Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 5
Temps de recherche: 0.0299s

neuroscience

Je pense que l'esprit humain, ou même l'esprit d'un chat, est plus intéressant dans sa complexité qu'une galaxie entière si elle est dépourvue de vie.

Auteur: Gardner Martin

Info: IN Kendrick Frazier, "A Mind at Play : An Interview with Martin Gardner", Skeptical Inquirer (mars/avril 1998), 37.

[ cognition centralisée ] [ entendement ] [ perceptions ] [ émergence ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuroscience

L'une des approches les plus influentes de la réflexion sur la mémoire ces dernières années, connue sous le nom de connexionnisme, a abandonné l'idée qu'un souvenir est une image activée d'un événement passé. Les modèles connexionnistes ou de réseaux neuronaux reposent sur le principe selon lequel le cerveau stocke des engrammes en augmentant la force des connexions entre les différents neurones qui participent à l'encodage d'une expérience. Lorsque nous encodons une expérience, les connexions entre les neurones actifs deviennent plus fortes, et ce modèle spécifique d'activité cérébrale constitue l'engramme. Plus tard, lorsque nous essaierons de nous souvenir de l'expérience, un indice de récupération induira un autre modèle d'activité dans le cerveau. Si ce schéma est suffisamment similaire à un schéma précédemment encodé, le souvenir se produira. Dans un modèle de réseau neuronal, la "mémoire" n'est pas simplement un engramme activé. Il s'agit d'un modèle unique qui émerge des contributions combinées de l'indice et de l'engramme. Un réseau neuronal combine les informations de l'environnement actuel avec des modèles qui ont été stockés dans le passé, et le mélange des deux qui en résulte est ce dont le réseau se souvient... Lorsque nous nous souvenons, nous complétons un modèle avec la meilleure correspondance disponible dans la mémoire ; nous ne braquons pas un projecteur sur une image stockée.

Auteur: Schacter Daniel Lawrence

Info: Searching for Memory: The Brain, the Mind, and the Past

[ psychologie ] [ subjectivité ] [ restitution précise illusoire ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuroscience

La potentialisation à long terme (PLT - ou LTP, Long-Term Potentiation) est un processus qui se produit dans le cerveau et qui est associé au renforcement des connexions entre les neurones, qui sont les cellules responsables de la transmission des informations dans le cerveau. La PLT est considérée comme l'un des mécanismes fondamentaux de l'apprentissage et de la formation de la mémoire. 

Elle se produit selon ce processus.

1 Les neurones du cerveau communiquent entre eux par l'intermédiaire de connexions spécialisées appelées synapses. Ces synapses sont constituées d'un neurone présynaptique (neurone émetteur) et d'un neurone postsynaptique (neurone récepteur).

2 Lorsque ces neurones s'activent ensemble de manière répétée et cohérente, ils déclenchent un processus de plasticité synaptique, en particulier le PLT. Cela se produit généralement lors d'une stimulation à haute fréquence du neurone présynaptique.

3 Au cours de la PLT, certains changements se produisent au niveau de la synapse. L'un des principaux changements est l'augmentation de la force de la connexion synaptique. Cela signifie que le neurone postsynaptique devient plus sensible aux signaux du neurone présynaptique.

4 On pense que l'augmentation de la force de la synapse est due à différents mécanismes, notamment une augmentation de la libération de neurotransmetteurs (messagers chimiques) par le neurone présynaptique et des changements dans la réactivité des récepteurs sur le neurone postsynaptique.

5 Ces changements entraînent une transmission plus efficace des signaux entre les neurones, ce qui facilite la communication entre eux. Cette communication améliorée entre les neurones serait à la base de l'apprentissage et de la formation de nouveaux souvenirs.

Il doit être noté que le processus de PLT est complexe et qu'il implique divers événements moléculaires et cellulaires qui contribuent au renforcement des connexions entre les neurones, crucial pour apprendre et se souvenir.

Auteur: chatGPT4

Info: 27 juin 2023

[ capture synaptique ] [ mémorisation ] [ apprentissage ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuroscience

On sait enfin pourquoi le cerveau consomme autant d'énergie

La faute a des petites pompes "cachées". 

Les scientifiques le savent: le cerveau humain est une véritable machine insatiable en énergie. Au total, il en engloutit jusqu'à 10 fois plus que le reste du corps. Et même lorsque nous nous reposons, 20% de notre consommation de carburant est directement utilisé pour son fonctionnement. Un phénomène inexpliqué sur lequel nombre de scientifiques se sont cassés les dents. Jusqu'à aujourd'hui.

Publiée dans la revue Science Advances, une nouvelle étude explique l'origine du processus. Un processus qui se déroule dans ce que l'on appelle les vésicules synaptiques.

