Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 8
Temps de recherche: 0.051s

philosophie

On était autrefois philosophe à bon marché : il y avait si peu de vérités connues ; on raisonnait sur des choses si vagues et si générales. Tout roulait sur trois ou quatre questions :
Quel était le souverain bien.
Quel était le principe des choses : ou le feu, ou l'eau, ou les nombres.
Si l'âme était immortelle.
Si les Dieux gouvernaient l'Univers.
Celui qui s'était déterminé sur quelqu'une de ces questions était d'abord philosophe, pour peu qu'il eût de la barbe.

Auteur: Montesquieu Charles de

Info: Mes pensées, Oeuvres complètes I/la Pléiade/Gallimard 1949, 587 p.1080

[ antique ] [ question ]

 

Commentaires: 0

chiffres

- Les nombres existaient déjà avant l'apparition de l'homme, que dis-je, avant celle du monde. [...]
- Aah, vraiment ? Je pensais que c'étaient les hommes qui avaient découvert les chiffres.
- Non, c'est faux. Si c'étaient eux personne ne ferait autant d'efforts et on n'aurait pas besoin des mathématiciens. Personne n'a été témoin de leur processus d'apparition. Quand on les a remarqués, ils étaient déjà là.
- C'est pour ça que les gens intelligents se creusent la tête afin d'élucider leur mécanisme ?
- Nous les humains, nous sommes bien trop stupides pour avoir créé les nombres.

Auteur: Ogawa Yôko

Info: La Formule préférée du professeur

[ mathématiques ] [ question ]

 

Commentaires: 0

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

homme-machine

Une nouvelle approche du calcul réinvente l'intelligence artificielle

Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.

M
algré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.

D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.

Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.

Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.

Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."

Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).

C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.

Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.

"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.

Entrez dans les espaces de grande dimension

Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.

Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.

Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.

Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.

L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.

Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.

La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.

La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.

La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.

Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.

Exploiter le pouvoir

En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.

"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."

Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.

Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.

Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.

Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.

"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.

Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.

Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.

Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.

Un début prometteur

Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.

Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.

Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.

Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".

Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.

"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"

Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."

Auteur: Ananthaswamy Anil

Info: https://www.quantamagazine.org/ Mais 2023

[ machine learning ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel

post-quantique

Vers une physique de la conscience :   (Attention, article long et ardu, encore en cours de correction)

"Une vision scientifique du monde qui ne résout pas profondément le problème des esprits conscients ne peut avoir de sérieuses prétentions à l'exhaustivité. La conscience fait partie de notre univers. Ainsi, toute théorie physique qui ne lui fait pas de place appropriée est fondamentalement à court de fournir une véritable description du Monde."  Sir Roger Penrose : Les ombres de l'esprit

Où va la physique dans ce siècle ? Pour de nombreux scientifiques, ce type de question évoquera très probablement des réponses tournant autour de la relativité quantique, de la naissance et de l'évolution probable de l'Univers, de la physique des trous noirs ou de la nature de la "matière noire". L'importance et la fascination durable de ces questions sont incontestables.

Cependant, pour une minorité croissante de physiciens, une question encore plus grande se profile à l'horizon : le problème persistant de la conscience.

La révolution de l'information des dernières décennies a eu un impact sur nos vies plus profond qu'il parait. De la physique fondamentale au calcul quantique en passant par la biophysique et la recherche médicale, on prend de plus en plus conscience que l'information est profondément et subtilement encodée dans chaque fibre de l'Univers matériel, et que les mécanismes de contrôle que nous avons l'habitude d'étudier sur des bases purement mécaniques ne sont plus adéquats. Dans de nombreux laboratoires à travers le monde, les scientifiques sondent tranquillement cette interface esprit-matière et esquissent les premières lignes d'une nouvelle vision du monde.

Nous avons demandé à 2 de ces scientifiques de partager leur vision de ce que signifie ce changement de paradigme pour la physique théorique et du type de travail expérimental susceptible de produire les percées les plus importantes.

Lian Sidorov : Vous abordez tous deux les problèmes du modèle standard en révisant ses axiomes de base - en commençant essentiellement par une nouvelle interprétation de ses blocs de construction physiques. Pourriez-vous résumer brièvement cette approche?

M.P. : L'identification des espaces-temps en tant que surfaces à 4 dimensions d'un certain espace à 8 dimensions est l'élément central de TGD (Topological Geometrodynamics) et résout les problèmes conceptuels liés à la définition de l'énergie dans la relativité générale. Le nouveau concept d'espace-temps - "l'espace-temps à plusieurs feuilles" comme je l'appelle - a des implications considérables non seulement pour la physique, mais aussi pour la biologie et pour la conscience. Fondamentalement, parce que la vision réductionniste dure de l'Univers est remplacée par une vision quantitative de la façon dont le réductionnisme échoue.

La mathématisation de la vision de base se fonde sur l'idée que la physique quantique se réduit à une géométrie classique de dimension infinie pour ce qu'on pourrait appeler un "monde des mondes" - l'espace de toutes les surfaces possibles en 3 D. Cette idée est, en un certain sens, très conservatrice. Il n'y a pas de quantification dans cette théorie et son seul aspect quantique est le saut quantique. La croyance est que l'existence géométrique de dimension infinie (et donc aussi la physique) est hautement unique. Que cela puisse être le cas est suggéré par une énorme quantité de travaux probablement futiles qui s'essayent à construire des théories quantiques de champs sans infinis ainsi que par l'expérience avec des géométries de dimension infinie plus simples.

La formulation la plus abstraite de la TGD est une théorie des nombres généraliste obtenue en généralisant la notion de nombre de manière à permettre des nombres premiers infinis, des nombres entiers, etc.  Par conséquent les objets géométriques tels que les surfaces spatio-temporelles peuvent être considérés comme des représentations de nombres infinis, entiers, etc.  La formulation de la théorie des nombres conduit naturellement à la notion de physique p-adique (les champs de nombres p-adiques sont des compléments de nombres rationnels, un pour chaque nombre premier p=2,3,5,7,...).  Et l'on aboutit à la généralisation de la surface de l'espace-temps en permettant à la fois des régions d'espace-temps réelles et p-adiques (ces dernières représentant les corrélats géométriques de la cognition, de l'intention et de l'imagination tandis que les régions réelles représentent la matière).

Une des implication est l'hypothèse dite de l'échelle de longueur p-adique qui prédit une hiérarchie d'échelles de longueur et de temps servant d'échelles caractéristiques des systèmes physiques. La possibilité de généraliser la théorie de l'information en utilisant la notion théorique d'entropie des nombres conduit à une caractérisation théorique des nombres très générale des systèmes vivants pour lesquels une entropie p-adique appropriée est négative et indique ainsi que le système a un contenu d'information positif. La nouvelle vision de la relation entre le temps subjectif et géométrique est un aspect important de l'approche et résout le paradoxe fondamental de la théorie de la mesure quantique et une longue liste de paradoxes étroitement liés de la physique moderne. Il est également crucial pour la théorie de la conscience inspirée du TGD.

LS : Y a-t-il des personnages historiques dont vous pouvez vous inspirer ? Ou des théories physiques en cours de discussion qui offrent des points de convergence avec votre modèle ?

MP : John Wheeler était mon gourou du visionnage à distance, et la lecture de ses écrits fut pour moi une sorte d'expérience charnière. Wheeler a introduit la topologie dans la physique théorique. Wheeler a également introduit la notion de "super-espace" - espace de dimension infinie de toutes les géométries possibles ayant la métrique de Riemann et servant d'arène de gravitation quantique. Le remplacement du super-espace par l'espace des surfaces 3-D dans l'espace imbriqué 8-D ("monde des mondes") s'est avéré être la seule approche donnant l'espoir de construire un TGD quantique. Toutes les autres approches ont complètement échoué. 

Einstein a, bien sûr, été la deuxième grande figure. Il a été assez surprenant de constater que l'invariance générale des coordonnées généralisée au niveau de l'espace de configuration des surfaces 3 D ("monde des mondes") fixe la formulation de base de TGD presque exclusivement, tout comme elle fixe la dynamique de la relativité générale. Soit dit en passant, j'ai appris d'un article d'Einstein qu'il était très conscient des problèmes liés à la relation entre le temps subjectif et le temps géométrique et qu'il croyait que la réalité était en fait à 4 dimensions. Mais que notre capacité à "voir" dans le sens du temps est faible.

La TGD peut également être considéré comme une généralisation de l'approche des super-cordes qui généralise les symétries de base du modèle superstring (la symétrie la plus importante étant la symétrie dite conforme). Dans l'approche superstring, la symétrie conforme contraint les objets de base à être des chaînes unidimensionnelles. Dans TGD, cela les force à être des surfaces 3D. Au niveau algébrique, TGD ressemble beaucoup aux modèles de supercordes. Mais la dimension de l'espace-temps est la dimension physique D=4 plutôt que D=2.

LS : Comment voyez-vous la relation entre les systèmes matériels et la conscience ? L'une est-elle une propriété émergente de l'autre ou sont-elles équivalentes à un certain niveau ?

MP : Je ne partage pas la croyance matérialiste sur l'équivalence de l'esprit et de la matière. Je crois que la conscience - et même la cognition - sont présentes même au niveau des particules élémentaires. Pas de monisme, pas même de dualisme… mais de tripartisme. Le champ de spinor dans le "monde des mondes", l'histoire quantique et la "solution des équations du champ quantique", tout ceci définit ce que l'on pourrait appeler la réalité objective particulière. L'existence subjective correspond à une séquence de sauts quantiques entre des histoires quantiques. L'existence matérielle au sens géométrique correspond aux surfaces d'espace-temps - les réalités de la physique classique.

Dans ce cadre, il n'est pas nécessaire de postuler l'existence séparée de la théorie et de la réalité. Les "solutions des équations de champ quantique" ne représentent pas seulement des réalités, ce sont les réalités objectives. L'expérience subjective correspond à des sauts quantiques entre des "solutions d'équations de champs quantiques" - un truc toujours entre deux réalités objectives. Abandonner la croyance matérialiste en une réalité objective unique résout les problèmes fondamentaux de la théorie de la mesure quantique et offre une nouvelle vision de la relation entre le temps subjectif (séquence de sauts quantiques) et le temps géométrique (coordonnée de la surface espace-temps).

Le prix payé est un niveau d'abstraction assez élevé. Il n'est pas facile de traduire la vision des réalités en tant que champs de spineurs dans le "monde expérimental des mondes" en tests pratiques ! Ici, cependant, la correspondance quantique-classique aide.

LS : Comment résumeriez-vous votre approche des interactions mentales à distance comme la cognition anormale (vision à distance) et la perturbation anormale (PK) ?

MP : Il y a plusieurs éléments en jeu. La quantification topologique du champ, la notion d'hologramme conscient, le partage d'images mentales et le mécanisme de base des interactions mentales à distance basées sur les ME.

(a) L'ingrédient clé est la quantification topologique des champs classiques impliqués par le concept d'espace-temps à plusieurs feuilles. La surface de l'espace-temps est comme un diagramme de Feynman extrêmement complexe avec des lignes épaissies en feuilles d'espace-temps à 4 dimensions. Ces lignes à 4 dimensions représentent les régions de cohérence des champs classiques et de la matière (atomes, molécules, cellules,..). Aux sommets où les droites quadridimensionnelles se rencontrent, les champs classiques interfèrent. Les sommets sont comme des points d'un hologramme tandis que les lignes sont comme des faisceaux laser.

Les "lignes" particulièrement importantes du diagramme de Feynman généralisé sont les "extrémaux sans masse" (ME, "rayons lumineux topologiques"). Ils représentent des champs classiques se propageant avec la vitesse de la lumière d'une manière ciblée précise sans affaiblissement et sans perte d'information - un peu comme un rayonnement se propageant dans un guide d'ondes dans une seule direction. Les ME sont des facteurs clés dans la théorie de la matière vivante basée sur le TGD. Les tubes de flux magnétique et leurs homologues électriques (les biosystèmes ! sont remplis d'électrets) sont des "lignes" tout aussi importantes du diagramme de Feynman généralisé.

(b) L'hologramme conscient est une structure semblable à une fractale. L'implication de base est qu'il n'y a pas d'échelle de longueur préférée où la vie et la conscience émergeraient ou pourraient exister. Le transfert de supra-courants de nappes spatio-temporelles supraconductrices (généralement des tubes à flux magnétique) vers des nappes spatio-temporelles plus petites (par exemple, des nappes spatio-temporelles atomiques) induit une rupture de supraconductivité, une dissipation et une sélection darwinienne par auto-organisation.

Le flux cyclique d'ions entre 2 feuillets d'espace-temps est aussi le mécanisme de base du métabolisme. Un hologramme ordinaire donne lieu à une vision stéréo. Pour l'hologramme conscient, cela correspond à une fusion d'images mentales associées à différents points de l'hologramme. Lorsque les images mentales se ressemblent suffisamment, elles peuvent fusionner et donner lieu à une conscience stéréo (c'est-à-dire que les champs visuels droit et gauche fusionnent pour donner lieu à une stéréovision s'ils se ressemblent suffisamment).

(c) Le partage d'images mentales est une notion nouvelle. Les sous-moi de 2 moi non enchevêtrés peuvent s'entremêler, ce qui signifie qu'il en résulte une image mentale partagée et plus complexe. C'est le mécanisme de base de la télédétection. L'intrication de sous-systèmes de systèmes non intriqués n'est pas possible si l'on utilise la notion standard de sous-système. La nouvelle notion de sous-système s'inspire de la pensée d'échelle de longueur des théories quantiques des champs (tout est toujours défini dans une résolution d'échelle de longueur) et des aspects de type trou noir des feuilles d'espace-temps. L'intrication des sous-systèmes ne se voit pas dans la résolution caractérisant les systèmes, de sorte que l'on peut dire que les systèmes sont "non enchevêtrés" alors que les sous-systèmes sont intriqués.

(d) Un mécanisme plus détaillé pour les interactions mentales à distance est le suivant. Les ME à basse fréquence (gamme EEG généralement) connectent le téléspectateur 'A' à un soi magnétosphérique collectif multi-cerveau 'M' agissant comme un moyen et 'M' à la cible 'T' de sorte que l'enchevêtrement 'A'-'T' et le partage d'images mentales devient possible. Toutes les communications 'A'-'M' (comme poser des questions sur une cible donnée) pourraient être basées sur le partage d'images mentales. Les téléspectateurs pourraient avoir des lignes de communication plus ou moins permanentes avec la magnétosphère.

C'est suffisant pour la télédétection. Pour les interactions motrices à distance (disons PK), des ME à haute fréquence sont également nécessaires. Ils se propagent comme des particules sans masse le long des ME basse fréquence et induisent à la seconde extrémité des fuites de supracourants entre les tubes de flux magnétiques et les nappes d'espace-temps atomiques induisant l'auto-organisation ainsi que l'effet PK. La dichotomie bas-haut correspond à la dichotomie sensori-motrice et à la dichotomie quantique-classique pour les communications quantiques. Les fréquences préférées des ME à haute et basse fréquence devraient être dans certaines proportions constantes, et les découvertes de l'homéopathie appuient cette prédiction.

Les cellules et autres structures ont des "interactions mentales à distance" à l'intérieur du corps via ce mécanisme. De plus, les représentations sensorielles au corps du champ magnétique sont réalisées par le même mécanisme avec des rayons lumineux topologiques micro-ondes (très probablement) du cerveau qui se propagent le long des EEG ME et induisent une auto-organisation au niveau du corps magnétique personnel. Des représentations sensorielles sont également possibles pour une magnétosphère et peut-être même à pour des structures magnétiques plus grandes (qui pourraient avoir des tailles de durée de vie lumineuse). Ainsi, la conscience humaine a un aspect astrophysique défini.

LS : Comment interprétez-vous l'effet des fluctuations géomagnétiques et du temps sidéral local sur la cognition anormale ?

MP : Le faible niveau de bruit magnétique semble être le premier pré-requis pour des performances cognitives anormales. L'interprétation est que l'esprit magnétosphérique doit avoir un faible niveau d'excitation. La performance semble augmenter autour d'un intervalle de 2 heures autour de 13h30 heure sidérale locale, qui est l'heure dans un système de coordonnées fixé par rapport aux étoiles plutôt qu'au Soleil. Ces découvertes - ainsi que la vision générale sur les structures de tubes de flux magnétiques comme modèles de vie - suggèrent que non seulement le champ magnétique terrestre, mais aussi que les champs magnétiques interstellaires pourraient être des acteurs clés dans les interactions mentales à distance.

(a) Que les fluctuations magnétiques puissent masquer des interactions mentales à distance donne une idée de la force du champ magnétique interstellaire. Le délai pour les interactions mentales à distance est de l'ordre de t=13-17 secondes et devrait correspondre à l'échelle de temps définie par la fréquence cyclotron du proton du champ magnétique interstellaire. Cela implique qu'il devrait avoir une force dans l'intervalle 10-13nT. Par contre, aux fréquences correspondant à f = 1/t, l'intensité des fluctuations géomagnétiques est d'environ 10nT. Il semblerait qu'un champ magnétique interstellaire non masqué d'une force d'environ 10-13 nT soit crucial pour les interactions mentales à distance.

(b) Les champs magnétiques interstellaires ont généralement une intensité comprise entre 100 et 0,01 nT, et diverses échelles de temps de cyclotron sont des échelles de temps de la conscience humaine. Le seul champ magnétique interstellaire dont les tubes de flux pourraient émerger dans la direction qui est au méridien 13.30 ST est le champ magnétique de type dipôle créé par le centre galactique ayant une intensité d'ordre 100 nT près du centre galactique et coupant orthogonalement le plan galactique. Les supernovae transportent des champs magnétiques de l'ordre de 10 à 30 nT ; le vent solaire transporte un champ magnétique d'une force moyenne de 6 nT ; la nappe de plasma du côté nuit de la Terre - connue pour être une structure fortement auto-organisée - porte un champ magnétique d'une force d'environ 10 nT. Au moins pour un habitant de l'univers TGD croyant en la fractalité de la conscience, ces découvertes suggèrent que les champs magnétiques galactiques forment une sorte de système nerveux galactique, tout comme le champ magnétique terrestre forme le système nerveux de Mère Gaïa.

c) Pourquoi 13h30 ST est si spécial pourrait être compris si les tubes de flux du champ magnétique interstellaire attachés à la matière vivante vent pendant la rotation de la Terre. Cet enroulement introduit du bruit rendant les interactions mentales à distance moins probables. Pendant l'intervalle de 2 heures autour de 13h30 ST, les effets de l'enroulement sont les plus faibles.

LS : Les effets temporels tels que la pré-cognition et la rétro-pk ont ​​été un casse-tête et une complication de longue date pour l'émergence de modèles physiques convaincants en parapsychologie. Comment résolvez-vous ces paradoxes dans le cadre de votre théorie ?

MP : Dans le cadre du TGD, on est obligé de modifier les croyances de base sur le temps. Le "temps vécu subjectivement" correspond à une séquence de sauts quantiques entre des histoires quantiques. Le temps subjectif n'est cependant pas vécu comme discret puisque les soi ("soi" est un système capable d'éviter l'enchevêtrement de l'état lié avec l'environnement et a une feuille d'espace-temps comme corrélat géométrique) expérimentent la séquence de sauts quantiques comme une sorte de moyenne. La réalité résultant d'un saut quantique donné est une superposition de surfaces d'espace-temps qui se ressemblent dans la résolution dépendante de l'observateur définie par l'échelle de longueur p-adique.

On peut dire que chaque saut quantique conduit à ce qui ressemble sensoriellement à un espace-temps classique unique (sorte d'espace-temps moyen quantique). Le temps subjectif correspond au temps géométrique dans le sens où les contenus de conscience sont fortement localisés autour d'un certain moment du temps géométrique à la surface de l'espace-temps classique. L'espace-temps est à 4 dimensions. Mais notre expérience consciente à ce sujet ne nous renseigne que sur une tranche de temps étroite (du moins nous le croyons) définissant ce que l'on pourrait appeler "le temps psychologique". L'incrément de temps psychologique dans un saut quantique unique est d'environ 10 à 39 secondes selon une estimation basée sur les hypothèses les plus simples possibles. Le temps psychologique correspond aussi au front d'une transition de phase transformant des feuilles d'espace-temps p-adiques (e.g., intentions, plans) en feuilles d'espace-temps réelles (actions) et se propageant vers le Futur géométrique.

A chaque saut quantique, l'espace-temps moyen quantique classique est remplacé par un nouveau. De plus, le passé géométrique change en saut quantique de sorte qu'il n'y a pas de passé géométrique absolu (le passé subjectif étant, bien sûr, absolu). Ceci explique des anomalies causales comme celles observées par Libet, Radin et Bierman, et Peoch. La mémoire géométrique consiste essentiellement à voir dans le passé géométrique. Intentions, plans et attentes signifient voir le Futur géométrique au sens p-adique. La précognition est une mémoire inversée dans le temps. L'intention, la précognition et les souvenirs ne sont pas absolus puisque le futur géométrique et le passé changent à chaque saut quantique. Le "montage" du Passé géométrique (disons changer les mémoires en changeant l'état du cerveau en Passé géométrique) est possible.

LS : Les découvertes de Mark Germine semblent suggérer que la mesure consciente d'un événement par un cerveau tend à réduire l'élément de surprise pour les observateurs conscients ultérieurs, tel que mesuré par le potentiel lié à l'événement associé. Comment interprétez-vous ces résultats ?

MP : La nouvelle vision de champs classiques contraints par la quantification topologique conduit à vers la notion de champ/corps électromagnétique/magnétique. Chaque système matériel, atome, cellule, etc. est généralement accompagné d'un corps de champ qui est beaucoup plus grand que le corps physique et fournit une sorte de représentation symbolique du système analogue au manuel d'un instrument électronique. Le corps magnétique joue le rôle d'un écran d'ordinateur sur lequel sont réalisées des représentations sensorielles. Les "caractéristiques" produites par le traitement de l'information dans le cerveau sont attribuées à un point donné (appelons-le "P") du corps magnétique personnel en enchevêtrant les images mentales correspondantes avec l'image mentale "simple sentiment d'existence" en "P". Les ME EEG ("rayons lumineux topologiques") sont des corrélats de cet enchevêtrement.

Outre les corps magnétiques personnels, des représentations sensorielles dans la magnétosphère terrestre sont également possibles et donnent lieu à la conscience magnétosphérique. Les soi magnétosphériques recevant des informations conscientes de nombreux cerveaux sont possibles et pourraient être un aspect crucial de toutes les structures sociales. Les découvertes de Mark Germine peuvent être comprises si l'on suppose que 2 personnes recevant le stimulus inattendu à des moments légèrement différents sont des "neurones" du même soi multi-cerveau. Après avoir perçu le stimulus bizarre une fois à travers le premier cerveau, le soi multi-cérébral est moins surpris lorsqu'il expérimente le stimulus bizarre à travers le deuxième cerveau.

LS : Vos deux modèles nécessitent une cohérence quantique massive comme base d'une expérience consciente. Comment résoudre le fameux problème de décohérence ?

MP : Dans l'espace-temps à plusieurs nappes, les nappes d'espace-temps atomiques "chaudes, humides et bruyantes" ne sont pas les seules. Il existe des nappes d'espace-temps plus grandes et très froides contenant de faibles densités de matière supraconductrice. En particulier, les tubes de flux magnétique de la Terre sont supraconducteurs. On a donc une cohérence quantique macroscopique. Mais ce n'est pas assez. Il faut aussi avoir une cohérence quantique macro-temporelle. Au début, cela semble impossible. Un seul saut quantique correspond à un incrément de temps géométrique d'environ 10-39 secondes. Ce temps est identifiable comme le temps de décohérence si bien que la situation semble encore pire qu'en physique standard ! Cette image ne peut pas être correcte, et l'explication est simple.

L'intrication à l'état lié est stable dans le saut quantique. Et lorsqu'un état lié est formé, aucune réduction de fonction d'état ni préparation d'état ne se produit dans les degrés de liberté liés. La séquence entière de sauts quantiques (particules élémentaires de conscience) se lie pour former ce qui est effectivement comme un seul saut quantique, période de cohérence quantique macrotemporelle (atome, molécule,... de conscience). Le "temps de décohérence" peut être identifié comme la durée de vie de l'état lié.

Malheureusement, même cela ne suffit pas puisque c'est essentiellement ce que prédit la physique standard. La dernière pièce du puzzle provient de la dégénérescence du verre de spin quantique. La dégénérescence du verre de spin signifie qu'il existe un nombre gigantesque de surfaces d'espace-temps qui diffèrent les unes des autres uniquement parce qu'elles ont des champs gravitationnels classiques légèrement différents. Les états liés se produisent lorsque 2 feuilles d'espace-temps sont connectées par une liaison le long des frontières. La "dégénérescence du verre de spin" signifie que dans ce cas, il existe un grand nombre de liens différents le long des frontières et donc également une immense dégénérescence des états liés. Lorsqu'un état lié est formé, il se désintègre avec une très forte probabilité en un nouvel état lié de ce type puisque pour l'état libre (pas de jointure le long des liaisons aux frontières !), la dégénérescence du verre de spin n'est pas présente et le nombre de ces états est beaucoup plus petit .

Ainsi, le temps passé dans les états liés dégénérés du verre de spin ("temps de décohérence") est beaucoup plus long que dans l'univers physique standard ! Du point de vue de la physique standard, les nouveaux degrés de liberté du verre de spin sont cachés et le physicien standard identifie les états liés dégénérés comme un seul et même état lié. Par conséquent, la durée de vie mesurée de l'état lié semble être beaucoup plus longue que prévu par la physique standard.

LS : Une suite naturelle à la question précédente : Quelle est la base physique de la mémoire individuelle et du partage d'images mentales comme on le voit dans la vision à distance, la télépathie et d'autres expériences transpersonnelles (Jung, Grof, Stevenson) ?

MP : La différence essentielle entre le paradigme du cerveau à 4 dimensions et les neurosciences standard est qu'il n'y a pas besoin de stocker les souvenirs dans le 'Maintenant' géométrique. Le mécanisme le plus simple de la mémoire géométrique est le "mécanisme du miroir quantique". Se souvenir d'un événement qui s'est produit il y a un an, c'est regarder un miroir à une distance d'une demi-année-lumière et voir ce qui se passe "subjectivement maintenant" dans le temps géométrique à une distance temporelle d'un an.

L'option minimale est basée sur le partage d'images mentales rendu possible par l'intrication temporelle. L'intrication temporelle n'est pas autorisée par la physique standard. Dans TGD, l'intrication de type temps est rendue possible par le non-déterminisme partiel du principe variationnel indiquant quelles surfaces d'espace-temps sont possibles. Ce non-déterminisme ainsi que le non-déterminisme inhérent aux équations de champ p-adiques sont des éléments centraux de la théorie de la conscience inspirée du TGD.

Ils rendent également possibles la correspondance quantique-classique et les représentations symboliques et cognitives des réalités objectives et subjectives (niveau du monde des mondes) au niveau de l'espace-temps (niveau du monde) responsables des aspects autoréférentiels de la conscience. J'ai déjà parlé du partage d'images mentales comme mécanisme télépathique de base. Et l'intrication temporelle rend également possible le partage d'images mentales entre le Présent géométrique et le Passé géométrique. La signalisation classique n'est pas nécessaire mais n'est bien sûr pas exclue. Les microtubules semblent être des candidats optimaux en ce qui concerne les mémoires déclaratives à long terme.

Le partage d'images mentales est un mécanisme universel d'expériences sensorielles à distance (mémoire à long terme, représentations sensorielles, télédétection, expériences transpersonnelles). Les actions motrices à distance telles que PK nécessitent l'implication de ME à haute fréquence se propageant le long de l'enchevêtrement générant des ME à basse fréquence et induisant une auto-organisation à l'extrémité réceptrice.

LS : La télédétection d'une cible physique distante (par opposition à l'information collective) est-elle possible dans votre modèle ? Et sur quelle base ?

MP : Dans le monde TGD, tout est conscient. Et la conscience ne peut qu'être perdue. Il y a aussi des raisons de croire que pratiquement tous les systèmes servent d'"écrans d'ordinateur" donnant lieu à des représentations sensorielles. Par conséquent, des cibles physiques "non vivantes" pourraient également définir des représentations sensorielles au niveau de la magnétosphère.

Il y a une découverte étrange à propos des sons de météorites soutenant cette vision. Des sons de météores ont été à la fois entendus et détectés par des instruments. Le spectre de fréquences se situait dans l'intervalle des fréquences de résonance thalamo-corticale autour de 40 Hz alors que l'on s'attendait à ce que le spectre couvre toute la gamme 20-20 000 Hz. L'intensité des sons était également beaucoup plus forte que prévu si le rayonnement électromagnétique (induisant des sons à la surface de la Terre) généré par le météore avait des distributions à symétrie sphérique.

Cela suggère que les ME ELF correspondant à des fréquences autour de 40 Hz connectent non seulement des cerveaux mais aussi des objets "morts" à la magnétosphère, et que le rayonnement a été amplifié sélectivement dans ces guides d'ondes. Ainsi, même des objets "morts" pourraient être représentés sensoriellement dans la magnétosphère. Si le téléspectateur peut être considéré comme un client d'un multi-cerveau magnétosphérique auto-fournissant des services de télévisualisation, il est tout à fait possible que le téléspectateur puisse télédétecter la cible en utilisant les sens du moi magnétosphérique.

LS : Comment interprétez-vous la fragmentation massive des données et la pluralité des modalités sensorielles caractérisant le signal RV typique ? Qu'en est-il du phénomène de bi-localisation ?

MP : Le cerveau traite l'information en la décomposant en "caractéristiques" simples comme les bords, les coins, les mouvements simples, etc. Ces caractéristiques sont dispersées dans le cerveau presque comme dans une mémoire à accès aléatoire. Seules les représentations sensorielles au niveau du corps magnétique lient les caractéristiques appropriées à un point donné de la toile magnétique de sorte que la soupe de caractéristiques s'organise en un champ perceptif.

Dans le cas où la cible est une autre personne, la fragmentation des données pourrait signifier que le moi magnétosphérique s'emmêle avec diverses images mentales dans le cerveau, de sorte que des "caractéristiques" individuelles plutôt que la représentation sensorielle bien organisée du corps magnétique soient vues. Dans le cas d'une cible non vivante, l'organisation en champ perceptif est probablement absente de toute façon. Si le partage d'images mentales se produit de manière très intense, il peut conduire à une bilocalisation. Même un masquage presque total de la contribution ordinaire à l'expérience sensorielle est possible. Les hallucinogènes (par exemple, ceux rapportés par Terence MacKenna) impliquent en effet un remplacement soudain de la réalité sensorielle quotidienne par une nouvelle.

LS : Les travaux de Gariaev sur l'irradiation laser modulée de l'ADN ont donné des aperçus fascinants sur la possibilité d'une régulation génétique non locale, non canonique (basée sur les codons) - peut-être via des grilles d'interférence de biophotons et d'ondes radio à grande échelle menant à l'idée de un modèle holographique électromagnétique pour les organismes vivants. Quelle est la signification de ses résultats pour votre modèle ? Et comment envisagez-vous la hiérarchie des systèmes de contrôle morphogénétiques et régulateurs dans les organismes vivants ?

MP : Le travail de Gariaev fournit une information importante (beaucoup en fait !) pour tenter de concrétiser le point de vue sur le biocontrôle quantique à plusieurs feuilles. Et cela pourrait s'avérer être une preuve convaincante du concept d'espace-temps à plusieurs feuilles. Une contribution décisive pour le modèle de l'homéostasie quantique est venue des conférences de Cyril Smith sur la mémoire de l'eau et l'homéopathie lors de la conférence CASYS 2001. Le constat de base est que certaines fréquences semblent coder les effets du remède homéopathique, et que ces fréquences apparaissent par paires de fréquences basses et hautes qui apparaissent en proportion constante.

Cela peut être compris dans le cadre TGD comme suit. Lorsque les ions "chutent" de (disons) feuilles d'espace-temps atomiques vers des feuilles d'espace-temps plus grandes (disons des tubes à flux magnétique), la différence d'énergie est émise sous forme de rayonnement. L'énergie cinétique Zer-Point de petites feuilles d'espace-temps est la contribution dominante et signifie que le rayonnement a une énergie et donc une fréquence relativement élevées (par exemple, 0,5 eV pour un proton tombant d'une feuille d'espace-temps atomique). Dans les tubes à flux magnétique, les ions abandonnés sont dans des états de cyclotron magnétique excités qui se désintègrent en émettant un rayonnement cyclotron à basses fréquences. La partie "sensorielle" de l'EEG résulte de cette manière. Le rapport des hautes et basses fréquences dépend de la force du champ magnétique et de l'échelle de longueur p-adique de la feuille d'espace-temps à partir de laquelle l'ion est tombé et a tendance à avoir des valeurs discrètes.

En particulier, la lumière visible (comme dans l'expérience de Gariaev) peut "envoyer" des particules chargées des tubes de flux magnétique vers des feuilles d'espace-temps plus petites, à partir desquelles elles peuvent rebondir. Dans ce processus, d'autres ions au niveau du tube de flux magnétique peuvent tomber dans des tubes de flux magnétique plus grands et émettre un rayonnement basse fréquence dans ce processus.

Les tubes de flux magnétique forment dans la matière vivante une hiérarchie avec des intensités de champ magnétique variant comme 1 sur l'échelle de longueur p-adique au carré. Ainsi, il en résulte un rayonnement basse fréquence avec des fréquences qui sont des différences d'harmoniques des fréquences cyclotron au niveau des 2 tubes de flux magnétique impliqués. Cette prédiction est quantitative et testable et - sur la base d'une inspection grossière des spectres de fréquence rapportés dans l'article de Gariaev [1] - l'explication pourrait fonctionner.

La structure de bande de l'EEG reflète dans TGD les périodes du tableau périodique et le spectre des ondes radio devrait également présenter une version agrandie de la structure de bande. De plus, l'action laser à plusieurs feuilles devient possible si la fréquence de la lumière visible est réglée de sorte qu'elle soit juste suffisante pour envoyer une particule chargée sur la plus petite feuille d'espace-temps. La fréquence de la lumière cohérente utilisée dans l'expérience de Gariaev correspond à ce type de fréquence. La chute de la particule chargée génère un rayonnement à la même fréquence, et il en résulte une action laser à plusieurs feuilles puisque les photons cohérents déjà existants augmentent la probabilité de chute et les résultats de "chute stimulée". En outre, un laser à ondes radio à plusieurs feuilles est possible et les biosystèmes devraient contenir une hiérarchie fractale de lasers à plusieurs feuilles.

La notion d'hologramme conscient pourrait permettre d'obtenir une vision unifiée du fonctionnement de l'homéostasie en tant qu'équilibre de flux ionique à plusieurs feuilles. Le mécanisme laser à plusieurs feuilles n'est qu'un élément important de l'image. Fuite d'ions vers les feuilles d'espace-temps atomiques et auto-organisation dissipative qui en résulte ; inversion temporelle de ce processus ayant une interprétation comme un processus de guérison fondamental et impliquant une rupture de la deuxième loi de la thermodynamique en dessous de l'échelle de temps p-adique pertinente ; Les ME agissant comme des jonctions Josephson et contrôlant la génération d'impulsions nerveuses et l'EEG (l'EEG devrait avoir une généralisation fractale) - ce sont quelques facettes du biocontrôle quantique.

De plus, la notion d'ADN à plusieurs feuilles est importante et signifie que l'ADN contrôle le développement de l'organisme dans une large gamme d'échelles de longueur et de temps p-adiques en générant des modèles de rayonnement cohérents représentant le modèle pour le développement du système vivant en tant que hiérarchie fractale. d'hologrammes en 4 dimensions. La notion de "corps de champ" implique que cette structure semblable à un hologramme est de taille astrophysique avec une durée de vie lumineuse fournissant une échelle de temps naturelle.

LS : C'est probablement la question la plus redoutée pour un théoricien. Mais votre modèle est-il falsifiable ? Existe-t-il des tests physiques concevables qui pourraient définitivement valider (ou réfuter) votre théorie ? Qu'en est-il des prédictions quantitatives ? Des données corroborantes pour l'instant ?

MP : Au cours des 24 dernières années, j'ai pratiquement parcouru toute la physique afin de relier la TGD à la réalité théorique et expérimentale existante.  Le succès le plus impressionnant de TGD est le modèle pour les masses des particules élémentaires basé sur la physique p-adique.  Les échelles de masse des particules élémentaires se réduisent à la théorie des nombres et correspondent aux échelles de longueur p-adiques associées à certains nombres premiers préférés p = 2k, k premier ou puissance du nombre premier.  Les prédictions sont exponentiellement sensibles à la valeur de k, de sorte que le succès du modèle relève soit d'un miracle probabiliste, soit de l'exactitude des hypothèses de base.

Les échelles de longueur p-adiques les plus importantes de la physique des particules élémentaires correspondent aux nombres premiers de Mersenne et aux Mersennes dites gaussiennes.  Il est remarquable que toutes les échelles de longueur p-adiques entre l'épaisseur de la membrane cellulaire de 10 nm et la taille de la cellule de 2,5 micromètres (échelles de longueur associées à la hiérarchie d'enroulement de l'ADN !) correspondent à des Mersennes gaussiennes.  C'est un miracle de la théorie des nombres.  Il semblerait que le miracle de la Vie soit étroitement lié à un miracle de la théorie des nombres.

Les prédictions permettant de falsifier la théorie de la manière la plus convaincante apparaissent au niveau de la physique fondamentale.  Les symétries fixent d'une manière tout à fait unique le spectre des particules élémentaires dans toutes les théories unifiées.  La TGD prédit que les symétries de la physique des particules élémentaires sont essentiellement celles du modèle standard.  La découverte de particules élémentaires dont les nombres quantiques ne sont pas conformes à ceux prédits par le modèle standard peut tuer la TGD.  Il existe également d'importantes déviations par rapport au modèle standard, et le fait de ne pas les observer pourrait également signifier la fin du TGD.  Heureusement, la liste des anomalies expliquées par la TGD ne cesse de s'allonger.

Les prédictions de la dégénérescence du verre de spin (cohérence quantique macrotemporelle) et de la quantification du champ topologique (supraconductivité à des échelles de longueur astrophysiques) signifieront tôt ou tard une percée ou la fin de la TGD, car elles permettent des modèles quantiques quantitatifs concrets non seulement pour le biocontrôle mais aussi pour les interactions mentales à distance.

Les derniers résultats de l'approche théorique des nombres sont de véritables mesures de l'information.  Les entropies de la théorie des nombres définies pour les systèmes pour lesquels les coefficients d'intrication sont des nombres algébriques peuvent avoir des valeurs négatives et donc être interprétées comme une information positive.  On pourrait caractériser les systèmes vivants, en théorie des nombres, comme des systèmes pour lesquels les coefficients d'intrication sont des nombres algébriques.  Les opérations de type calcul quantique sont rendues possibles par la cohérence quantique macrotemporelle : les états quantiques ne sont plus fragiles puisque l'espace-temps enveloppé prédit la possibilité de partager et de fusionner des images mentales.  Toutes ces prédictions sont des prédictions tueuses testables.

LS : Quels sont certains des domaines auxquels vous pensez que votre modèle pourrait apporter des contributions majeures (c'est-à-dire la neurophysiologie, l'informatique quantique, la parapsychologie, etc.)

MP : Le réductionnisme est pratiquement toujours considéré comme un axiome de la physique.  L'implication fondamentale de la TGD est que le réductionnisme est brisé à toutes les échelles de longueur et de temps.  De nouveaux phénomènes sont prédits dans toutes les branches de la physique, de la biologie, des neurosciences, de la parapsychologie, etc. L'espace-temps à couches multiples fournit des modèles détaillés pour plusieurs anomalies associées aux phénomènes d'énergie libre.  Ces modèles devraient contribuer au développement de nouvelles technologies énergétiques.  Les processus conscients de type calcul quantique ("résolution de problèmes quantiques" pourrait être un terme plus approprié) avec des mesures d'information théoriques remplaçant l'information de Shannon constituent une deuxième implication technologique.

Les notions d'hologramme conscient et d'équilibre du flux ionique à plusieurs couches promettent une description unifiée d'une grande classe de phénomènes apparemment sans rapport entre eux, comme l'homéostasie, l'homéopathie, les représentations sensorielles et les interactions mentales à distance.

En neurosciences, le modèle basé sur la TGD pour le contrôle quantique de l'EEG et de l'impulsion nerveuse est une application importante.

LS : Quelles sont, à votre avis, les directions expérimentales et théoriques les plus prometteuses à suivre vers une théorie unifiée de l'esprit et de la matière ?

MP : Ma réponse est, nécessairement, très centrée sur la TGD.  Je pense qu'il serait intéressant de voir si les concepts inspirés de l'approche TGD pourraient nous permettre de comprendre qualitativement la conscience, les systèmes vivants et les interactions mentales à distance.  Sur le plan expérimental, la stratégie serait de tester les notions de base :

(a) Tests expérimentaux de la notion d'espace-temps à feuilles multiples, de la quantification des champs topologiques et de la prédiction selon laquelle les feuilles d'espace-temps non atomiques agissent comme des supraconducteurs, même à des échelles de longueur astrophysiques.

(b) Démonstration expérimentale de la présence de diverses signatures physiques pour le transfert d'ions entre les feuilles d'espace-temps et pour la rupture de la deuxième loi en dessous de l'échelle de temps p-adique caractérisant le système.

(c) Tests expérimentaux pour les notions de corps magnétique, de conscience magnétosphérique et de moi collectif multicérébré.  Les travaux de Mark Germine sont très encourageants à cet égard.

Auteur: Pitkanen Matti

Info: Entretien avec Matti Pitkänen et Alex Kaivarainen, interviewés par Lian Sidorov. References :  1.  Germine, Mark.  Scientific Validation of Planetary Consciousness. JNLRMI I (3). URL: www.emergentmind.org/germineI3.htm. 2.  Germine, M.  Experimental Evidence for Collapse of the Wavefunction in  the Whole Human Brain. URL: www.goertzel.org/dynapsyc. [Note: Lian Sidorov's interview with Alex Kaivarainen was more mathematically technical and can be seen at http://www.emergentmind.org/PDF_files.htm/Kaivarainen.pdf .]

[ spéculation ] [ dépassement ] [ épigénétique ] [ paranormal ] [ hyper-abstraction ] [ placebo ] [ niveaux vibratoires ] [ monades ] [ panpsychisme ]

 

Commentaires: 0

Ajouté à la BD par miguel