Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 17
Temps de recherche: 0.0408s

confirmation céleste

Cette Comète eût pu nous échapper sans doute, passer par son périhélie dans des mois où sa distance à la Terre eût été très-grande, elle pouvoit descendre dans les temps, où enseveli dans les brouillards, le ciel cesse d'exister pour nos yeux, alors nous eussions été réduits à la seule confiance qu'inspire une connoissance approfondie de l'ordre naturel, à une persuasion qu'en vain peut-être nous nous serions efforcés de faire passer dans le Public ; nous eussions vu renaître les questions dans les Colléges, les dédains parmis les ignorans, & les terreurs parmi le Peuple, le retour que nous venons d'annoncer nous affranchit de ces incertitudes ; il met une barrière éternelle entre les hypothèses des tourbillons, dont une Physique naissante s'étaya pour quelques temps, & les heureuses découvertes dont elle s'est accrue depuis ; enfin cette Comète, je ne crains pas de le dire, est venue assurer le triomphe de l'Astronomie & la gloire de l'esprit humain.

Auteur: Lalande Joseph Jérôme Lefrançois de

Info: in "Histoire de l'Académie royale des sciences", 1759

[ science ] [ Halley ] [ aléas ]

 

Commentaires: 0

Ajouté à la BD par Benslama

amitié

5 janvier 1940
Me suis découvert des affinités avec un jeune catalan, Jordi de son prénom, militant du POUM, sur le front de Madrid. Nous parlons Garcia Lorca, parlons Lope de Vega, jouons aux échecs. Il est polyglotte, d'une exquise finesse et lettré.
(...)
16 janvier 1940
Nous marchions lentement, en silence, sur la route glissante, sombre malgré la neige fraîchement tombée. En me laissant, il dit : "Je crois savoir que nous, les Espagnols, on nous fera quitter Mittersheim demain ..." Je sens que, tout comme moi, il regrette que notre amitié naissante doive être coupée si tôt. Je le suis des yeux, fine silhouette fantomatique bientôt dissoute dans la nuit où pas une lueur ne brille, lorsque je l'entends qui revient sur ses pas.
- Adios, companero, dit-il. Ah, tu connais ce vers de Byron ?
Let me, or happy or unhappy,
Learn to anticipate my immortality.
Nous nous sommes longuement étreints.
En notant ceci, je me rends soudain compte que je ne connais pas son nom de famille.

Auteur: Malaquais Jean

Info: Journal de guerre suivi de Journal du métèque 1939-1942

[ rencontre ] [ complicité ] [ séparation ]

 

Commentaires: 0

cimetière des innocents

En 1590, pendant le siège de Paris par le roi de Navarre, la faim a poussé les Parisiens à ramasser les ossements du cimetière pour en faire de la farine. On a gravé des images, des compositions de la scène. On a gardé des souvenirs. Les enfants qui jouent aux osselets, qui s’amusent avec des têtes. Les chères têtes blondes, justement ! Les Innocents, précisément ! Comment plus longtemps aurait-on pu laisser les enfants voisiner avec la mort révulsante ? Tout cela était trop choquant et la Révolution viendra comme réponse à cette révulsion. Revanche des dames patronnesses. Respectueuses de la mort en train de devenir sacrée. En même temps que l’enfance innocente, c’est-à-dire délivrée du péché, du sale dogme de l’absurdité ontologique. En même temps que la sexualité en train de sortir de son bourbier, le fumier prostitutionnel. La mort, le sexe et l’enfance en train de se diviniser, de se mirer dans leur divinité naissante, et voilà frappés les trois coups du 19e siècle dans les neuf mille mètres carrés de terre visqueuse, asphyxiante, croulante des fermentations des grands dormants.

Auteur: Muray Philippe

Info: Dans "Le 19e siècle à travers les âges", page 27

[ cohabitation morts-vivants ] [ tabou ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

mutation symbolique

Bien des penseurs du début du XXe siècle, qu’ils soient économistes, psychanalystes ou biologistes, intègrent le désir comme une composante essentielle de leur anthropologie. Pour cette nouvelle génération d’intellectuels, l’envie et l’émulation relèvent d’instincts sociaux parfaitement fonctionnels et non pas de déviations pécheresses. Les économistes libéraux, héritiers de Mandeville, pensent les passions, l’insatisfaction et l’appétit de jouissance comme des stimulants économiques bien utiles à l’enrichissement général. Pour les évolutionnistes, l’animalité de l’homme explique sa nature pulsionnelle et invalide la doctrine du contentement. La société humaine ne suit pas un ordre providentiel et immuable, mais est traversée par le désir, la compétition et le mouvement, nécessaires à l’adaptation. L’insatisfaction et l’envie permettent à l’humanité de progresser en tant qu’espèce. La légitimation des pulsions humaines par l’argument de l’animalité ouvre la voie à la diffusion d’une vulgate freudienne, particulièrement vivace après guerre. Les médias diffusent et popularisent alors de multiples concepts freudiens : l’inconscient et le subconscient, le refoulement, l’instinct sexuel, la fixation, le complexe d’infériorité… La vulgate freudienne donne un vocabulaire, mais également une légitimité "scientifique" à la mentalité de consommation naissante. Les comportements, qu’ils soient moraux ou immoraux, scandaleux ou vertueux, ne seraient en réalité que l’expression de la nature pulsionnelle de l’homme. Sans que nous le sachions, l’instinct sexuel déterminerait nos comportements, y compris les plus anodins. Des mécanismes cachés expliqueraient notre égoïsme. Au-delà de l’ontologie, la vulgate freudienne entérine les notions de subjectivité et de personnalité – dont on a vu qu’elles étaient essentielles à la nouvelle mentalité –, en présentant chaque individu comme pourvu d’une intériorité, d’un soi profond (inner self), qu’il conviendrait d’explorer et de laisser s’exprimer. Refouler ce soi "réel", ce serait risquer de sombrer dans la maladie mentale. Le reconnaître, au contraire, permettrait de s’accomplir en tant qu’individu.

Auteur: Galluzzo Anthony

Info: Dans "La fabrique du consommateur", éd. La découverte, Paris, 2020

[ discours ] [ armes conceptuelles ] [ critique ] [ consumérisme justifié ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

transition scientifique

B.T. Dobbs a fait de l’alchimie du XVIIe siècle un portrait qui donne des indications irremplaçables concernant le problème des "pratiques" alchimiques. Cette époque charnière représente en effet un moment clé dans l’histoire de l’art hermétique, puisque celui-ci va subir une "métamorphose" qui explique pour une large part les erreurs contemporaines relatives à sa juste compréhension. Selon B.T. Dobbs valorisant ce changement radical, l’alchimie qui jusque-là était étroitement liée à des "spéculations mystiques (...) trop fortement orientées vers l’illumination intérieure" va recevoir une "influence apaisante du rationalisme et de la nouvelle philosophie mécaniste. La voie était tracée, est-il ajouté, pour que l’alchimie s’ouvre à la rationalisation, qu’elle admette une formulation chimique, bref qu’elle accepte une clarification de ses méthodes et de ses modes de pensée". Plusieurs groupes, dont celui de Hartlib, seront responsables de ce processus révolutionnaire. Son objectif connu consistait en une "opération concertée ayant pour but la fabrication et la commercialisation de l’or". Cette démarche, dont B.T. Dobbs note qu’elle était étrangère à "la littérature alchimique antérieure", visait dans le même temps à "faire partager au plus grand nombre les secrets alchimiques". Il s’agit donc d’une triple sécularisation : vénale, commerciale et démocratique qui engage l’alchimie traditionnelle dans une voie rationnelle, puis expérimentale. Les conceptions de S. Hartlib n’eurent d’influence sur Newton que par l’intermédiaire d’un de ses plus proches disciples, d’ailleurs plus connu, R. Boyle, qui poursuivra le projet d’assimilation de l’œuvre alchimique à la vision mécaniste naissante de l’univers. Celui-ci "réfute la théorie alchimique des trois Principes (Soufre-Mercure-Sel) et les qualifie de paradoxes antichimiques", ce qui montre l’ampleur de la rupture qui se prépare. Toutefois, à côté de ces objectifs vulgaires, certains aspects de l’ancienne quête alchimique vont être également victimes d’une sorte de détournement de sens. La réalisation, notamment, de "l’eau mercurielle" qui, d’après B.T. Dobbs, ne fut auparavant "décrite nulle part en termes physiques" fut l’objet dans ces milieux novateurs d’investigations expérimentales qui d’ailleurs n’aboutirent pas à grand chose, selon leurs propres témoignages.

Un peu plus tard (au XVIIIe s.), on sait que H. Bœrhaave fera encore cette expérience de "chauffer du mercure" sans davantage de succès. Or, c’est ce même genre d’opération qu’entreprend Newton vers 1660. Ainsi, l’alchimie devient-elle, une fois débarrassée de son mystère, "une branche respectable de la physique". Curieusement, dans un climat déjà paradoxal, l’alchimie est simultanément respectée, vénérée et défigurée. Son ésotérisme n’étant plus compris, il faut en reconstituer la signification sur des bases nouvelles, sans rapport avec les anciennes, afin de retrouver la clé tant recherchée de l’univers. L’intention profonde de Newton, dans cette perspective, est de chercher à élucider "les mouvements des corps de petites dimensions, de manière à compléter, rapporte B.T. Dobbs, le système universel qu’il était en train d’édifier". Pour ce faire, et aussi étrange que cela puisse paraître, Newton essaiera d’extraire le "mercure" des métaux. Il participe donc à cette large entreprise de matérialisation des Principes hermétiques, de telle sorte que cette néo-alchimie en vint à concevoir l’existence d’un "mercure philosophique" concret. On peut donc penser qu’il ne l’était pas à l’origine, d’où une contradiction avec ce qu’affirmait au début de son livre B.T. Dobbs, qui admet la coexistence de "deux aspects" de l’ancienne alchimie : "la science occulte et les expériences au fourneau". Or, il apparaît clairement, d’après sa propre enquête, que cette concrétisation est le fait de chimistes manipulateurs tardifs, soucieux "d’expérimentations quantitatives". Cette mutation n’a d’ailleurs pu s’effectuer que par une sorte de transcription des "mythes" de l’alchimie ancienne en opérations de laboratoire, et ceci explique pourquoi Newton étudia avec tant de zèle ces vieux traités hermétiques.

Auteur: Geay Patrick

Info: Dans "Hermès trahi", pages 56-57

[ historique ] [ interprétation littérale ] [ incompréhension ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

romantisme

Il s'arrangeait pour mourir chaque fois du vol nuptial. Plus les femmes étaient légères et plus on le trouvait volatil. Tout le vocabulaire qui servait jadis à la fois aux artilleurs et aux amants, on pouvait l'utiliser pour lui : Pierre mettait en batterie, démasquait, foudroyait, démontait. C'était charmant car c'était jeune et, à quelques pluers près, cela arrangeait au fond tout le monde. Celles qu'il avait fait pleurer ou qui le giflaient ou avec qui il s'était vraiment brouillé, il les comptait sur ses doigts, le sémillant garçon. Il était né comme ça, étant d'une époque où l'amour ne déshonorait personne, où l'on ne se privait de rien, où les devoirs et obligations étaient d'un commun accord réduits au minimum. "Il n'y a pas de raison, disait pierre, pour qu'un train de plaisir ne soit pas aussi un train express."Son train était toujours plein et il n'avait jamais eu à déplorer de déraillement. Mais Pierre venait d'avoir trente-cinq ans. N'ayant pas rencontré l'amour, il commençait à le prendre en respect. "Le jour où je trouverai une femme sur laquelle je ne me jeterrai pas, se dit-il, c'est que je serai arrivé à destination." Il sentait qu'il n'aurait pas, ce jour-là, à renoncer à ses mauvaises habitudes, que ce seraient elles qui renonceraient à lui.

Hedwige l'attendait au salon. Le thé fumait sur le plateau ; une robe d'intérieur, du rouge des vieilles soies d'Orient, descendait à beaux plis sur son corps dur, comme une cascade sur un rocher. Cette mise en scène lui fit aussitôt désirer d'être dehors.

 - Sortons, dit-il, prenez un manteau. Je ne pourrai parler qu'en l'air.

Ils allèrent se promener sur la terrasse, à deux pas, par un crépuscule d'hiver, avec les premières lumières de Paris en contrebas et les grands arbres de la forêt qui s'arrêtaient en ligne au bord de la pelouse. Hedwige a accepté de l'accompagner sans faire d'embarras. Elle trouve naturel qu'une main qui n'est pas la sienne écrive son destin sur le mur. Elle s'en remet à Dieu du soin de sa conversation. Suivre Pierre dans ce parc ne l'a pas troublée. Elle est sereine, sage, courageuse. Ce sont les oies qui font sentinelle. Pierre aussi était très maitre de lui, très calme. Penchés l'un vers l'autre par la gravitation, leurs doigts se joignaient pour atteindre à une intelligence plus profonde d'une situation qui les distinguait des autres êtres et les faisait cependant ressembler à tous. Cette fin de jour corail et soufre, ce jardin peuplé de statues nues sous le ciel de neige, ces chênes noirs et balancés par la brise, toutes ces incantations romanesques, loin d'exciter Pierre l'engageaient à la pudeur et à la retenue. Il sentait grandir en lui une attente et il travaillait à la bien remplir car elle mentait au-delà, non de ses voeux, mais ce dont il se croyait capable. Comme le chrétien espère une sainte mort, il espérait une vraie vie. Le respect de ce qui lui arrive et de celle par qui cela est arrive - car Hedwige est innocente et vierge à tous les degrés - lui interdit tout geste agressif. Pour la première fois il prend sont temps et avec un plaisir infini, car il a l'existence devant lui et avance, d'une coulée naturelle, sur la route la plus grande, la plus connue ; une route dont il ignore la géographie et presque le nom, ne l'ayant jamais suivie ; une route faite pour les piètons et où les bolides ne passent pas. Il va frapper à la porte de l'oracle, comme les paysans à la porte de la sainte Vierge, pour demander si sa terre sera fertile. Il quitte le quotidien et entre dans le songe où vivent les enfants, les inventeurs, les fous, les tireurs de gros lots, le songe propice à l'accomplissement des grands desseins, non des petits désirs. C'est pourquoi il a une densité de dormeur, des lenteurs de plongeurs au fond des mers. Hediwge regarde cet homme de toujours comme un homme d'aujourd'hui. Chaque jeunesse de femme n'a qu'un type d'homme comme chaque génération n'a qu'un auteur et chaque auteur n'est jamais fidèle qu'à seul héros. La nuit est venue. Pierre ne sait plus pendant combien de temps il est resté assis sur ce ban sans décroiser les jambes ; près de lui Hedwige n'a pas bougé, elle dont les flexions sont si belles. À leurs pieds, le sol désolé par l'hiver est aride, squelettique et les pierres gelées des balustres se brisent comme des esquilles. En haut la voie lactée ressemble à une piste de caravane usée par d'anciens soleils. 

- Devant Dieu ou devant tout autre fabricant d'étoiles, dit soudain Pierre, je suis prêt à vous attendre tant qu'il le faudra et je suis décidé à n'épouser personne d'autre que vous.

Hedwige se rapprocha de lui et mit sa tête sur son épaule.

Auteur: Morand Paul

Info: l'homme pressé (1941, 350 p., Gallimard, p.145, 146, 147)

[ étreinte ] [ passion naissante ] [ bilan ] [ délicatesse ] [ beauté ] [ dimension sacrificielle ]

 

Commentaires: 0

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste