
Une équipe française vient peut-être d'apporter une réponse. Dans des stromatolites recueillis dans un lac de cratère mexicain et cultivés au laboratoire, les scientifiques ont mis en évidence une nouvelle espèce de cyanobactérie, Candidatus Gloeomargarita lithophora. Ce micro-organisme est issu d'une lignée qui a divergé précocement chez les cyanobactéries. Sa principale caractéristique: grâce à un mécanisme de biominéralisation encore inconnu, cette cyanobactérie fabrique des nanoparticules de carbonate de calcium intracellulaires, d'environ 270 nanomètres. Si l'on connaissait l'existence de cyanobactéries capables de former du carbonate de calcium extracellulaire au sein des stromatolites, c'est la première fois que l'on révèle une formation à l'intérieur de la cellule. Autre particularité de cette nouvelle espèce: elle accumule le strontium et le baryum pour l'incorporer aux carbonates.
Cette découverte a d'importantes implications pour l'interprétation du registre fossile ancien. En effet, si les cyanobactéries associées aux stromatolites formaient des carbonates à l'intérieur de leurs cellules et non pas à l'extérieur, elles n'auraient pas été préservées dans le registre fossile et pourraient expliquer le laps de temps entre leur apparition (il y a au moins 2,3 milliards d'années) et les plus vieux fossiles retrouvés (il y a 700 millions d'années). Reste désormais à découvrir pourquoi et comment cette cyanobactérie fabrique ce carbonate de calcium.

Auteur: Internet

Info: 21 avril 2012, An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates, E. Couradeau, K. Benzerara, E. Gérard, D. Moreira, S.Bernard, G. E. Brown Jr.

[ historique ] [ biologie ]

 

Commentaires: 0

végétaux

Stéphane Perraud : Dans quel état se trouvent les forêts primaires aujourd'hui ?

Francis Hallé : Il n'y en a quasiment plus ! Les forêts sont dites primaires quand elles n'ont jamais subi la moindre destruction humaine. Il y a quarante ans on en trouvait encore beaucoup à la surface du globe. Aujourd'hui, il n'en subsiste que des lambeaux, dans la boucle du fleuve Congo, en Australie, dans le Grand Nord canadien, en Sibérie... Seuls le climat très difficile ou l'absence totale d'accès les protègent encore de la folie destructrice des hommes. En Amazonie, c'est trop tard. On rase les arbres pour les remplacer par du soja transgénique et de l'élevage.

- Pourquoi est-ce si inquiétant ?

- La forêt joue un rôle déterminant pour la survie de l'humanité. Les arbres purifient l'atmosphère en absorbant du gaz carbonique et en rejetant de l'oxygène . Couper un arbre revient à détruire une usine d'épuration naturelle. Les arbres attirent la pluie. Leur feuillage et leur système racinaire filtrent l'eau. Ils jouent également un rôle de stabilisateurs pour les sols. Et bien sûr, ils abritent une flore et une faune exceptionnelle. Ce sont nos alliés, nos protecteurs. La disparition des forêts primaires n'est pas irréversible, mais pour passer d'une forêt secondaire (qui a repoussé après exploitation) à une forêt primaire, il faudrait la laisser tranquille pendant sept siècles !

- On entend souvent qu'une forêt a besoin d'être entretenue pour rester en bonne santé...

- C'est une hérésie ! Les forêts existent depuis plus de 350 millions d'années, elles se portaient très bien avant l'arrivée de l'homme. Elles ont su se reconstituer après chaque évolution climatique majeure. Plus on intervient dans une forêt, plus on la fragilise. Il faut au contraire laisser faire la nature. Le bois mort au sol par exemple préserve les micro-organismes. Une forêt détruite par un incendie repoussera mieux si on n'intervient pas. Sa capacité de régénération est incroyable. Saviez-vous que lorsqu'on coupe une branche, on favorise l'arrivée des maladies ? Au Jardin des Plantes à Paris, on trouve des arbres tricentenaires qui n'ont jamais été taillés. Ils se portent très bien et ne sont pas dangereux pour les visiteurs.

Beauté... Mesurable ? Il serait temps que tu comprennes que vous n'êtes que des principes d'action programmés pour survivre dans un milieu hostile, non prévu. Pour tenter de durer. Par conséquent la notion de beauté est tout à fait relative. Il y a éventuellement accoutumance à quelque chose de rassurant mais "Beauté mesurable", c'est comme si tu disais "vie passive".

Auteur: Hallé Francis

Info: 26 juin 2014

[ arbre ] [ nature ] [ équilibre ] [ écologie. éco-anxiété ]

 

Commentaires: 0

médecine

Santé : Nous éradiquons des bactéries qui nous protègent.
Certaines maladies sont indispensables pour que le corps humain développe son système immunitaire. Et des bactéries (infectieuses) censées nous protéger de l'asthme ont été purement et simplement... éradiquées. Telles sont les conclusions d'une nouvelle étude scientifique.
L'augmentation épidémique des maladies allergiques est généralement attribuée à la pollution atmosphérique, aux additifs alimentaires, au tabagisme... Mais, depuis plusieurs années, les scientifiques ont changé leur souris d'épaule. Ils multiplient les études sur les effets néfastes de l'hygiène. Car au fur et à mesure des investigations, il s'avère de plus en plus nettement que le système immunitaire se développe d'autant mieux que son exposition aux agents infectieux est régulière et répétée. La maladie, meilleure amie de l'homme...
L'asthme cloué au pylori
Dans un récent article publié dans le Journal of Clinical, des chercheurs de l'Université de Zurich et du Centre médical universitaire de l'Université Johannes Gutenberg de Mayence viennent d'en rajouter une couche. L'augmentation de l'asthme pourrait être attribuée à l'éradication de la bactérie gastrique Helicobacter pylori des sociétés occidentales.
La moitié de la population mondiale serait porteuse saine de cette bactérie (comme beaucoup d'autres d'ailleurs). Mais, sous certaines conditions, le microbe peut entrainer des gastrites, des ulcères gastriques et duodénaux et des cancers de l'estomac. Les toubibs préfèrent donc ne pas prendre de risques et la bactérie est systématiquement combattue, outragée, brisée, martyrisée. Et H. pylori est souvent éliminée par des prescriptions d'antibiotiques préventives. Résultat : la bactérie est aujourd'hui quasiment éradiquée de nos sociétés "avancées".
La santé ? Un truc de malade...
Pour leur étude, les chercheurs ont injecté la grande méchante bactérie à une cohorte de gentilles petites souris. Lorsque les cobayes étaient infectés en bas âge, ils ont développé une tolérance immunologique à la bactérie, ne développant que quelques symptômes négligeables. Par contre, lorsque les souris étaient infectées à l'âge adulte, leur défense était beaucoup plus faible, et la maladie plus violente. Leur tendance à développer de l'asthme était aussi beaucoup plus importante.
"L'infection précoce altère la maturation des cellules dendritiques et augmente la production de lymphocytes T régulateurs qui sont cruciaux pour la suppression de l'asthme", explique Anne Müller, chercheuse en cancer moléculaire à l'Université de Zurich. Pour l'expérience, des cellules T régulatrices ont ensuite été transférées à des souris non infectées ; elles ont alors bénéficié d'une protection efficace contre les asthmes d'effort. En revanche, les souris qui avaient été infectées dès le début ont perdu leur résistance à l'asthme lorsqu'on leur injectait des antibiotiques qui tuaient H. pylori.
Selon le chercheur Christian Taube, spécialiste des maladies allergiques pulmonaires, ces nouveaux résultats confirment l'hypothèse que l'augmentation des asthmes allergiques dans les pays industrialisés est liée à l'utilisation généralisée d'antibiotiques et la disparition induite de micro-organismes qui peuplent le corps humain.

Auteur: Internet

Info: 4 juillet 2011, par Napakatbra

[ fiente ] [ anticorps ]

 

Commentaires: 0

biologie

La tendance est à l'expression d'une vérité inéluctable. L'avenir de la société sera mis au défi par les virus zoonotiques, une prédiction tout à fait naturelle, notamment parce que l'humanité est un puissant agent de changement, qui est le carburant essentiel de l'évolution. Malgré ces affirmations, j'ai débuté avec l'intention de laisser au lecteur une appréciation plus large des virus : ils ne sont pas simplement des agents pathogènes de la vie. Ce sont des partenaires obligés de la vie et une force formidable de la nature sur notre planète. En contemplant l'océan sous un soleil couchant, pensez à la multitude de particules virales dans chaque millilitre d'eau de mer : en survolant la forêt sauvage, considérez les viromes collectifs de ses habitants vivants. Le nombre impressionnant et la diversité des virus dans notre environnement devrait engendrer en nous une plus grande admiration quant au fait d'être en sécurité parmi ces multitudes que la crainte qu'ils nous fassent du mal.

La médecine personnalisée deviendra bientôt une réalité et la pratique médicale cataloguera et pèsera systématiquement la séquence du génome d'un patient. Peu de temps après, on pourra s'attendre à ce que ces données soient rejointes par les métagénomes viraux et bactériens du patient : l'identité génétique collective du patient sera enregistrée sur une seule impression. Nous découvrirons sans doute que certains de nos passagers viraux sont nocifs pour notre santé, tandis que d'autres sont protecteurs. Mais cette approche des virus que j'espère vous avoir fait apprécier en lisant ces pages n'est pas un exercice de comptabilité. La mise en balance des avantages et des menaces pour l'humanité est une tâche stérile. Le métagénome viral contiendra des fonctionnalités génétiques nouvelles et utiles pour la biomédecine : les virus peuvent devenir des outils biomédicaux essentiels et les phages continueront à s'optimiser peuvent également accélérer le développement de la résistance aux antibiotiques dans l'ère post-antibiotique et les virus émergents peuvent menacer notre complaisance et remettre en question notre société économiquement et socialement. Cependant, la simple comparaison de ces avantages et inconvénients ne rend pas justice aux virus et ne reconnaît pas leur juste place dans la nature.

La vie et les virus sont inséparables. Les virus sont le complément de la vie, parfois dangereux mais toujours beaux dans leur conception. Tous les systèmes de réplication autonomes et autonomes qui génèrent leur propre énergie favoriseront les parasites. Les virus sont les sous-produits incontournables du succès de la vie sur la planète. Nous leur devons notre propre évolution ; les fossiles de beaucoup sont reconnaissables dans les VRE* et les EVE** qui ont certainement été de puissantes influences dans l'évolution de nos ancêtres. Comme les virus et les procaryotes, nous sommes également un patchwork de gènes, acquis par héritage et transfert horizontal de gènes au cours de notre évolution depuis le monde primitif basé sur l'ARN.

On dit souvent que "la beauté est dans l'œil de celui qui regarde". Il s'agit d'une réaction naturelle à un événement visuel : un coucher de soleil, le drapé d'une robe de créateur ou le motif d'une cravate en soie, mais on peut également la trouver dans un vers de poésie, un ustensile de cuisine particulièrement efficace ou même l'efficacité impitoyable d'une arme à feu. Ces derniers sont des reconnaissances uniquement humaines de la beauté du design. Cette même humanité qui nous permet de reconnaître la beauté de la conception évolutive des virus. Ce sont des produits uniques de l'évolution, la conséquence inévitable de la vie, une information génétique égoïste et infectieuse qui puise dans la vie et les lois de la nature pour alimenter l'invention évolutive.

Auteur: Cordingley Michael G.

Info: Viruses: Agents of Evolutionary Invention. *entérocoques, qui sont un des micro-organismes à haut risque de transmissibilité et de développement croisé de résistance aux antibiotiques. Cette résistance aux glycopeptides a également un impact non négligeable, avec le risque redouté de transfert de cette résistance à Staphylococcus aureus, beaucoup plus répandu et pathogène. **ADN fossile ou pseudogènes

[ combat continuel ] [ prospective ] [ bacilles ] [ catalyseurs ]

 

Commentaires: 0

Ajouté à la BD par miguel

artificialisation

L’élevage paysan est menacé parce que les lobbies financiers, ceux de l’agriculture productiviste et même une partie du lobby de la viande industrielle ont décidé de remplacer la vraie viande, plus assez rentable à leurs yeux, par de la fausse viande, du faux lait, du faux fromage, des faux œufs, beaucoup plus rentables.

Le système industriel de production de protéines animales est un échec financier comme le dénonce depuis trois décennies Via Campesina: les épizooties coûtent de 18 à 50 % du chiffre d’affaires, la Banque mondiale chiffre le coût de la grippe aviaire à 1250 milliards de dollars… mais pas question pour ces lobbies de laisser se développer l’élevage paysan. Leur réponse est simple : toujours plus d’industrialisation grâce aux biotech.

Ces lobbies veulent gagner la bataille de l’opinion publique car ils se souviennent de l’échec de la viande clonée qu’ils avaient précédemment voulu imposer, c’est pourquoi ils financent mondialement des groupes animalistes. L214 a reçu ainsi plus de 1,3 million de dollars d’une organisation états-unienne qui finance, par ailleurs le secteur de la fausse viande et notamment celui des faux œufs. Chacun appréciera à sa valeur qu’une organisation fondée par deux militants anarchistes soient subventionnée par le grand capital international et qu’elle se retrouve aux côtés des lobby financiers, de la malbouffe et de ce qu’il y a de pire dans l’industrie de la viande contre l’Internationale Via Campesina… Ce généreux donateur de L214, prénommé Open Philanthropy Project (OP2), a été créé par le fonds d’investissement de Dustin Moskovitz, co-fondateur de Facebook et son épouse Cari Tuna, journaliste au Wall Street Journal. Ce généraux donateur travaille aussi avec le Fonds d’investissement de Google, et avec des milliardaires comme Bill Gates, William Hewlett (Packard), etc…

Le secteur de la fausse viande n’est pas séparable des autres biotechnologies alimentaires, comme les OGM 2eet 3egénérations, comme les imprimantes 3D alimentaires, qui fonctionnent comme une imprimante classique sauf qu’elles utilisent différents ingrédients sous forme de pâte dont des hydro-colloïdes, une substance gélatineuse chimique que l’on peut structurer, aromatiser, coloriser à volonté.. La première imprimante 3D végane a été lancée, en avril 2019, en Israël, par la société Jet Eat, dont le PDG Eshchar Ben Shitrit est un personnage central de l’industrie alimentaire sous forme d’impression 3D ….

Les grandes firmes disposent déjà de tout un vocabulaire marketing pour imposer leurs productions, elles parlent de "viande propre", de "viande éthique", de "viande cultivée", une façon de sous-entendre que la vraie viande, le vrai fromage, le vrai lait, les vrais œufs ne seraient ni propres, ni éthiques, ni même, peut être, ne relèveraient d’une quelconque culture…

La fabrication industrielle de faux produits carnés comprend une production dite a-cellulaire et une autre dite cellulaire. La production acellulaire est une technique de biologie synthétique qui utilise des micro-organismes comme des bactéries, des levures, pour synthétiser des protéines et molécules. Le gène codant d’une protéine donnée est alors clonée dans un micro-organisme qui est ensuite en mesure de le produire. Pour obtenir des protéines de lait ou de blanc d’œuf, on cultive des micro-organismes génétiquement modifiés (des bactéries, des levures et autres champignons) et on mélange ensuite ces protéines à d’autres substances végétales.

La production cellulaire consiste à reconstituer des tissus animaux en mettant en culture des cellules prélevées sur l’animal. Elle utilise pour cela des bioréacteurs sur le modèle de ceux utilisés en médecine pour fabriquer de la fausse peau. La culture des cellules se fait avec du sérum de fœtus de veau. Certaines start-up, financées par la NASA, ont pour objectif de remplacer ce sérum par des extraits de champignon… Cette fausse viande cellulaire suppose toujours un animal donneur de cellules sous forme de biopsie (sous anesthésie locale) mais un seul échantillon pourrait permettre de produire jusqu’à 20 000 tonnes de viande. Mosa Meat explique que 150 vaches suffiraient pour satisfaire la demande actuelle mondiale de viande. Cette firme néerlandaise avait précédemment inventé le premier hamburger à base de cellules (un simple collage de 20 000 fibres). Son coût de 325 000 euros avait été financé par Sergey Brin, co-fondateur de Google, Patron de la firme Alphabet inc, une émanation de Google dénoncée pour être un faux nez permettant d’échapper à l’impôt via les paradis fiscaux, il dirige aussi Google X chargé de développer la voiture automatique Google et un service mondial de livraison par drone. Il fallait donc absolument dans l’intérêt de Google que la viande soit accusée de tous les maux plutôt que les transports. Sergey Brin est non seulement la treizième fortune mondiale, mais l'une des vedettes du Forum économique de Davos dont les membres, à peine descendus de leur jet privé, ordonnait en février 2019, au petit peuple de consommer moins de viande pour… sauver la planète (prétendent-ils).

Auteur: Ariès Paul

Info: https://blogs.mediapart.fr/paul-aries/blog/230419/futurs-deputes-europeens-resisterez-vous-au-lobby-de-la-viande-de-laboratoire?

[ apprentis sorciers ] [ culpabilité ] [ schizophrénie ] [ rendement économique ] [ malbouffe ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

machine-homme

- (Q) Comment définir et expliquer les mot "vie" ?

- (R) La vie est un phénomène complexe et multiforme qui englobe les caractéristiques, les processus et les activités associés aux organismes vivants. Bien qu'il n'existe pas de définition universellement acceptée de la vie, celle-ci peut être comprise de manière générale comme l'état d'être vivant, présentant certaines propriétés et certains comportements fondamentaux.

Les principales caractéristiques de la vie sont les suivantes

L'organisation : Les organismes vivants sont hautement organisés, constitués de cellules ou de structures cellulaires qui remplissent des fonctions spécifiques. Ils ont une structure hiérarchique, des cellules aux tissus, aux organes et aux systèmes d'organes.

Métabolisme : La vie implique la capacité d'acquérir et d'utiliser de l'énergie par le biais de divers processus métaboliques, tels que la respiration, la photosynthèse ou d'autres réactions biochimiques. Les organismes utilisent l'énergie pour maintenir leur environnement interne, croître, se reproduire et répondre aux stimuli.

Croissance et développement : Les organismes vivants ont la capacité de croître et de se développer, augmentant leur taille et leur complexité au fil du temps. Ils subissent des processus tels que la division cellulaire, la différenciation et la maturation.

Reproduction : La vie implique la capacité de se reproduire et de transmettre l'information génétique d'une génération à l'autre. La reproduction peut se faire par voie sexuée ou asexuée et assure la pérennité d'une espèce.

Réponse aux stimuli : les organismes vivants peuvent percevoir les changements dans leur environnement et y répondre, en adoptant des comportements qui leur permettent de survivre, de trouver des ressources, d'éviter les menaces et de s'adapter à des conditions changeantes.

Homéostasie : La vie implique le maintien d'une stabilité et d'un équilibre internes par le biais de divers mécanismes de régulation. Les organismes peuvent réguler leurs conditions internes, telles que la température, le pH et les niveaux de nutriments, afin de garantir un fonctionnement optimal.

Bien que ces caractéristiques fournissent un cadre général, il est important de reconnaître que la vie présente une diversité et une complexité considérables au sein des différentes espèces et écosystèmes. La vie peut exister sous différentes formes, des micro-organismes aux plantes, en passant par les animaux et les êtres humains, chacun ayant ses propres adaptations et caractéristiques.

L'étude de la vie est un vaste domaine appelé biologie, qui explore les mécanismes, les processus et la diversité des organismes vivants. Les scientifiques continuent d'étudier et d'approfondir leur compréhension de la nature fondamentale de la vie et de ses origines, cherchant à démêler les complexités de ce phénomène remarquable.

- (Q) D'accord, merci. Donc pour préciser un peu la question, où est la frontière entre minéral et  végétal. ou entre organique et inorganique ?

- (R) La frontière entre les domaines minéral (inorganique) et végétal (organique), ou entre la matière organique et inorganique, n'est pas toujours évidente, car il peut y avoir des chevauchements et des ambiguïtés. La distinction réside principalement dans la composition, la structure et les propriétés caractéristiques des substances concernées.

Dans le contexte de la géologie et de la chimie, les minéraux sont des substances inorganiques naturelles dont la composition chimique et la structure cristalline sont définies. Le quartz, le feldspath et la calcite sont des exemples de minéraux. Les minéraux sont généralement formés par des processus géologiques et n'ont pas les structures moléculaires complexes que l'on trouve dans les organismes vivants.

D'autre part, le terme "végétal" fait généralement référence à la matière organique associée aux plantes ou à la vie végétale. Les plantes sont des organismes vivants qui possèdent des structures cellulaires complexes et réalisent divers processus physiologiques. Elles sont classées dans le règne des Plantae et présentent des caractéristiques telles que la photosynthèse, la croissance, la reproduction et les réponses aux stimuli.

La matière organique désigne généralement les substances qui contiennent du carbone et qui proviennent d'organismes vivants ou de leurs restes. Les composés organiques, tels que les glucides, les protéines, les lipides et les acides nucléiques, sont les éléments constitutifs de la vie et sont présents dans les organismes vivants.

La frontière entre le minéral et le végétal ou entre la matière organique et la matière inorganique peut s'estomper dans certains cas. Par exemple, certains composés organiques, comme certains carbonates, peuvent se trouver à la fois dans les organismes vivants et dans les minéraux. En outre, les minéraux peuvent interagir avec la matière organique, par exemple lors de la formation de fossiles ou de l'absorption de minéraux par les plantes.

Il est important de noter que la classification et la compréhension de ces frontières sont principalement basées sur des catégorisations scientifiques et peuvent varier en fonction du contexte et de la perspective. Différents domaines scientifiques, tels que la géologie, la chimie et la biologie, peuvent aborder ces frontières différemment en fonction de leurs cadres respectifs et de leurs intérêts de recherche.

Auteur: chatGPT4

Info: 18 mai 2023. Ici l'I.A. qui donne les réponses peut être considérée comme un promptuaire, un résumé

[ question-réponse ] [ compendium ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

recombinaison latérale

Ce que nous savons sur la façon dont l'ADN passe d'une espèce à l'autre

Si vous avez les yeux de votre père ou les taches de rousseur de votre grand-mère, vous pouvez remercier les gènes transmis au sein de votre famille. Mais les chercheurs ont commencé à reconnaître qu’à un niveau biologique plus profond, un autre type d’héritage génétique se produit également. Les gènes peuvent glisser entre individus – ou même entre espèces – grâce à un processus connu sous le nom de transfert horizontal de gènes. Cela est peut-être loin d’être quotidien dans des organismes complexes comme les humains, mais sur une échelle de temps évolutive, cela pourrait se produire beaucoup plus souvent qu’on ne le pensait.

Les transferts horizontaux de gènes sont relativement courants dans le monde bactérien, où ils jouent un rôle important dans l’évolution et l’adaptation, ainsi que dans la propagation de la résistance aux antibiotiques. En fait, les biologistes évolutionnistes ont du mal à démêler certaines des premières branches de l’arbre de vie, car le nombre élevé de transferts horizontaux entre ces anciens organismes unicellulaires a si étroitement entrelacé les lignées. Les scientifiques savent également très peu de choses sur la façon dont ce processus pourrait avoir façonné de manière significative les génomes d’organismes complexes comme les plantes et les animaux.

Pendant de nombreuses années, les scientifiques qui soutenaient que des sauts horizontaux pouvaient se produire chez des espèces multicellulaires telles que les poissons ont été critiqués par leurs pairs. Une telle migration nécessite une chaîne d'événements improbables : un gène d'un individu doit d'une manière ou d'une autre pénétrer dans les cellules germinales qui produisent les spermatozoïdes ou les ovules d'un individu d'une autre espèce. De là, il doit pénétrer dans le noyau et pénétrer dans le génome de son nouvel hôte, qui doit ensuite produire une progéniture avec ces ovules ou spermatozoïdes pour transmettre ce génome modifié. Les moteurs importants de ce processus sont souvent les éléments génétiques appelés transposons, ou " gènes sauteurs ", qui peuvent se copier et se coller à différents endroits d’un génome, ou même d’un génome vers un autre. Parfois, ils semblent le faire en pénétrant dans le corps d'un nouvel hôte à l'intérieur d'un parasite ou d'un virus. C'est un parcours qui comporte de nombreuses étapes improbables, mais la biologie moléculaire suggère que ça existe.

Des études ont identifié des cas de transferts horizontaux chez un large éventail d’animaux, notamment des poissons, des grenouilles et des serpents. Pourtant, on ne sait pas exactement dans quelle mesure les organismes eucaryotes complexes partagent ainsi des gènes avec d’autres formes de vie. Les données recueillies jusqu'à présent suggèrent qu'il est plus probable que les gènes passent des bactéries aux eucaryotes que l'inverse : des expériences montrent que lorsque les gènes eucaryotes pénètrent dans les bactéries, celles-ci les éjectent le plus souvent.

Les biologistes ont fait de nombreuses découvertes surprenantes ces dernières années sur le mouvement des gènes entre les espèces.

Quoi de neuf et remarquable

En 2022, des chercheurs ont rapporté qu’un gène appelé BovB s’était déplacé indépendamment des serpents vers les grenouilles au moins 50 fois dans diverses parties de la planète. Bizarrement, ils ont constaté que cela se produisait beaucoup plus souvent à Madagascar qu’ailleurs. On ne sait pas pourquoi. Un facteur pourrait être le nombre élevé de parasites tels que les sangsues qui vivent sur l'île et se déplacent d'hôte en hôte, transportant des séquences d'ADN acquises dans le sang qu'elles ont bu. Les preuves d'anciens transferts de gènes horizontaux sont souvent brouillées avec le temps, mais les chercheurs espèrent désormais détecter les transferts sur le fait en examinant les organismes des sources chaudes du parc national de Yellowstone.

Le transfert horizontal de gènes semble également avoir joué un rôle dans la manière dont la vie marine autour des pôles a développé – ou plutôt emprunté – des défenses pour survivre au froid glacial. Les chercheurs ont pu montrer que les harengs et les éperlans, deux groupes de poissons qui ont divergé il y a plus de 250 millions d'années, utilisent le même gène pour fabriquer des protéines qui empêchent la croissance des cristaux de glace dans leur corps. Il a fallu des décennies pour convaincre les chercheurs que le gène devait être passé du hareng à l'éperlan. On ne sait pas exactement dans quelle mesure ce type de transfert horizontal se produit entre les cellules vertébrées, mais une étude a mis en évidence au moins 975 transferts entre 307 génomes de vertébrés, principalement chez les poissons à nageoires rayonnées.

Les transferts de gènes entre espèces concernent même les humains, ou plus particulièrement nos microbiomes, les puissantes armées de micro-organismes qui occupent nos intestins et d’autres parties du corps. Le microbiome d’un bébé humain vient d’abord de sa mère. Mais étonnamment, ces dons maternels ne sont pas toujours des cellules entières. De petits fragments d'ADN provenant des bactéries de la mère peuvent passer aux bactéries du bébé par le biais de transferts de gènes horizontaux, même des mois après la naissance. Ces gènes, qui proviennent souvent de souches bactériennes utiles chez la mère, pourraient jouer un rôle important dans la croissance et le développement du bébé. Bien qu’il ne soit pas clair si les transferts horizontaux de gènes profitent directement au bébé en lui transmettant des fonctions particulières, ils pourraient être indirectement utiles en assemblant un microbiome intestinal plus performant.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ fév 2024, Yasemin Saplakoglu

[ échange ] [ transduction ] [ HVT ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

microbiologie

Comment le microbiome* influence notre santé 

Nous ne sommes jamais seuls. En plus des 30 000 milliards de cellules humaines, notre corps abrite quelque 39 000 milliards de microbes – bactéries, champignons et protozoaires qui vivent dans nos intestins, nos poumons, notre bouche, notre nez, notre peau et ailleurs dans tout le corps. Les ensembles d’organismes présents dans et sur notre corps, le " microbiote ", font partie d’habitats microbiens plus larges, ou " microbiomes ", qui englobent tous les génomes viraux et cellulaires, les protéines codées et d’autres molécules dans leur environnement local. (Cependant,  il existe une certaine ambiguïté  dans les définitions, de sorte que l'utilisation des termes varie souvent.)

Bien que le microbiome soit récemment devenu un sujet brûlant en raison de son importance potentielle pour notre santé, ce n'est pas un concept nouveau. Certains font remonter ses origines au XVIIe siècle, lorsque le microbiologiste néerlandais Antonie van Leeuwenhoek a décrit pour la première fois de minuscules organismes qu'il avait prélevés dans sa bouche et observés sous un microscope artisanal. Tout au long des années 1900 et au début des années 2000, un certain nombre de découvertes ont attiré l'attention des gens sur les microbes vivant à l'intérieur de nous, mais ce domaine a reçu une attention accrue en 2007 lorsque les National Institutes of Health ont lancé le projet sur le microbiome humain. Depuis lors, les scientifiques ont catalogué de manière de plus en plus détaillée la biodiversité microbienne du corps humain. Ils ont découvert que les microbiomes sont distincts dans tout le corps : la composition microbienne de l’intestin, par exemple, est très différente de celle de la bouche. Ils en sont également venus à reconnaître qu’il n’existe pas de microbiome " ​​normal ". Au contraire, comme pour les empreintes digitales, chacun abrite une sélection unique d’espèces et de souches microbiennes.

Ces microbes jouent de nombreux rôles, depuis la protection contre les agents pathogènes et le réglage de nos réponses immunitaires jusqu'à la digestion des aliments et la synthèse des nutriments. Pour cette raison, lorsqu’un microbiome est désorganisé – par exemple à cause d’une mauvaise alimentation, de maladies infectieuses, de médicaments ou de facteurs environnementaux – cela peut avoir un effet d’entraînement sur notre santé. Des microbiomes malsains ont été associés au cancer, aux maladies cardiaques et pulmonaires, à l’inflammation et aux maladies inflammatoires de l’intestin. On pense même que les microbes régulent l’axe intestin-cerveau, une autoroute de communication qui relie le cerveau au système nerveux entérique, qui contrôle les intestins. Aujourd’hui, la médecine cible de plus en plus les microbiomes pour traiter diverses maladies. Par exemple, les greffes fécales contenant un microbiote sain sont parfois utilisées pour traiter des infections bactériennes graves du côlon.


Malgré une accélération de la recherche sur le microbiome au cours des dernières décennies, qui a donné naissance à de nouvelles technologies génomiques puissantes, de nombreuses questions fondamentales restent sans réponse complète. Comment acquérons-nous le microbiote et comment la communauté évolue-t-elle tout au long de notre vie ? Quel est l’impact des différents environnements et modes de vie sur le microbiome ? Comment le microbiome peut-il provoquer ou être utilisé pour traiter des maladies ? Ces questions et bien d’autres alimentent la recherche biologique et nous aident à mieux comprendre qui et ce qui fait de nous ce que nous sommes.

Quoi de neuf et remarquable

D’où vient notre microbiome ? Plusieurs études réalisées au cours de la dernière année ont donné des indications. Les bébés acquièrent la plupart de leurs microbes de leur mère à la naissance et dans les mois qui suivent. Mais il s’avère que les mères ne partagent pas seulement des organismes microbiens avec leurs bébés, elles partagent également des gènes microbiens. Dans une étude de 2022 publiée dans Cell , des scientifiques ont révélé que de courtes séquences d'ADN appelées éléments mobiles peuvent passer des bactéries de la mère aux bactéries du bébé, même des mois après la naissance. Comme je l'ai déjà signalé dans  Quanta , il est probable que ces gènes pourraient aider à développer un microbiome intestinal plus performant chez le bébé, ce qui pourrait à son tour développer davantage son système immunitaire.

La transmission ne se produit pas seulement à la naissance. En fait, les microbiomes sont incroyablement dynamiques et peuvent changer radicalement au cours de la vie d’une personne. Dans un article de Quanta publié l’année dernière, j’ai rendu compte de l’analyse mondiale la plus complète de la transmission du microbiome à ce jour. À l’aide de nouveaux outils génomiques, une équipe de biologistes italiens a retracé plus de 800 000 souches de microbes entre familles, colocataires, voisins et villages dans 20 pays. Ils ont découvert que les microbes sautent beaucoup entre les personnes, en particulier entre les conjoints et les colocataires, qui passent beaucoup de temps ensemble. Ces résultats suggèrent que certaines maladies qui ne sont pas considérées comme contagieuses pourraient avoir un aspect contagieux si elles impliquent le microbiome. Cependant, cette idée est spéculative et sera sûrement débattue et étudiée dans les années à venir.

Les connaissances sur la manière dont nous acquérons le microbiome et son impact sur notre corps ne proviennent pas uniquement d’études réalisées sur des humains. D’autres animaux possèdent également des microbiomes essentiels à leur santé et à leur développement – ​​et plusieurs études récentes ont établi des liens entre les microbes intestinaux et le cerveau. En 2019, Quanta a signalé que le comportement de peur diffère entre les souris ayant des microbiomes différents, et en 2022, nous avons rendu compte de la manière dont les microbiomes influencent les compétences sociales et la structure cérébrale du poisson zèbre.




Auteur: Internet

Info: https://www.quantamagazine.org/ - 11 03 2024 - Yasemin Saplakogku. *Pour préciser : Le terme microbiote est suivi du nom de l'environnement dans lequel il se trouve. Par exemple, le « microbiote intestinal » fait référence au microbiote présent dans les voies intestinales. Le microbiome fait référence à l'ensemble des gènes hébergés par des micro-organismes, ce que l'on appelle le théâtre d'activité.

[ orchestre invisible du corps ] [ Des bactéries aux organes ]

 

Commentaires: 0

Ajouté à la BD par miguel