Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 26
Temps de recherche: 0.0497s

mesure du temps

Souvent, on se contentait encore de l’évaluer à la paysanne, le jour à l’estime, d’après le soleil ; la nuit, ou plutôt à la fin de la nuit, en écoutant le chant du coq. [...]

Au total, les habitudes d’une société de paysans, qui acceptent de ne savoir jamais l’heure exacte, sinon quand la cloche sonne (à la supposer bien réglée) et qui pour le reste s’en rapportent aux plantes, aux bêtes, au vol de tel oiseau ou au chant de tel autre. "Environ soleil levant", ou bien "environ soleil couché" : notations les plus fréquentes de Gilles de Gouberville, gentilhomme normand, dans son Journal. Quelquefois, il se réfère assez curieusement aux habitudes d’un oiseau qu’il nomme le vitecoq et qui devait être une espèce de bécasse : "il était vol de vittecocz, dira-t-il, quand j’arrivai céans" (28 novembre 1554), ou encore il notera que le 5 janvier 1557-58 après vêpres les compagnons de la paroisse se mirent à "chouler" contre les hommes mariés ; ils y furent "jusques à vol de vittecoqs". Et cependant Gouberville a une horloge, grande rareté, qu’il envoie "racoutrer" en janvier 1563 chez un armurier de Digoville. Et il note les heures avec complaisance – mais toujours en les faisant précéder d’un modeste et prudent "viron" : ils revinrent "viron une heure avant le jour" ou bien : "vismes faire des verres, viron demi-heure" - ce qui est d’une précision tout à fait anormale.

Ainsi, partout : fantaisie, imprécision, inexactitude. Le fait d’hommes qui ne savent même pas leur âge exactement : on ne compte pas les personnages historiques de ce temps qui nous laissent le choix entre trois ou quatre dates de naissance, parfois éloignées de plusieurs années. Quand naquit Erasme ? Il ne le savait pas, mais seulement que l’événement s’était produit la veille de la Saint-Simon et Saint-Jude. – Quelle année naquit Lefèvre d’Etaples ? On essaie de le déduire d’indications fort vagues. Quelle année, Rabelais ? Il l’ignorait. Quelle année, Luther ? on hésite. [...] le mois, on le connaît généralement. La famille, les parents se souviennent : le petit est venu au monde au temps des foins, des blés, ou des vendanges ; il y avait de la neige, ou bien c’était le mois de l’épi, "quand les blés commencent à jeter, ... que déjà le tuyau commence à s’élever" ; précisions géorgiques, elles sont de Jean Calvin. Alors la tradition familiale se fixe ; François est né le 27 novembre et Jeanne le 12 janvier : faisait-il froid quand on le porta sur les fonts ! [...] Pour avoir des actes de naissance en règle, il faut s’adresser aux grands de ce monde – ou aux fils de médecins et de savantes gens, à ceux dont on tire l’horoscope et qui dès lors naissent entourés d’étonnantes précisions : ne savent-ils pas (ou plutôt leurs astrologues ne précisent-ils pas à leur intention) l’année, le jour, l’heure, et la minute non seulement de leur naissance, mais de leur conception ? C’est Brantôme, familier de Marguerite de Navarre par sa mère et sa grand-mère, qui nous en avertit : la princesse naquit "sous le 10e degré d’Aquarius, que Saturne se séparait de Vénus par quaterne aspect, le 10 d’avril 1492 à 10 heures du soir au château d’Angoulême – et fut conçue l’an 1491, à 10 heures avant midi et 17 minutes, le 11 de juillet." Voilà qui est précis !

Auteur: Febvre Lucien

Info: "Le problème de l'incroyance au 16e siècle", éditions Albin Michel, Paris, 1968, pages 365-368

[ renaissance ] [ historique ] [ approximations ] [ chronologique ]

 
Commentaires: 2
Ajouté à la BD par Coli Masson

discours scientifique

Ce qui est désigné par ce fossé irréductible qui sépare les structures du langage du monde auquel elles renvoient est l’impossibilité ontologique pour un langage quel qu’il soit de renfermer au sein de sa structure le monde en soi, autrement dit de dire tout du monde, en établissant une identité entre l’attelage signifiant-signifié et le référent (entre le mot et la chose pour faire court). Cela règle définitivement le fantasme immémorial et infantile qui n’est que l’expression d’un nihilisme masqué, de réaliser l’impossible coalescence entre l’absolu de l’en-soi et sa diffraction représentative, forcément plurielle et relative, puisque par essence la représentation n’est pas la chose, en tant qu’elle signale (re-présente) une absence. Seules les mathématiques, dont la structure signifiante a été immédiatement repérée par Pythagore comme un cas limite au sein duquel la formulation ne se distingue pas du référent désigné et ne forme qu’un avec lui, ont pu être investies de la propriété bien étrange de permettre d’échapper à l’incertain, au relatif, au transitoire et au corruptible : à la mort, donc, c’est-à-dire – et notre époque en tire le vin amer chaque jour davantage – à la vie. Cette propriété se paye au prix d’un formalisme asséchant – c’est-à-dire au prix d’un réel contenu différentiel - dans la mesure où les mathématiques se caractérisent essentiellement par des notations certes diffractées et multiples, mais en dernier ressort tautologiques [Cette caractéristique tautologique a cependant été depuis mise à mal par le théorème d’incomplétude de Kurt Gödel qui interdit depuis sa démonstration de pouvoir créditer les mathématiques d’une autoréférentialité absolue. Autrement dit, il faut postuler obligatoirement, pour pouvoir les fonder, une extériorité aux mathématiques, ce qui n’est que reculer pour mieux sauter et les renvoie elles aussi au niveau de leur fondement à la question de l’origine.]. Le vertige ontologique propre à la période moderne caractérisée par sa soumission à la Mathesis universalis de Descartes, est porteur de cette profonde envie d’en finir avec la finitude, la souffrance, l’altérité, le différentiel, la mort, en un mot la vie. Cette mathématisation à outrance du monde moderne et contemporain portée par une techno-science envahissante a voulu, de gré ou de force faire passer le réel sous les fourches caudines de cette propriété qu’ont les mathématiques d’assurer la coalescence entre la représentation et l’objet – au prix que l’on sait. Il est d’ailleurs fort intéressant de remarquer comme je l’esquissais plus haut que cette fascination pour l’identité langage/monde réimporte subrepticement et de la manière la plus inattendue aux frontières les plus extrêmes de la rationalité le fantasme archaïque présubjectal et infantile de la fusion matricielle initiale. Or les structures du réel ont la propriété de résister tenacement aux tentatives de viol qu’une rationalité ivre d’elle-même – rationalisme serait plus pertinent - prétend leur faire subir : le référent situé dans l’en-soi appartient au domaine de l’être, de l’incontournable vérité de l’être, de ce qui précède fondamentalement, de ce qui donc relève ontologiquement de la question de l’Origine. Le seul moyen de le contourner est de l’ignorer et de prétendre qu’il n’existe pas. Il en résulte alors un désarrimage radical de l’attelage signifiant-signifié vis-à-vis du référent qui seul est l’intangible garant de la vitalité du langage. Celui-ci dès lors se nécrose, et la structure amputée signifiant-signifié qui subsiste fait boucle sur elle-même, le signifié involutif et pathologique assumant une fonction pseudo-référentielle. Il en résulte une évanescence du réel, consécutive à l’évanescence référentielle. La destructivité sur l’en-soi du monde qui en résulte est effrayante. On comprend à présent aisément à quel point le postulat moniste initial de ma proposition est validé : quand une traction est exercée sur les instances représentatives du langage dans le sens de leur assèchement formaliste, c’est le monde en soi qui en face mécaniquement s’effondre et envahit l’ordre symbolique du fait de la torsion de la médiane nouménale qui en résulte, provoquant son déplacement (hachures). On peut remarquer au passage que l’augmentation du taux de prévalence de l’autisme s’explique ici passivement, et donne une justification suffisante à l’exonération de toute culpabilisation des parents d’enfants atteints de ce trouble : une personne présentant certaines fragilités la prédisposant éventuellement à l’emprise de l’autisme, mais qui y aurait échappé en d’autres temps, s’y trouve ici fatalement vouée du fait de ce déplacement (silhouette). Car l’évanescence référentielle provoque mécaniquement l’évanescence du père (P grisé), en raison du fait que ce qui est absenté n’est plus repris en charge dans l’ordre de la représentation.