Entre deux neurones se trouve une synapse, zone qui assure la transmission des informations entre ces deux cellules nerveuses. Quand un signal est envoyé d'un neurone à un autre, un groupe de vésicules aspire les neurotransmetteurs à l'intérieur du premier neurone, au bout de sa queue. Le message est ainsi bien enveloppé, comme une lettre prête à être postée.

L'information est ensuite amenée jusqu'au bord du neurone, où elles fusionne avec la membrane, avant de relâcher les neurotransmetteurs dans la fameuse synapse. Dans cette zone, les neurotransmetteurs finissent leur course en entrant en contact avec les récepteurs du deuxième neurone. Et hop! Le message est passé.

Facile direz-vous. Certes, mais tout ceci nécessite beaucoup d'énergie cérébrale, ont découvert les scientifiques. Et ce, que le cerveau soit pleinement actif ou non.

En effectuant plusieurs expériences sur les terminaisons nerveuses, les membres de l'étude ont observé le comportement de la synapse lorsqu'elle est active ou non. Résultat: même quand les terminaisons nerveuses ne sont pas stimulées, les vésicules synaptiques, elles, ont toujours besoin de carburant. La faute à une sorte de petite pompe "cachée" qui est notamment en charge de pousser les protons hors de la vésicule. Chargée de pousser les protons hors de la vésicule et d'aspirer ainsi les neurotransmetteurs elle ne semble jamais se reposer et a donc besoin d'un flux constant d'énergie. En fait, cette pompe "cachée" est responsable de la moitié de la consommation métabolique de la synapse au repos.

Selon les chercheurs, cela s'explique par le fait que cette pompe a tendance à avoir des fuites. Ainsi, les vésicules synaptiques déversent constamment des protons via leurs pompes, même si elles sont déjà pleines de neurotransmetteurs et si le neurone est inactif.

Étant donné le grand nombre de synapses dans le cerveau humain et la présence de centaines de vésicules synaptiques à chacune de ces terminaisons nerveuses, ce coût métabolique caché, qui consiste à conserver les synapses dans un état de "disponibilité", se fait au prix d'une importante dépense d'énergie présynaptique et de carburant, ce qui contribue probablement de manière significative aux exigences métaboliques du cerveau et à sa vulnérabilité métabolique", concluent les auteurs.

Des recherches supplémentaires sont nécessaires pour déterminer comment les différents types de neurones peuvent être affectés par des charges métaboliques aussi élevées, car ils ne réagissent pas tous de la même manière.

Certains neurones du cerveau, par exemple, peuvent être plus vulnérables à la perte d'énergie, et comprendre pourquoi pourrait nous permettre de préserver ces messagers, même lorsqu'ils sont privés d'oxygène ou de sucre.

"Ces résultats nous aident à mieux comprendre pourquoi le cerveau humain est si vulnérable à l'interruption ou à l'affaiblissement de son approvisionnement en carburant", explique le biochimiste Timothy Ryan, de la clinique Weill Cornell Medicine à New York.

"Si nous avions un moyen de diminuer en toute sécurité cette fuite d'énergie et donc de ralentir le métabolisme cérébral, cela pourrait avoir un impact clinique très important." 

Auteur: Internet

Info: Science Advances, 3 déc 2021

[ cervelle énergivore ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuroscience

La conscience est un continuum et les scientifiques commencent à le mesurer

Une nouvelle technique aide les anesthésiologistes à suivre les changements dans les états de conscience

Que signifie être conscient ? Les gens réfléchissent et écrivent sur cette question depuis des millénaires. Pourtant, de nombreux aspects de l’esprit conscient restent un mystère, notamment la manière de le mesurer et de l’ évaluer. Qu'est-ce qu'une unité de conscience ? Existe-t-il différents niveaux de conscience ? Qu'arrive-t-il à la conscience pendant le sommeil, le coma et l'anesthésie générale ?

En tant qu’anesthésiologistes, nous réfléchissons souvent à ces questions. Nous promettons chaque jour aux patients qu’ils seront déconnectés du monde extérieur et de leurs pensées intérieures pendant l’opération, qu’ils ne conserveront aucun souvenir de l’expérience et qu’ils ne ressentiront aucune douleur. Ainsi, l’anesthésie générale a permis d’énormes progrès médicaux, depuis les réparations vasculaires microscopiques jusqu’aux greffes d’organes solides.

En plus de leur impact considérable sur les soins cliniques, les anesthésiques sont devenus de puissants outils scientifiques pour sonder les questions relatives à la conscience. Ils nous permettent d’induire des changements profonds et réversibles dans les états de conscience et d’étudier les réponses cérébrales lors de ces transitions.

Mais l’un des défis auxquels sont confrontés les anesthésiologistes est de mesurer la transition d’un état à un autre. En effet, bon nombre des approches existantes interrompent ou perturbent ce que nous essayons d'étudier. Essentiellement, l’évaluation du système affecte le système. Dans les études sur la conscience humaine, déterminer si une personne est consciente peut éveiller la personne étudiée, ce qui perturbe cette évaluation même. Pour relever ce défi, nous avons adapté une approche simple que nous appelons la méthode respirer-squeeze. Cela nous offre un moyen d'étudier les changements de l'état de conscience sans les interrompre.

Pour comprendre cette approche, il est utile de considérer quelques enseignements issus d’études sur la conscience qui ont utilisé des anesthésiques. Depuis des décennies, les chercheurs utilisent l’électroencéphalographie (EEG) pour observer l’activité électrique dans le cerveau de personnes recevant divers anesthésiques. Ils peuvent ensuite analyser cette activité avec des lectures EEG pour caractériser les modèles spécifiques à divers anesthésiques, appelés signatures anesthésiques.

Ces recherches révèlent que la plupart des médicaments anesthésiques ralentissent les rythmes cérébraux et augmentent leur taille, effets qui altèrent la communication entre les régions du cerveau. Par exemple, une étude récente a révélé que le propofol, le médicament le plus couramment utilisé pour l’anesthésie générale, perturbe la façon dont les régions du cerveau travaillent généralement ensemble pour traiter les informations sensorielles.

La conscience, comme le révèlent cette recherche et d’autres, n’est pas simplement un système binaire – activé ou désactivé, conscient ou inconscient – ​​mais plutôt quelque chose qui peut englober un continuum de différents états qui impliquent différents types de fonctionnement du cerveau. Par exemple, la conscience peut être connectée à l'environnement par le biais de nos sens et de notre comportement (conscience connectée), comme lors de la plupart de nos heures d'éveil, ou déconnectée de notre environnement (conscience déconnectée), comme lorsque nous rêvons pendant le sommeil.

L’inconscience – comme lorsqu’une personne est dans le coma – est plus difficile à étudier que la conscience connectée ou déconnectée, mais elle est généralement comprise comme un état d’oubli, vide d’expérience subjective ou de mémoire. Lorsque nous préparons un patient à une intervention chirurgicale, nous ajustons les niveaux d’anesthésie pour le rendre inconscient. Lorsqu’une personne est sous anesthésie générale, elle vit un coma temporaire et réversible pendant lequel elle ne ressent aucune douleur et après quoi elle n’aura plus aucun souvenir de son intervention.

Comprendre les transitions entre ces états est essentiel pour garantir des niveaux adéquats d’anesthésie générale et pour éclairer les questions de recherche en anesthésiologie, sur la conscience, le sommeil et le coma. Pour mieux cartographier la transition hors de la conscience connectée, nous avons récemment adapté une nouvelle approche pour surveiller la capacité d'une personne à générer des comportements volontaires sans incitation externe.

Généralement, les chercheurs suivent le début de la sédation en émettant des commandes verbales et en enregistrant les réponses comportementales. Par exemple, un scientifique peut périodiquement demander à quelqu’un d’ouvrir les yeux ou d’appuyer sur un bouton tout en recevant une perfusion anesthésique. Une fois que la personne cesse de répondre à cette commande, le scientifique suppose qu’elle a perdu la conscience connectée.

Cette technique s’est avérée utile pour contraster l’esprit conscient connecté et déconnecté. Mais lorsqu’il s’agit de comprendre la transition entre ces états, il y a plusieurs inconvénients. D’une part, le signal auditif n’est pas standardisé : l’inflexion et le volume de la voix, ce qui est dit et la fréquence à laquelle il est répété varient d’une étude à l’autre et même au sein d’une même étude. Un problème plus fondamental est que ces commandes peuvent éveiller les gens lorsqu’ils dérivent vers un état de déconnexion. Cette limitation signifie que les chercheurs doivent souvent attendre plusieurs minutes entre l’émission de commandes verbales et l’évaluation de la réponse, ce qui ajoute de l’incertitude quant au moment exact de la transition.

Dans notre étude, nous souhaitions une approche plus sensible et précise pour mesurer le début de la sédation sans risquer de perturber la transition. Nous nous sommes donc tournés vers une méthode décrite pour la première fois en 2014 par des chercheurs sur le sommeil du Massachusetts General Hospital et de l’Université Johns Hopkins. Dans ce travail, les enquêteurs ont demandé aux participants de serrer une balle à chaque fois qu'ils inspiraient. Les chercheurs ont suivi les pressions de chaque personne à l'aide d'un dynamomètre, un outil pour mesurer la force de préhension, et d'un capteur électromyographique, qui mesure la réponse musculaire. De cette façon, ils ont pu suivre avec précision le processus d’endormissement sans le perturber.

Pour notre étude, nous avons formé 14 volontaires en bonne santé à cette même tâche et présenté l’exercice de respiration en pressant comme une sorte de méditation de pleine conscience. Nous avons demandé aux participants de se concentrer sur leur respiration et de serrer un dynamomètre portatif chaque fois qu'ils inspirent. Après quelques minutes d'entraînement pour chaque personne, nous avons placé un cathéter intraveineux dans son bras pour administrer le sédatif et installé des moniteurs de signes vitaux et un équipé d'un capuchon EEG à 64 canaux pour enregistrer les ondes cérébrales tout au long de l'expérience.

Tous les participants ont synchronisé de manière fiable leurs pressions avec leur respiration pendant une période de référence initiale sans aucune sédation. Ils ont ensuite reçu une perfusion lente de dexmédétomidine, un sédatif couramment utilisé dans les salles d'opération et les unités de soins intensifs. À mesure que les concentrations cérébrales de dexmédétomidine augmentaient, les participants manquaient parfois une pression ou la prenaient au mauvais moment. Finalement, ils ont complètement arrêté de serrer.

Après quelques tests supplémentaires, nous avons arrêté la perfusion de dexmédétomidine, permettant ainsi aux participants de se remettre de la sédation. À notre grand étonnement, après une période de 20 à 30 minutes, tout le monde s'est souvenu de la tâche et a commencé à serrer spontanément en synchronisation avec sa respiration, sans aucune incitation. Cela nous a permis d'analyser à la fois le moment du début et du décalage de la sédation et de les comparer avec des études antérieures utilisant des commandes verbales pour évaluer la conscience.

La tâche de respiration et de compression est donc clairement une approche plus sensible pour mesurer la transition hors de la conscience connectée. Les participants ont arrêté d'effectuer la tâche à des concentrations de dexmédétomidine inférieures à celles auxquelles les personnes avaient cessé de répondre aux signaux auditifs dans d'autres études, soulignant les effets excitants des signaux externes sur le système. Ces résultats peuvent également indiquer que la conscience connectée peut être décomposée en comportements générés en interne (comme se rappeler de serrer une balle pendant que vous inspirez) et en comportements provoqués de l'extérieur (comme répondre à des commandes verbales) avec des points de transition distincts - une idée qui affine notre compréhension du continuum de la conscience.

Des recherches antérieures ont caractérisé l'apparence du cerveau dans des états de conscience connectée et déconnectée. Nous savions donc généralement à quoi s'attendre des enregistrements EEG. Mais nous étions moins sûrs de la façon dont notre technique pourrait s’aligner sur la transition cérébrale entre les états de conscience. Nous avons découvert un schéma très clair de changements dans le cerveau lorsque les gens arrêtent de serrer le ballon. De plus, nous n’avons vu aucune preuve que la tâche de compression perturbe l’état de conscience des personnes. L'EEG a également révélé un calendrier beaucoup plus précis pour ce changement que les travaux antérieurs, identifiant la transition dans une période environ 10 fois plus courte que ce qui était possible avec les signaux auditifs - une fenêtre de cinq à six secondes au lieu des 30 secondes. - à un intervalle de 120 secondes qui était courant dans les travaux antérieurs.

Comme avantage supplémentaire, nous avons été ravis de découvrir que de nombreux participants à notre étude appréciaient la tâche de respiration pressée comme moyen de se concentrer sur l'apaisement de leur esprit et de leur corps. Pour cette raison, nous avons également mis en œuvre la méthode dans la pratique clinique, c’est-à-dire en dehors d’études soigneusement contrôlées, lors de l’induction d’une anesthésie générale lors d’interventions chirurgicales majeures, qui peuvent autrement être une expérience stressante pour les patients.

Nous nous appuyons désormais sur ce travail en analysant nos données EEG, ainsi que les données d'imagerie par résonance magnétique structurelle (IRM) de nos volontaires. Ces connaissances sur le passage d’une conscience connectée à une conscience déconnectée peuvent aider à éclairer les soins cliniques des patients nécessitant une anesthésie pour une intervention chirurgicale, ainsi que de ceux qui souffrent de troubles du sommeil ou de coma. Ces études nous mettent également au défi de nous attaquer aux aspects plus philosophiques de la conscience et pourraient ainsi éclairer la question fondamentale de ce que signifie être conscient.

Auteur: Internet

Info: 26 janv, 2024    Christian Guay et Emery Brown

[ réveillé ] [ assoupi ] [ entendement ] [ présence ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste