Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 133
Temps de recherche: 0.0511s

mémoire

Mettez vos données sur disque dur et elles seront peut être sûres pendant une décennie si rien ne casse. Mais que faire pour garder l'info des millions d'années ?
La puissance de l'ADN comme dispositif de stockage a été identifiée la première fois seulement six ans après la découverte de la molécule. Dans une conférence de 1959 au California Institute of Technology, Richard Feynman, un des physiciens les plus admiré du 20 ème siècle, prévoyait que la miniaturisation de la technologie changerait probablement le monde - essentiellement en prévoyant la révolution numérique. Il précisa alors que la nature avait déjà fait un chip bien meilleur sous forme d'acide désoxyribonucléique.
Dans un petit paquet d'atomes au centre de chaque cellule, Feynman remarqua que toute l'information requise pour créer un humain, une amibe ou une tomate y sont codés. En beaucoup de domaines Feynman était en avance sur son temps. Les scientifiques ont calculé que l'ADN pourrait être le support de stockage idéal. Une seule livre d'ADN pouvant contenir toutes les données de tous les ordinateur.
Mais gérer cette puissance informatique s'est avérée difficile. Le premier ordinateur fonctionnant entièrement comme l'ADN fut créé en 1994 par Leonard Adleman, informaticien à l'université de Californie. Dans une cuillère à café d'eau, il utilisa une série de réactions biochimiques pour résoudre le problème célèbre "du représentant de commerce" (en bref de combien de manières peut-on aller de New York à Cleveland en s'arrêtant dans 7 autres villes dans l'intervalle ?). La promesse de l'approche était due au fait que chaque morceau d'ADN peut fonctionner essentiellement comme ordinateur indépendant, il devrait lui être possible de faire près d'un quadrillion de calculs immédiatement. Plus facile à dire qu'a faire !. Et si Adleman est lui-même est parvenu à résoudre un problème à 20 variables avec son ordinateur ADN beaucoup de chercheurs depuis, dans ce champ de l'ADN, travaillant après ce papier initial d'Adleman, se sont maintenant déplacés vers la confection de machines minuscules au lieu d'utiliser des molécules d'ADN. Le problème : Accéder à toute l'information d’une molécule de l'ADN.
"Ma propre conclusion est que le paradigme du calcul de l'ADN ne fournira pas une plate-forme de calcul puissante pour résoudre des problèmes" dit Lloyd Smith, scientifique à l'université de Wisconsin-Madison qui a effectué ce travail de calcul ADN, mais il ne prévoit pas de remplacer ses applications liées à la matière. "c'est mignon, mais je ne sais pas si c'est un concept si important." Quelques chercheurs qui sont resté avec cette idée de stocker l'information par ADN s'éloignent actuellement de l'idée que la molécule puisse sauvegarder des quantités d'information massives. Au lieu de cela, ils se concentrent sur de plus petits messages correcteurs pendant de très longues périodes - peut-être destinés à survivre à tous les livres et disques durs que la civilisation a produits.
L'ADN des organismes évolue constamment, mais les messages correcteurs d'erreurs destinés à protéger les organismes - restent très longtemps. Pak Chung Wong, chercheur aux Pacific National Laboratories, précise que quelques unes de ces contraintes de bactéries ont maintenu leur ADN quasi intact pendant des millions d'années. Lui et ses collègues ont développé une technique pour implanter au moins 100 mots dans le génome d'un organisme de sorte que le message soit protégé contre des erreurs. Wong et ses collègues ont prouvé qu'ils pourraient implanter un message (ils ont employé "c'est un petit monde après tout") dans le génome de bactérie. Une famille entière de bactéries avec le message put être créée, et même après des centaines de générations, le message était encore intact. Wong note qu'il devrait être possible d'envoyer un message au futur dans un organisme particulièrement robuste - tel que les bactéries ou autres cancrelats, qui survivraient à une guerre nucléaire. Plus pratiquement, les compagnies qui créent des organismes génétiquement modifiés pourraient employer cette technologie pour créer un genre de filigrane ADN pour protéger leur propriété intellectuelle. Au delà de fournir de la manière pour Genentech ou Monsanto afin d’empêcher d'autres compagnies de voler leurs organismes génétiquement modifiés, une telle technologie pourrait être la meilleure manière que nous ayons d'envoyer un message au futur éloigné. Oublions les gravures sur le satellites Voyager. Ce message pourrait durer aussi longtemps que n'importe quelle vie sur terre. La seule question : qu’y mettrons nous ?

Auteur: Internet

Info: Fortean Times, Message dans une bouteille d'ADN, 10.24.05

[ conservation ]

 

Commentaires: 0

entomologie

Découvrez comment certains vers du cerveau transforment les fourmis en mortes-vivantes 

(photo : Dans la tête d'une fourmi infectée par plusieurs vers plats parasites en jaune, un ver en rouge se niche à l'intérieur du cerveau de la fourmi, - image capturée par le centre d'imagerie et d'analyse du musée d'histoire naturelle de Londres.)

Peut-on comprendre l’idée d’un ver parasite dans le cerveau d’une fourmi ? Ne vous inquiétez pas, il y a des photos.

Les scientifiques ont récemment capturé les premières images montrant ces parasites " contrôlant l'esprit " en action à l'intérieur de la tête d'une malheureuse fourmi, révélant des vues inédites d'un ver plat mortel vivant dans le cerveau, Dicrocoelium dendriticum (douve lancette du foie ou lancet liver fluke)  et les indices mis au jour quant aux secrets de manipulation et de comportement du ver.

Les douves du foie de Lancet ciblent un large éventail d'espèces de fourmis. Selon les Centres de contrôle et de prévention des maladies (CDC), bien qu'elles ne pratiquent leurs tours de passe-passe que sur les fourmis hôtes, elles font du ping-pong entre plusieurs espèces pour compléter leur cycle de vie.

Sous forme d’œufs, elles habitent les excréments d’animaux de pâturage comme les cerfs ou le bétail. Une fois les excréments infectés mangés par les escargots, les larves de vers éclosent et se développent dans les intestins des mollusques. Les escargots finissent par éjecter les larves de vers sous forme de boules visqueuses, qui sont ensuite englouties par les fourmis. [ 8 terribles infections parasitaires qui feront ramper votre peau ]

C'est à l'intérieur de la fourmi que le ver se transforme. Les fourmis ingèrent généralement plusieurs vers, dont la plupart se cachent dans leur abdomen. Toutefois, l'un d'entre eux parvient jusqu'au cerveau de la fourmi, où il devient le moteur de l'insecte, l'obligeant à adopter des "comportements absurdes", ont rapporté des scientifiques dans une nouvelle étude.

Sous le contrôle du ver, la fourmi désormais zombifiée affiche un souhait de mort, grimpant sur des brins d'herbe, des pétales de fleurs ou d'autres végétaux au crépuscule, une époque où les fourmis retournent généralement à leurs nids. Nuit après nuit, la fourmi s'accroche avec ses mâchoires à une plante, attendant d'être mangée par un mammifère qui en pâture. Une fois que cela se produit, les parasites se reproduisent et pondent chez le mammifère hôte. Les œufs sont expulsés dans les selles et le cycle recommence.

Tout est question de contrôle

Pendant des années, les biologistes avaient été intrigués par la relation entre les vers plats et les fourmis, mais les détails sur la manière dont les parasites manipulent le comportement des fourmis restaient un mystère, " en partie parce que jusqu'à présent, nous n'avons pas pu voir la relation physique entre le parasite et le cerveau de fourmi ", a déclaré le co-auteur de l'étude, Martin Hall, chercheur au département des sciences de la vie du Musée d'histoire naturelle (NHM) de Londres,  Tout a changé lorsqu'une équipe de scientifiques a examiné l'intérieur de la tête et du corps des fourmis infectées à l'aide d'une technique appelée micro-tomographie par ordinateur, ou micro-CT. Cette méthode combine la microscopie et l’imagerie aux rayons X pour visualiser les structures internes de minuscules objets en 3D et avec des détails époustouflants.

(Photo : La plupart des parasites vers plats d'une fourmi infectée attendent patiemment à l'intérieur de l'abdomen de leur hôte, tandis qu'un ou plusieurs vers envahissent le cerveau de la fourmi)

Les chercheurs ont décapité des fourmis prélevées, enlevant leurs mandibules pour mieux voir l'intérieur de leur tête, puis ils ont coloré et scanné la tête et l'abdomen des fourmis, ainsi qu'un corps complet de fourmi, écrivent-ils dans l'étude.

Leurs analyses ont montré qu'une fourmi pouvait avoir jusqu'à trois vers se disputant le contrôle de son cerveau, même si un seul ver parvient finalement à entrer en contact avec le cerveau lui-même. Les ventouses orales aident les parasites à s'accrocher au tissu cérébral de la fourmi, et les vers semblent cibler une région du cerveau associée à la locomotion et au contrôle de la mandibule.

Le détournement de cette zone du cerveau permis très probablement au ver de diriger la fourmi et verrouiller ses mâchoires sur une ancre d'herbe ou de fleur en attendant d'être mangée, rapportent les auteurs de l'étude. 

Auteur: Internet

Info: https://www.livescience.com/62763-zombie-ant-brain-parasite.html, 5 juin 2018, Mindy Weisberger

[ myrmécologie ] [ nématologie ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

hypothèse

Notre univers existe à l'intérieur d'un trou noir d'un univers de dimension supérieure 

Vous êtes-vous déjà demandé ce qui se trouve au-delà de l'univers observable ? Et si notre univers n'était qu'une infime partie d'une réalité beaucoup plus vaste et complexe et qu'il se trouvait en fait à l'intérieur d'un trou noir ?

Qu'est-ce qu'un trou noir ?

Un trou noir est une région de l'espace où la gravité est si forte que rien ne peut s'en échapper, pas même la lumière. Selon la théorie de la relativité générale d'Einstein, les trous noirs se forment lorsque des étoiles massives s'effondrent à la fin de leur cycle de vie. La singularité qui en résulte est un point de densité infinie et de volume nul, où les lois de la physique s'effondrent.

Des scientifiques découvrent un lien possible entre le cerveau humain et le cosmos à l'échelle quantique

La limite d'un trou noir s'appelle l'horizon des événements, elle marque le point de non-retour pour tout ce qui la traverse. La taille de l'horizon des événements dépend de la masse du trou noir. Par exemple, un trou noir ayant la masse du soleil aurait un horizon des événements d'environ 3 kilomètres de rayon.

Comment notre univers peut-il se trouver à l'intérieur d'un trou noir ?Une façon d'aborder cette question est de se demander ce qui se passe à l'intérieur d'un trou noir. Selon la physique classique, rien ne peut survivre à l'intérieur d'un trou noir. Cependant, la physique quantique suggère qu'il pourrait y avoir une forme de structure ou d'information qui persiste au-delà de l'horizon des événements.

Une éventualité est que la singularité au centre d'un trou noir n'est pas un point, mais une sphère ou un tore, qui créerait un trou de ver, un raccourci spatio-temporel reéiant deux régions éloignées de l'univers. Dans ce cas, une extrémité du trou de ver se trouverait à l'intérieur du trou noir et l'autre extrémité à l'extérieur, dans une autre région de l'espace.

Une autre possibilité est que la singularité au centre d'un trou noir ne soit pas une sphère ou un tore, mais une hyper-sphère ou un hyper-tore, qui créerait un univers-bulle, une région autonome de l'espace-temps avec ses propres lois physiques et ses propres constantes. Dans ce cas, l'univers-bulle se trouverait à l'intérieur du trou noir, notre univers par exemple.

Quelles sont les preuves de cette hypothèse ?

L'idée que notre univers soit à l'intérieur d'un trou noir est spéculative et n'a été prouvée par aucune observation ou expérience directe. Toutefois, certains indices indirects viennent étayer cette hypothèse.

L'un d'entre eux est le rayonnement électromagnétique cosmique de fond (CMB), qui est le rayonnement résiduel du Big Bang ou fond diffus cosmologique (FDC, ou cosmic microwave background, ou "fond cosmique de micro-ondes") a une température uniforme, à l'exception de minuscules fluctuations révélant la structure de l'univers primitif. Certains physiciens avancent que ces fluctuations pouvaient s'expliquer en supposant que notre univers se trouve à l'intérieur d'un trou noir et que le rayonnement de fond cosmologique est en fait le rayonnement émis par l'horizon des événements.

L'expansion de l'univers serait un autre indice. Selon le modèle standard de la cosmologie, notre univers s'expand à un rythme accéléré en raison de l'énergie noire, une force mystérieuse qui s'oppose à la gravité. Cependant, certains physiciens avancent que l'énergie noire soit une illusion causée par l'hypothèse d'un univers  plat et infini. Si notre univers est en fait courbe et fini, comme il le serait à l'intérieur d'un trou noir, l'énergie noire ne serait pas nécessaire pour expliquer l'expansion.

Quelles seraient les implications pour notre compréhension de la cosmologie et de la physique ?

Si notre univers se trouve effectivement à l'intérieur d'un trou noir, cela aura de profondes répercussions sur notre compréhension de la cosmologie et de la physique. D'une part, cela signifierait que notre univers a une origine et une fin, et qu'il n'est peut-être pas unique ou isolé. Cela signifierait également qu'il pourrait y avoir d'autres univers au-delà du nôtre, reliés par des trous de ver ou existant en tant que bulles distinctes.

Cela signifierait en outre qu'existent d'autres lois de la physique et de nouvelles dimensions de la réalité que nous n'avons pas encore découvertes ou comprises. Cela pourrait aussi expliquer certains paradoxes et autres contradictions entre la mécanique quantique et la relativité générale.

Auteur: Internet

Info: https://www.physics-astronomy.com/, 6 avril 2023

[ science-fiction ] [ niveaux vibratoires ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

microbiologie

Comment le microbiome* influence notre santé 

Nous ne sommes jamais seuls. En plus des 30 000 milliards de cellules humaines, notre corps abrite quelque 39 000 milliards de microbes – bactéries, champignons et protozoaires qui vivent dans nos intestins, nos poumons, notre bouche, notre nez, notre peau et ailleurs dans tout le corps. Les ensembles d’organismes présents dans et sur notre corps, le " microbiote ", font partie d’habitats microbiens plus larges, ou " microbiomes ", qui englobent tous les génomes viraux et cellulaires, les protéines codées et d’autres molécules dans leur environnement local. (Cependant,  il existe une certaine ambiguïté  dans les définitions, de sorte que l'utilisation des termes varie souvent.)

Bien que le microbiome soit récemment devenu un sujet brûlant en raison de son importance potentielle pour notre santé, ce n'est pas un concept nouveau. Certains font remonter ses origines au XVIIe siècle, lorsque le microbiologiste néerlandais Antonie van Leeuwenhoek a décrit pour la première fois de minuscules organismes qu'il avait prélevés dans sa bouche et observés sous un microscope artisanal. Tout au long des années 1900 et au début des années 2000, un certain nombre de découvertes ont attiré l'attention des gens sur les microbes vivant à l'intérieur de nous, mais ce domaine a reçu une attention accrue en 2007 lorsque les National Institutes of Health ont lancé le projet sur le microbiome humain. Depuis lors, les scientifiques ont catalogué de manière de plus en plus détaillée la biodiversité microbienne du corps humain. Ils ont découvert que les microbiomes sont distincts dans tout le corps : la composition microbienne de l’intestin, par exemple, est très différente de celle de la bouche. Ils en sont également venus à reconnaître qu’il n’existe pas de microbiome " ​​normal ". Au contraire, comme pour les empreintes digitales, chacun abrite une sélection unique d’espèces et de souches microbiennes.

Ces microbes jouent de nombreux rôles, depuis la protection contre les agents pathogènes et le réglage de nos réponses immunitaires jusqu'à la digestion des aliments et la synthèse des nutriments. Pour cette raison, lorsqu’un microbiome est désorganisé – par exemple à cause d’une mauvaise alimentation, de maladies infectieuses, de médicaments ou de facteurs environnementaux – cela peut avoir un effet d’entraînement sur notre santé. Des microbiomes malsains ont été associés au cancer, aux maladies cardiaques et pulmonaires, à l’inflammation et aux maladies inflammatoires de l’intestin. On pense même que les microbes régulent l’axe intestin-cerveau, une autoroute de communication qui relie le cerveau au système nerveux entérique, qui contrôle les intestins. Aujourd’hui, la médecine cible de plus en plus les microbiomes pour traiter diverses maladies. Par exemple, les greffes fécales contenant un microbiote sain sont parfois utilisées pour traiter des infections bactériennes graves du côlon.


Malgré une accélération de la recherche sur le microbiome au cours des dernières décennies, qui a donné naissance à de nouvelles technologies génomiques puissantes, de nombreuses questions fondamentales restent sans réponse complète. Comment acquérons-nous le microbiote et comment la communauté évolue-t-elle tout au long de notre vie ? Quel est l’impact des différents environnements et modes de vie sur le microbiome ? Comment le microbiome peut-il provoquer ou être utilisé pour traiter des maladies ? Ces questions et bien d’autres alimentent la recherche biologique et nous aident à mieux comprendre qui et ce qui fait de nous ce que nous sommes.

Quoi de neuf et remarquable

D’où vient notre microbiome ? Plusieurs études réalisées au cours de la dernière année ont donné des indications. Les bébés acquièrent la plupart de leurs microbes de leur mère à la naissance et dans les mois qui suivent. Mais il s’avère que les mères ne partagent pas seulement des organismes microbiens avec leurs bébés, elles partagent également des gènes microbiens. Dans une étude de 2022 publiée dans Cell , des scientifiques ont révélé que de courtes séquences d'ADN appelées éléments mobiles peuvent passer des bactéries de la mère aux bactéries du bébé, même des mois après la naissance. Comme je l'ai déjà signalé dans  Quanta , il est probable que ces gènes pourraient aider à développer un microbiome intestinal plus performant chez le bébé, ce qui pourrait à son tour développer davantage son système immunitaire.

La transmission ne se produit pas seulement à la naissance. En fait, les microbiomes sont incroyablement dynamiques et peuvent changer radicalement au cours de la vie d’une personne. Dans un article de Quanta publié l’année dernière, j’ai rendu compte de l’analyse mondiale la plus complète de la transmission du microbiome à ce jour. À l’aide de nouveaux outils génomiques, une équipe de biologistes italiens a retracé plus de 800 000 souches de microbes entre familles, colocataires, voisins et villages dans 20 pays. Ils ont découvert que les microbes sautent beaucoup entre les personnes, en particulier entre les conjoints et les colocataires, qui passent beaucoup de temps ensemble. Ces résultats suggèrent que certaines maladies qui ne sont pas considérées comme contagieuses pourraient avoir un aspect contagieux si elles impliquent le microbiome. Cependant, cette idée est spéculative et sera sûrement débattue et étudiée dans les années à venir.

Les connaissances sur la manière dont nous acquérons le microbiome et son impact sur notre corps ne proviennent pas uniquement d’études réalisées sur des humains. D’autres animaux possèdent également des microbiomes essentiels à leur santé et à leur développement – ​​et plusieurs études récentes ont établi des liens entre les microbes intestinaux et le cerveau. En 2019, Quanta a signalé que le comportement de peur diffère entre les souris ayant des microbiomes différents, et en 2022, nous avons rendu compte de la manière dont les microbiomes influencent les compétences sociales et la structure cérébrale du poisson zèbre.




Auteur: Internet

Info: https://www.quantamagazine.org/ - 11 03 2024 - Yasemin Saplakogku. *Pour préciser : Le terme microbiote est suivi du nom de l'environnement dans lequel il se trouve. Par exemple, le « microbiote intestinal » fait référence au microbiote présent dans les voies intestinales. Le microbiome fait référence à l'ensemble des gènes hébergés par des micro-organismes, ce que l'on appelle le théâtre d'activité.

[ orchestre invisible du corps ] [ Des bactéries aux organes ]

 

Commentaires: 0

Ajouté à la BD par miguel

biochimie

La découverte d'une nouvelle activité électrique au sein des cellules pourrait modifier la façon dont les chercheurs envisagent la chimie biologique.

Le corps humain est fortement tributaire des charges électriques. Des impulsions d'énergie semblables à des éclairs traversent le cerveau et les nerfs, et la plupart des processus biologiques dépendent des ions électriques qui voyagent à travers les membranes de chaque cellule de notre corps.

Ces signaux électriques sont possibles, en partie, en raison d'un déséquilibre entre les charges électriques présentes de part et d'autre d'une membrane cellulaire. Jusqu'à récemment, les chercheurs pensaient que la membrane était un élément essentiel pour créer ce déséquilibre. Mais cette idée a été bouleversée lorsque des chercheurs de l'université de Stanford ont découvert qu'un déséquilibre similaire des charges électriques pouvait exister entre des microgouttelettes d'eau et d'air.

Aujourd'hui, des chercheurs de l'université Duke ont découvert que ces types de champs électriques existent également à l'intérieur et autour d'un autre type de structure cellulaire appelée condensats biologiques. Comme des gouttelettes d'huile flottant dans l'eau, ces structures existent en raison de différences de densité. Elles forment des compartiments à l'intérieur de la cellule sans avoir besoin de la limite physique d'une membrane.

Inspirés par des recherches antérieures démontrant que les microgouttelettes d'eau interagissant avec l'air ou des surfaces solides créent de minuscules déséquilibres électriques, les chercheurs ont décidé de voir s'il en était de même pour les petits condensats biologiques. Ils ont également voulu voir si ces déséquilibres déclenchaient des réactions d'oxygène réactif, "redox"*comme dans ces autres systèmes.

Publiée le 28 avril dans la revue Chem, leur découverte fondamentale pourrait changer la façon dont les chercheurs envisagent la chimie biologique. Elle pourrait également fournir un indice sur la manière dont les premières formes de vie sur Terre ont exploité l'énergie nécessaire à leur apparition.

"Dans un environnement prébiotique sans enzymes pour catalyser les réactions, d'où viendrait l'énergie ?" s'interroge Yifan Dai, chercheur postdoctoral à Duke travaillant dans le laboratoire d'Ashutosh Chilkoti, professeur émérite d'ingénierie biomédicale.

"Cette découverte fournit une explication plausible de l'origine de l'énergie de réaction, tout comme l'énergie potentielle communiquée à une charge ponctuelle placée dans un champ électrique", a déclaré M. Dai.

Lorsque des charges électriques passent d'un matériau à un autre, elles peuvent produire des fragments moléculaires qui peuvent s'apparier et former des radicaux hydroxyles, dont la formule chimique est OH. Ceux-ci peuvent ensuite s'apparier à nouveau pour former du peroxyde d'hydrogène (H2O2) en quantités infimes mais détectables.

"Mais les interfaces ont rarement été étudiées dans des régimes biologiques autres que la membrane cellulaire, qui est l'une des parties les plus essentielles de la biologie", a déclaré M. Dai. "Nous nous sommes donc demandé ce qui pouvait se passer à l'interface des condensats biologiques, c'est-à-dire s'il s'agissait également d'un système asymétrique.

Les cellules peuvent construire des condensats biologiques pour séparer ou piéger certaines protéines et molécules, afin d'entraver ou de favoriser leur activité. Les chercheurs commencent à peine à comprendre comment fonctionnent les condensats** et à quoi ils pourraient servir.

Le laboratoire de Chilkoti étant spécialisé dans la création de versions synthétiques de condensats biologiques naturels, les chercheurs ont pu facilement créer un banc d'essai pour leur théorie. Après avoir combiné la bonne formule d'éléments constitutifs pour créer des condensats minuscules, avec l'aide de Marco Messina, chercheur postdoctoral dans le groupe de Christopher J. Chang, les chercheurs ont pu créer un banc d'essai pour leur théorie. Christopher J. Chang à l'université de Californie-Berkeley, ils ont ajouté au système un colorant qui brille en présence d'espèces réactives de l'oxygène.

Leur intuition était la bonne. Lorsque les conditions environnementales étaient réunies, une lueur solide est apparue sur les bords des condensats, confirmant qu'un phénomène jusqu'alors inconnu était à l'œuvre. Dai s'est ensuite entretenu avec Richard Zare, professeur de chimie à Stanford (Marguerite Blake Wilbur), dont le groupe a établi le comportement électrique des gouttelettes d'eau. Zare a été enthousiasmé par le nouveau comportement des systèmes biologiques et a commencé à travailler avec le groupe sur le mécanisme sous-jacent.

"Inspirés par des travaux antérieurs sur les gouttelettes d'eau, mon étudiant diplômé, Christian Chamberlayne, et moi-même avons pensé que les mêmes principes physiques pourraient s'appliquer et favoriser la chimie redox, telle que la formation de molécules de peroxyde d'hydrogène", a déclaré M. Zare. "Ces résultats expliquent pourquoi les condensats sont si importants pour le fonctionnement des cellules.

"La plupart des travaux antérieurs sur les condensats biomoléculaires se sont concentrés sur leurs parties internes", a déclaré M. Chilkoti. "La découverte de Yifan, selon laquelle les condensats biomoléculaires semblent être universellement redox-actifs, suggère que les condensats n'ont pas simplement évolué pour remplir des fonctions biologiques spécifiques, comme on le pense généralement, mais qu'ils sont également dotés d'une fonction chimique essentielle pour les cellules.

Bien que les implications biologiques de cette réaction permanente au sein de nos cellules ne soient pas connues, Dai cite un exemple prébiotique pour illustrer la puissance de ses effets. Les centrales de nos cellules, appelées mitochondries, créent de l'énergie pour toutes les fonctions de notre vie grâce au même processus chimique de base. Mais avant que les mitochondries ou même les cellules les plus simples n'existent, il fallait que quelque chose fournisse de l'énergie pour que la toute première fonction de la vie puisse commencer à fonctionner.

Des chercheurs ont proposé que l'énergie soit fournie par des sources thermales dans les océans ou des sources d'eau chaude. D'autres ont suggéré que cette même réaction d'oxydoréduction qui se produit dans les microgouttelettes d'eau a été créée par les embruns des vagues de l'océan.

Mais pourquoi pas par des condensats ?

"La magie peut opérer lorsque les substances deviennent minuscules et que le volume interfacial devient énorme par rapport à leur volume", a déclaré M. Dai. "Je pense que les implications sont importantes pour de nombreux domaines.

Auteur: Internet

Info: https://phys.org/news/2023-04, from Ken Kingery, Université de Duke. *réactions d'oxydoréduction. **les condensats biomoléculaires sont des compartiments cellulaires qui ne sont pas délimités par une membrane, mais qui s'auto-assemblent et se maintiennent de façon dynamique dans le contexte cellulaire

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

interdépendances

La première idée de Gaïa naît donc du raisonnement suivant  : "Si les humains actuels, par leur industrie, peuvent répandre partout sur Terre des produits chimiques que je détecte par mes instruments, il est bien possible que toute la biochimie terrestre soit, elle aussi, le produit des organismes vivants. Si les humains modifient si radicalement leur environnement en si peu de temps, alors les autres vivants peuvent l’avoir fait, eux aussi, sur des centaines de millions d’années." La Terre est bel et bien une sorte de technosphère artificiellement conçue dont les vivants seraient les ingénieurs aussi aveugles que les termites. Il faut être ingénieur et inventeur comme Lovelock pour comprendre cette intrication.

Gaïa n’a donc rien d’une idée New Age sur l’équilibre millénaire de la Terre, mais émerge au contraire d’une situation industrielle et technologique très particulière : une violente rupture technologique, mêlant la conquête de l’espace, la guerre nucléaire et la guerre froide, que l’on résume désormais par le terme d’ "anthropocène" et qui s’accompagne d’une rupture culturelle symbolisée par la Californie des années 1960. Drogue, sexe, cybernétique, conquête spatiale, guerre du Vietnam, ordinateurs et menace nucléaire, c’est la matrice où naît l’hypothèse Gaïa : dans la violence, l’artifice et la guerre. Toutefois le trait le plus étonnant de cette hypothèse est qu’elle tient au couplage de deux analyses diamétralement opposées. L’analyse de Lovelock imagine la Terre vue de Mars comme un système cybernétique. Et celle de Lynn Margulis regarde la planète par l’autre bout de la lorgnette, à partir des plus minuscules et des plus anciens des organismes vivants.

A l’époque, dans les années 1970, Margulis est l’exemple typique de ce que les Anglais appellent une maverick : une dissidente qui secoue les néodarwiniens alors en plein essor. L’évolution, dans leur esprit, suppose l’existence d’organismes suffisamment séparables les uns des autres pour qu’on leur attribue un degré de réussite inférieur ou supérieur aux autres. Or Margulis conteste l’existence même d’individus séparables : une cellule, une bactérie ou un humain. Pour la simple et excellente raison qu’ils sont "tous entrelacés", comme l’indique le titre d’un livre récent.

Une cellule est une superposition d’êtres indépendants, de même que notre organisme dépend non seulement de nos gènes, mais de ceux des bestioles infiniment plus nombreuses qui occupent notre intestin et couvrent notre peau. Il y a bien évolution, mais sur quel périmètre porte celle-ci et quels sont les participants entrelacés qui en tirent profit, voilà qui n'est pas calculable. Les gènes ont beau être "égoïstes", comme l’avançait naguère Richard Dawkins, le problème est qu’ils ne savent pas où s’arrête exactement leur ego ! Chose intéressante, plus le temps passe, plus les découvertes de Margulis prennent de l’importance, au point qu’elle s’approche aujourd’hui de l’orthodoxie grâce à l’extension foudroyante du concept de holobionte, terme qui résume à lui seul la superposition des vivants pliés les uns dans les autres.

Que se passe-t-il quand on combine l’intuition de Lovelock avec celle de Margulis ? Au cours du séminaire auquel je participe le lendemain avant que la neige ne vienne ensevelir le sud de l’Angleterre, la réponse m’apparaît assez clairement : la théorie Gaïa permet de saisir les "puissances d’agir" de tous les organismes entremêlés sans aussitôt les intégrer dans un tout qui leur serait supérieur et auquel ils obéiraient. En ce sens, et malgré le mot "système", Gaïa n’agit pas de façon systématique, en tout cas ce n'est pas un système unifié. Comme Lenton le démontre, selon les échelles d’espace et de temps, la régulation est très forte ou très lâche : l’homéostasie d’un organisme et la régulation plutôt erratique du climat ne sont pas du même type. C’est que la Terre n'est pas un organisme. Contrairement à tous les vivants, elle se nourrit d’elle-même en quelque sorte, par un recyclage continu avec très peu d’apport extérieur de matière (en dehors bien sûr de l’énergie solaire). On ne peut même pas dire que Gaïa soit synonyme du globe ou du monde naturel puisque, après tout, les vivants, même après plusieurs milliards d’années d’évolution, ne contrôlent qu’une mince pellicule de la Terre, une sorte de biofilm, ce que les chercheurs avec qui je travaille maintenant appellent "zones critiques".

Je comprends alors les erreurs commises dans l’interprétation de la théorie Gaïa par ceux qui l’ont rejetée trop vite comme par ceux qui l’ont embrassée avec trop d’enthousiasme : les premiers autant que les seconds ont projeté une figure de la Terre, du globe, de la nature, de l’ordre naturel, sans prendre en compte le fait qu’il s’agissait d’un objet unique demandant une révision générale des conceptions scientifiques.

Ah mais alors j’avais bien raison d’établir un parallèle avec Galilée ! Bloqué sous ma couette en attendant qu’il pleuve assez pour que les Anglais osent se risquer hors de chez eux, je comprenais cette phrase étonnante de Lovelock : "L’hypothèse Gaïa a pour conséquence que la stabilité de notre planète inclut l’humanité comme une partie ou un partenaire au sein d’un ensemble parfaitement démocratique." Je n’avais jamais compris cette allusion à la démocratie chez un auteur qui ne la défendait pas particulièrement. C’est qu’il ne s’agit pas de la démocratie des humains mais d’un renversement de perspective capital pour la suite.

Avant Gaïa, les habitants des sociétés industrielles modernes, quand ils se tournaient vers la nature, y voyaient le domaine de la nécessité, et, quand ils considéraient la société, ils y voyaient, pour parler comme les philosophes, le domaine de la liberté. Mais, après Gaïa, il n’y a plus littéralement deux domaines distincts : aucun vivant, aucun animé n’obéit à un ordre supérieur à lui et qui le dominerait ou auquel il lui suffirait de s’adapter – cela est vrai des bactéries comme des lions ou des sociétés humaines. Cela ne veut pas dire que tous les vivants soient libres au sens un peu simplet de l’individualisme puisqu’ils sont entrelacés, pliés, intriqués les uns dans les autres. Cela veut dire que la question de la liberté et de la dépendance vaut autant pour les humains que pour les partenaires du ci-devant monde naturel.

Galilée avait inventé un monde d’objets, posés les uns à côté des autres sans s’influencer et entièrement soumis aux lois de la physique. Lovelock et Margulis dessinent un monde d’agents qui interagissent sans cesse entre eux.

Auteur: Latour Bruno

Info: L’OBS/N°2791-03/05/2018

[ interactions ] [ redistribution des rôles ]

 
Commentaires: 2
Ajouté à la BD par miguel

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

neurologie

Construire de meilleures cartes mentales

Des techniques innovantes d'analyse de la fonction et de la structure cérébrales révèlent des détails remarquables de l'architecture neuronale, offrant ainsi de nouvelles pistes pour le diagnostic et le traitement des maladies cérébrales.

Bien que le cerveau humain soit un objet de fascination scientifique depuis des siècles, nous ne faisons qu'effleurer la surface en termes de compréhension de sa fonctionnalité et de sa complexité. Nous connaissons bien les zones fonctionnelles générales du cerveau, mais la manière dont ce réseau interconnecté de neurones traite et transmet les informations pour donner naissance à la pensée et à la mémoire reste un domaine de recherche très actif.

L'étude du fonctionnement du cerveau au niveau physiologique fondamental est l'un des domaines de recherche les plus difficiles, nécessitant de nouvelles méthodes d'expérimentation et de détection de l'activité cérébrale à l'échelle neuronale. Les progrès récents des techniques d'imagerie cérébrale et la compréhension de la structure fine du cerveau ont permis d'explorer les fonctions cérébrales d'une nouvelle manière. Ces découvertes ont des répercussions sur la santé du cerveau et l'intelligence artificielle.

Cerveau/ESPRITS et au-delà

Les projets japonais Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) et Strategic International Brain Science Research Promotion Program (Brain/MINDS Beyond), qui font partie de plusieurs projets nationaux de recherche à grande échelle sur le cerveau lancés ces dernières années dans le monde entier, visent à étudier les circuits neuronaux qui sous-tendent les fonctions cérébrales supérieures. Il s'agit d'initiatives nationales auxquelles participent des dizaines d'institutions, chacune spécialisée dans un domaine particulier de l'étude du cerveau.

L'étude des primates non humains à l'Université de Tokyo et à l'Institut national des sciences et technologies quantiques (QST) est un domaine qui apporte de nouvelles connaissances sur l'architecture du cerveau.

"Lorsqu'il s'agit de comprendre le cerveau humain et les troubles qui peuvent l'affecter, seuls les autres primates partagent nos fonctions supérieures, telles qu'un cortex visuel hiérarchisé et un cortex préfrontal hautement développé responsable de la fonction exécutive et de la prise de décision", explique Takafumi Minamimoto, qui dirige le groupe des systèmes et circuits neuronaux du département d'imagerie cérébrale fonctionnelle de l'Institut national des sciences et technologies quantiques.

"La recherche sur le cerveau des primates est difficile et coûteuse, mais indispensable. Elle nous permet de mieux comprendre le fonctionnement du cerveau, ce qui peut nous aider à comprendre et à traiter les troubles cérébraux chez l'homme".

L'équipe de Minamimoto se concentre sur le développement de méthodes plus précises d'analyse des fonctions cérébrales. Leur plus grande réussite a été la mise au point d'une méthode chimiogénétique pour désactiver l'activité cérébrale au niveau d'un neurone unique, combinée à la tomographie par émission de positrons (TEP) - une technique d'imagerie pour des molécules spécifiques. Cela a permis de visualiser non seulement l'activité des neurones des primates, mais aussi leur connexion avec d'autres zones du cerveau.

"Avec la chimiogénétique, nous injectons une solution virale inoffensive dans une zone spécifique du cerveau pour modifier génétiquement les neurones afin de les rendre sensibles à un produit chimique suppresseur", explique Minamimoto. "Nous pouvons ensuite injecter le suppresseur afin d'éteindre les neurones modifiés pendant plusieurs heures".

L'équipe a récemment mis au point un produit chimique suppresseur 100 fois plus efficace, ce qui lui permet d'injecter de minuscules doses de ce suppresseur pour affecter sélectivement des groupes individuels de neurones et leurs connexions axonales. Ils ont utilisé cette technique pour réduire au silence des connexions spécifiques afin de découvrir les circuits responsables de la mémoire de travail et de la prise de décision.

Cette approche est également prometteuse pour le traitement des troubles cérébraux chez l'homme. Par exemple, comme modèle potentiel de traitement chez l'homme, le groupe a récemment rapporté que la chimiogénétique peut supprimer les crises d'épilepsie chez les macaques.

Le système visuel

Une autre équipe, située à l'université de Tokyo et dirigée par Kenichi Ohki, étudie la manière dont les informations visuelles sont traitées chez les primates, dont le cortex visuel est très développé et hiérarchisé. Les recherches du groupe sur les ouistitis utilisent une technique d'imagerie calcique à haute sensibilité qui permet de visualiser la façon dont des parties spécifiques du cerveau réagissent à différents stimuli.

"L'imagerie au calcium est une technique utilisée depuis longtemps pour observer le fonctionnement du cerveau chez les souris, mais elle n'était pas assez sensible pour visualiser des groupes discrets de neurones chez les primates avec la même qualité que chez les souris", explique M. Ohki. "En collaboration avec Tetsuo Yamamori du RIKEN, nous avons mis au point une méthode améliorée qui a augmenté de manière significative l'expression de la protéine fluorescente GCaMP6 dans le cerveau des primates, ce qui, combiné à l'imagerie à deux photons basée sur le laser, nous permet de visualiser l'activité des neurones avec une étonnante précision dans des détails.

Le système visuel représente plus de la moitié du cortex cérébral chez les primates et se constitue vie une hiérarchie élaborée d'étapes de traitement de l'information. Il existe des zones distinctes qui traitent les motifs et les angles, par exemple, et les recherches d'Ohki ont montré que les neurones se déclenchent selon des schémas coordonnés sensibles à ces différents stimuli, avec des fonctionnalités différentes au niveau cellulaire.

"L'une des conclusions fascinantes de nos travaux est que la hiérarchie du système visuel semble traiter le bruit dans une direction opposée à celle dont les réseaux neuronaux artificiels traitent généralement les stimuli sonores", explique Ohki. "Il serait intéressant de construire un réseau neuronal artificiel qui permette une telle méthode de traitement du bruit dans le système visuel des primates.

Le groupe de recherche d'Ohki étudie en détail la façon dont le bruit est traité dans ces connexions cortico-corticales, qui semblent fondamentales pour le fonctionnement du cerveau chez les primates. Ces connexions peuvent également expliquer la plasticité du cerveau et la façon dont différentes zones peuvent être enrôlées pour le traitement de l'information si la connexion primaire est entravée.

"Par exemple, nous avons découvert que le développement du système visuel se produit chez le nouveau-né à la suite d'une activité ondulatoire à travers la rétine, qui stimule les connexions thalamo-corticales qui construisent cette structure hiérarchique", explique Ohki4.

Sans ces stimuli, les connexions ne peuvent pas se développer du cortex visuel primaire vers le cortex visuel supérieur. Par ailleurs, si ces connexions ne se développent pas, on peut s'attendre à ce que des connexions alternatives soient établies à partir d'autres zones, telles que le cortex somatosensoriel, vers le cortex visuel supérieur. Ohki suggère que cela pourrait également expliquer comment les patients aveugles utilisent le cortex visuel pour "lire" le braille, bien qu'il s'agisse d'une fonction tactile.

"Les résultats de nos études sur les primates fournissent des indications précieuses sur les troubles neuropsychiatriques humains, en particulier ceux qui sont liés à une mauvaise communication dans le cerveau. Nos techniques seront utiles pour orienter la recherche spécifique et transposer les connaissances des primates à l'homme", déclare M. Minamimoto.

"Nous espérons partager ces connaissances et cette technologie avec le monde entier et collaborer avec d'autres groupes pour faire avancer ce domaine important de la recherche sur le cerveau.

Auteur: Internet

Info: https://www.nature.com, article publicitaire, Réf : Nagai, Y. et al. Nat. Comm. 7, 13605 (2016), Neuro. 23, 1157-1167 (2020), Miyakawa, N. et al. Nat 608, 578-585 (2022). Comm. 14, 971 (2023)

[ visualisation ] [ primatocentrisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

machine-homme

Les algorithmes traditionnels alimentent des outils de calcul compliqués comme l'apprentissage automatique (machine learning). Une nouvelle approche, appelée algorithmes avec prédictions, utilise la puissance de l'apprentissage automatique pour améliorer les algorithmes.

Les algorithmes - morceaux de code qui permettent aux programmes de trier, filtrer et combiner des données, entre autres choses - sont les outils standard de l'informatique moderne. Tels de minuscules engrenages dans une montre, les algorithmes exécutent des tâches bien définies au sein de programmes plus complexes.

Ils sont omniprésents, et c'est en partie pour cette raison qu'ils ont été minutieusement optimisés au fil du temps. Lorsqu'un programmeur doit trier une liste, par exemple, il se sert d'un algorithme de "tri" standard utilisé depuis des décennies.

Aujourd'hui, des chercheurs jettent un regard neuf sur les algorithmes traditionnels, en utilisant la branche de l'IA , donc du machine learning. Leur approche, appelée "algorithmes avec prédictions", tire parti des informations que les outils d'apprentissage automatique peuvent fournir sur les données traitées par les algorithmes traditionnels. Ces outils doivent, en quelque sorte, rajeunir la recherche sur les algorithmes de base.

L'apprentissage automatique et les algorithmes traditionnels sont "deux façons très différentes de calculer, et les algorithmes avec prédictions sont un moyen de les rapprocher", a déclaré Piotr Indyk, informaticien au Massachusetts Institute of Technology. "C'est un moyen de combiner ces deux fils conducteurs assez différents".

La récente explosion d'intérêt pour cette approche a commencé en 2018 avec un article de Tim Kraska, informaticien au MIT, et d'une équipe de chercheurs de Google. Dans cet article, les auteurs ont suggéré que l'apprentissage automatique pourrait améliorer un algorithme traditionnel bien étudié appelé filtre de Bloom, qui résout un problème simple mais aussi complexe et ardu.

Imaginez que vous dirigez le service informatique de votre entreprise et que vous devez vérifier si vos employés se rendent sur des sites web présentant un risque pour la sécurité. Naïvement, vous pourriez penser que vous devez vérifier chaque site qu'ils visitent en le comparant à une liste noire de sites connus. Si la liste est énorme (comme c'est probablement le cas pour les sites indésirables sur Internet), le problème devient lourd - on ne peut vérifier chaque site par rapport à une liste énorme dans le minuscule lapts de temps qui précède le chargement d'une page Internet.

Le filtre Bloom offre une solution, en permettant de vérifier rapidement et précisément si l'adresse d'un site particulier, ou URL, figure sur la liste noire. Pour ce faire, il comprime essentiellement l'énorme liste en une liste plus petite qui offre certaines garanties spécifiques.

Les filtres Bloom ne produisent jamais de faux négatifs : s'ils disent qu'un site est mauvais, il est mauvais. Cependant, ils peuvent produire des faux positifs, de sorte que vos employés ne pourront peut-être pas visiter des sites auxquels ils devraient avoir accès. Cela s'explique par le fait qu'ils s'agit d'une forme d'échange qui implique une certaine imprécision due à cette énorme quantité de données compressées -  astuce intitulée "compression avec perte". Plus les filtres Bloom compriment les données d'origine, moins ils sont précis, mais plus ils économisent de l'espace.

Pour un simple filtre Bloom, chaque site Web est également suspect jusqu'à confirmaton qu'il ne figure pas sur la liste. Mais tous les sites Web ne sont pas égaux : Certains ont plus de chances que d'autres de se retrouver sur une liste noire, simplement en raison de détails comme leur domaine ou les mots de leur URL. Les gens comprennent cela intuitivement, et c'est pourquoi vous lisez probablement les URL pour vous assurer qu'elles sont sûres avant de cliquer dessus.

L'équipe de Kraska a mis au point un algorithme qui peut également appliquer ce type de logique. Ils l'ont appelé "filtre de Bloom instruit" et il combine un petit filtre de Bloom avec un réseau neuronal récurrent (RNN), modèle de machine learning qui apprend à quoi ressemblent les URL malveillantes après avoir été exposées à des centaines de milliers de sites web sûrs et non sûrs.

Lorsque le filtre Bloom vérifie un site web, le RNN agit en premier et utilise son apprentissage pour déterminer si le site figure sur la liste noire. Si le RNN indique que le site figure sur la liste, le filtre Bloom appris le rejette. Mais si le RNN dit que le site n'est pas sur la liste, alors le petit filtre Bloom peut à son tour, faire une recherche précise, mais irréfléchie, dans ses sites compressés.

En plaçant le filtre Bloom à la fin du processus et en lui donnant le dernier mot, les chercheurs ont fait en sorte que les filtres Bloom instruits puissent toujours garantir l'absence de faux négatifs. Mais comme le RNN préfiltre les vrais positifs à l'aide de ce qu'il a appris, le petit filtre de Bloom agit davantage comme une sauvegarde, en limitant également ses faux positifs au minimum. Un site Web bénin qui aurait pu être bloqué par un filtre Bloom de plus grande taille peut désormais passer outre le "filtre Bloom iinstruit" plus précis. En fait, Kraska et son équipe ont trouvé un moyen de tirer parti de deux méthodes éprouvées, mais traditionnellement distinctes, d'aborder le même problème pour obtenir des résultats plus rapides et plus précis.

L'équipe de Kraska a démontré que la nouvelle approche fonctionnait, mais elle n'a pas formellement expliqué pourquoi. Cette tâche a été confiée à Michael Mitzenmacher, spécialiste des filtres de Bloom à l'université de Harvard, qui a trouvé l'article de Kraska "novateur et passionnant", mais aussi fondamentalement insatisfaisant. "Ils font des expériences en disant que leurs algorithmes fonctionnent mieux. Mais qu'est-ce que cela signifie exactement ?" a-t-il demandé. "Comment le savons-nous ?"

En 2019, Mitzenmacher a proposé une définition formelle d'un filtre de Bloom INSTRUIT et a analysé ses propriétés mathématiques, fournissant une théorie qui explique exactement comment il fonctionne. Et alors que Kraska et son équipe ont montré que cela pouvait fonctionner dans un cas, Mitzenmacher a prouvé que cela pouvait toujours fonctionner.

Mitzenmacher a également amélioré les filtres de Bloom appris. Il a montré que l'ajout d'un autre filtre de Bloom standard au processus, cette fois avant le RNN, peut pré-filtrer les cas négatifs et faciliter le travail du classificateur. Il a ensuite prouvé qu'il s'agissait d'une amélioration en utilisant la théorie qu'il a développée.

Les débuts des algorithmes avec prédiction ont suivi ce chemin cyclique : des idées novatrices, comme les filtres de Bloom appris, inspirent des résultats mathématiques rigoureux et une compréhension, qui à leur tour conduisent à d'autres idées nouvelles. Au cours des dernières années, les chercheurs ont montré comment intégrer les algorithmes avec prédictions dans les algorithmes d'ordonnancement, la conception de puces et la recherche de séquences d'ADN.

Outre les gains de performance, ce domaine fait également progresser une approche de l'informatique de plus en plus populaire : rendre les algorithmes plus efficaces en les concevant pour des utilisations typiques.

À l'heure actuelle, les informaticiens conçoivent souvent leurs algorithmes pour qu'ils réussissent dans le scénario le plus difficile, celui conçu par un adversaire qui tente de les faire échouer. Par exemple, imaginez que vous essayez de vérifier la sécurité d'un site web sur les virus informatiques. Le site est peut-être inoffensif, mais il contient le terme "virus informatique" dans l'URL et le titre de la page. La confusion est telle que même les algorithmes les plus sophistiqués ne savent plus où donner de la tête.

Indyk appelle cela une approche paranoïaque. "Dans la vie réelle, dit-il, les entrées ne sont généralement pas générées par des adversaires." La plupart des sites Web que les employés visitent, par exemple, ne sont pas aussi compliqués que notre hypothétique page de virus, et il est donc plus facile pour un algorithme de les classer. En ignorant les pires scénarios, les chercheurs peuvent concevoir des algorithmes adaptés aux situations qu'ils sont susceptibles de rencontrer. Par exemple, alors qu'à l'heure actuelle, les bases de données traitent toutes les données de la même manière, les algorithmes avec prédiction pourraient conduire à des bases de données qui structurent le stockage de leurs données en fonction de leur contenu et de leur utilisation.

Et ce n'est encore qu'un début, car les programmes qui utilisent l'apprentissage automatique pour améliorer leurs algorithmes ne le font généralement que de manière limitée. Comme le filtre de Bloom, la plupart de ces nouvelles structures n'intègrent qu'un seul élément d'apprentissage automatique. M. Kraska imagine un système entier construit à partir de plusieurs pièces distinctes, dont chacune repose sur des algorithmes avec des prédictions et dont les interactions sont régulées par des composants améliorés par les prédictions.

"Tirer parti de cela aura un impact sur de nombreux domaines".

Gageons qu'avec de tels systèmes, un site comme FLP se retrouve à peu près certain de ne jamais être accepté par un filtre de Bloom - ou un filtre de Bloom instruit. Qui sont - objectivement - des instruments de contrôle, et donc de fermeture.  (Note du traducteur).

Auteur: Internet

Info: Nick Thieme, https://www.quantamagazine.org, A I, Machine Learning Reimagines the Building Blocks of Computing, March 15, 2022. Trad Mg

[ censure numérique ] [ triage web ] [ citation s'appliquant à ce logiciel ]

 

Commentaires: 0

Ajouté à la BD par miguel

indéterminisme

L'essor des thérapies quantiques
Basée sur les découvertes de la physique quantique, une nouvelle façon de se soigner fait de plus en plus parler d'elle. Son postulat : nos cellules émettent des informations, qui déterminent notre état de santé et sur lesquelles il est possible d'agir. Explications.
"Il y a dix ans, on m'a diagnostiqué un lupus érythémateux, une maladie auto-immune chronique, raconte Lucia, une artiste de 50 ans. Depuis, suivie à l'hôpital, j'en étais arrivée à prendre onze médicaments par jour... Il y a six mois, un ami est venu me voir bouleversé après avoir essayé une nouvelle technique de soin qui, disait-il, n'avait rien à voir ni avec la médecine conventionnelle, ni avec les médecines naturelles. Une "machine" donnait des résultats dont l'exactitude l'avait dérouté. Je suis cartésienne et je n'ai pas peur des expériences nouvelles. J'ai donc consulté un thérapeute qui utilise cet appareil de biofeedback. En quelques minutes, l'écran a affiché clairement tout mon parcours médical ! Puis cette machine a effectué un traitement très étrange, consistant à envoyer des "informations" dans le corps. Après quelques séances, la plupart de mes symptômes ont disparu et, aujourd'hui, avec l'accord de mon médecin, je ne prends plus qu'un médicament par jour."
Un diagnostic global
Un appareil capable d'effectuer un diagnostic précis et de traiter aussi rapidement une maladie auto-immune ? Si un cas ne vaut pas pour tous, les résultats sont étonnants. Et ce n'est qu'un des aspects de cette approche de la santé physique et psychique, qui se répand au point que certains médecins et chercheurs n'hésitent plus à dire qu'un changement de paradigme est en train de s'opérer. Le premier congrès sur les thérapies quantiques d'Aix-en- Provence, en novembre 2010, a réuni des scientifiques du monde entier, parmi lesquels l'équipe du professeur Luc Montagnier, prix Nobel de médecine 2008. Depuis, les livres sur le sujet, les congrès affichant complets, les appareils de biofeedback ou les méthodes quantiques se multiplient...
Les "thérapies quantiques", ou la "médecine quantique", nous demandent de voir la vie, la santé et la maladie d'une tout autre façon : notre corps n'est plus un assemblage d'organes à traiter séparément, comme le fait la médecine conventionnelle, c'est un champ vibratoire et énergétique constitué de milliards de particules de lumière - des photons - qui échangent en permanence des informations, un univers lumineux dans lequel l'esprit et la matière ne font qu'un. Avec une idée clé : ce ne sont pas les échanges biochimiques de nos cellules qui déterminent notre état de santé, mais les informations qu'elles se communiquent entre elles. Ici, l'origine de la maladie n'est donc pas un problème purement biologique, mais un défaut d'information ; le symptôme n'est qu'une réaction à ce dernier.
Pour celui qui ne connaît pas le monde scientifique, l'idée peut sembler délirante. Pourtant, elle repose sur des dizaines d'années de recherches, commencées il y a un siècle avec Albert Einstein et ses travaux sur la nature de la lumière. Au fil des décennies, la physique quantique - qui décrit le comportement des atomes et des particules subatomiques - s'est développée en marge de la physique classique, car elle ne répond pas aux mêmes règles. La plus importante, pour comprendre le fondement de la médecine quantique : les ondes électromagnétiques sont en même temps des photons. Ces photons du corps humain sont loin d'être des vues de l'esprit : au cours des années 1970, Fritz-Albert Popp, un biophysicien allemand, a découvert l'existence de ce qu'il a appelé les " bi photons ", des particules de lumière émises par nos cellules, qu'il a réussi à filmer. Ces minuscules courants lumineux, invisibles à l'oeil nu, portent les informations et contrôlent notre organisme. Mais pas n'importe comment.
Des capacités d'auto guérison stimulées
L'une des découvertes les plus importantes de la physique quantique, reprise et développée dans la thérapie quantique, est, en effet, la théorie des "champs énergétiques" : ce sont eux qui organisent et contrôlent notre corps. Ils forment un tout. En somme, le corps humain est une structure organisée d'informations. Ce que les Chinois ont compris depuis longtemps avec l'acupuncture, qui traite les flux d'énergie du corps ; ou les Indiens, avec leur médecine ayurvédique qui traite le "corps de lumière" et ses chakras...
Les appareils de biofeedback quantiques sont conçus pour détecter les ondes électromagnétiques, les " fréquences " émises par chacune des cellules de notre corps. Lorsque certaines sont brouillées ou " fausses ", l'appareil renvoie des fréquences " justes " afin de corriger le problème. Imaginez que vous ayez un coup de déprime. Vous appelez votre meilleur ami. Ses paroles rassurantes vous remontent le moral et vous retrouvez assez d'énergie pour reprendre le cours normal de votre vie. L'aide reçue n'est pas " physique ", mais vient des mots réconfortants. Or ce flot d'informations vous a été transmis par les fréquences du téléphone. Voilà, de manière imagée, comment fonctionnent les appareils de médecine quantique : ils envoient des ondes extrêmement fines qui " parlent " à nos cellules et leur transmettent des informations, elles-mêmes portées par les photons. Pour reprendre la métaphore, on pourrait dire que les fréquences sont les phrases réconfortantes de votre ami ; et les photons, les mots, avec leur sens.
Si la thérapie quantique fait usage d'appareils électroniques de plus en plus sophistiqués, comme le Scio, le Korotkov, le Mora ou le Life, cette approche de la médecine n'est pour autant pas mécaniste : les machines ne fonctionnent pas seules. " En "dialoguant" avec notre champ d'informations, ces appareils stimulent nos capacités d'auto guérison, explique la journaliste et conférencière Lynn McTaggart, auteure du Lien quantique (Macro 2012). Mais rien ne peut se faire sans la présence d'un médecin ou d'un thérapeute. " Une interaction d'autant plus importante que cette nouvelle vision de la santé, donc de la vie, implique non seulement une relation entre le corps et l'esprit, mais l'union fondamentale de l'esprit et de la matière.
J'ai testé un appareil de biofeedback
Des électrodes, un écran d'ordinateur, des graphiques... Notre journaliste, Odile Chabrillac, a confié son corps au Scio, une machine destinée à diagnostiquer les défaillances de l'organisme et à rééquilibrer ce dernier.
" Sitôt arrivée dans le cabinet du praticien en biofeedback qui utilise le Scio, l'un des appareils de médecine quantique dont on parle le plus en ce moment, me voilà assise confortablement et harnachée d'électrodes aux chevilles, aux poignets et sur le front. Face à moi, un mur blanc sur lequel est projeté un écran d'ordinateur rempli d'informations et de graphiques. Adrian M., le thérapeute, me soumet d'abord à un questionnaire sur mon âge, mes habitudes d'hygiène de vie, les maladies et opérations passées, mon niveau de stress... Puis, pendant trois minutes, je suis priée de rester la plus détendue possible, car cette machine va envoyer des milliers d'infirmes fréquences dans mon organisme - plus de dix mille !-, comme autant de questions auxquelles chacune de mes cellules et chacun de mes organes devront répondre. Je ne sens rien, juste de légers picotements...
Le Scio fait un bilan très complet, physiologique et émotionnel. Il affiche d'abord des chiffres sur l'énergie, la pression sanguine, l'hydratation, l'oxygénation, le pH, la vitalité et les échanges cellulaires, la capacité de régénération de mon organisme... L'ensemble est plutôt bon, voire très bon. Ouf ! En revanche, il relève que je suis légèrement intoxiquée par certains produits, le chlore en particulier, et que mon niveau de stress est bien trop important. Le thérapeute me montre les graphiques et m'explique que le stress peut avoir un impact sur ma thyroïde, mon système endocrinien, et sur certains lobes cérébraux, avec un risque de maladie d'Alzheimer. Car cette machine évalue aussi les problèmes potentiels de chaque individu.
Adrian M. me rassure : les appareils quantiques sont fondés sur les probabilités, non sur des certitudes absolues : " C'est comme la météo, m'explique-t-il, si l'on nous annonce de la pluie, mieux vaut prendre un parapluie, mais cela ne veut pas dire qu'il pleuvra ! " Pendant près d'une heure, la machine va procéder au traitement, en renvoyant des fréquences justes pour corriger celles qui sont faussées. En somme, elle donne au corps les bonnes réponses aux questions qu'elle a posées. Là encore, je ne sens rien. La séance dure une heure et demie. (Compter 60 € la séance - prix donné à titre indicatif).
Bilan : si mon mode de vie est plutôt sain, je suis capable de m'empoisonner l'existence, au sens littéral du terme, avec mes " prises de tête ". Voilà ce qui est étonnant ici : cet appareil tient autant compte des facteurs physiologiques et biologiques que de mes émotions, de mon état d'esprit mental et moral, de certains problèmes psychologiques. La fin de la séance se conclut par quelques conseils supplémentaires : boire davantage, bouger, pratiquer le yoga si je peux, rythmer mon mode de vie en fonction de la saison. Le Scio suggère quelques remèdes homéopathiques pour optimiser mon état corporel, mon mental et mon énergie. Sortie de la séance enthousiaste et détendue, je me suis sentie épuisée tout l'après-midi et me réveillerai le lendemain matin légèrement courbaturée. Rendez-vous a été pris pour vérifier si mes efforts auront déjà eu un véritable impact sur mon corps et mon esprit.

Auteur: Pigani Erik

Info:

[ psychothérapie ]

 
Mis dans la chaine

Commentaires: 0