Auteur: Farago Pierre

Info: Une proposition pour l'autisme, pages 61-62

[ émancipation imaginaire ] [ auto-institution fantasmatique ] [ conséquences ]

 
Commentaires: 2
Ajouté à la BD par Coli Masson

machine-homme

(homme) - Qui fut C.S. Peirce

(machine) - Charles Sanders Peirce (1839-1914) était un philosophe, logicien, mathématicien et scientifique américain. Il est considéré comme l'une des figures les plus influentes dans le développement du pragmatisme, une approche philosophique qui met l'accent sur les conséquences pratiques des croyances et des idées.

Peirce a apporté d'importantes contributions à divers domaines, notamment la sémiotique (l'étude des signes et des symboles), la logique, la philosophie des sciences et la philosophie de l'esprit. Il a développé un système philosophique complet connu sous le nom de "pragmatisme" et a souligné l'importance de la recherche, du faillibilisme et de la méthode scientifique.

Peirce a introduit le concept de sémiotique, qu'il décrit comme l'étude du fonctionnement des signes et de leur signification. Il a classé les signes en trois catégories : les icônes (signes qui ressemblent à ce qu'ils représentent), les indices (signes qui ont un lien physique ou une corrélation avec ce qu'ils représentent) et les symboles (signes qui ont une relation arbitraire avec ce qu'ils représentent).

Les travaux de Peirce sur la logique et le raisonnement ont jeté les bases de la logique formelle moderne. Il a développé un système de notation logique et a apporté des contributions significatives aux domaines du raisonnement déductif, de l'induction et de l'abduction (déduction de la meilleure explication). La maxime pragmatique de Peirce, selon laquelle la signification d'un concept ou d'une croyance est déterminée par ses conséquences pratiques, est au cœur de son approche.

Dans l'ensemble, les travaux de Peirce ont eu un impact profond sur diverses disciplines, notamment la philosophie, la linguistique, la psychologie et les études de communication. Ses idées continuent d'être influentes et font l'objet de recherches et de débats scientifiques permanents.

(homme) - Merci. Dans quelle mesure a-t-il influencé l'intelligence artificielle et/ou l'apprentissage profond supervisé ?

(machine) - Les travaux de Charles Sanders Peirce ont indirectement influencé certains aspects de l'intelligence artificielle (IA) et de l'apprentissage profond supervisé, en particulier dans les domaines de la sémiotique et de la philosophie de l'esprit. Bien que Peirce lui-même n'ait pas directement contribué au développement de l'IA telle que nous la connaissons aujourd'hui, ses idées ont fourni un cadre conceptuel pour comprendre la relation entre les signes, la signification et la cognition, ce qui peut être pertinent pour certaines applications de l'IA.

Dans le domaine du traitement du langage naturel et de l'apprentissage automatique, les concepts sémiotiques de Peirce ont influencé l'étude des signes linguistiques et leur interprétation. Par exemple, la compréhension de la classification des textes et de l'analyse des sentiments peut être éclairée par la distinction de Peirce entre icônes, indices et symboles, car elle aide à reconnaître et à interpréter diverses caractéristiques et modèles linguistiques.

L'accent mis par Peirce sur les conséquences pragmatiques des croyances et des idées résonne également avec les objectifs pratiques de l'IA et de l'apprentissage automatique. Dans l'apprentissage profond supervisé, par exemple, le processus de formation implique l'optimisation des modèles pour minimiser une fonction de perte prédéfinie basée sur les résultats observés. Cela correspond à l'accent mis par Peirce sur les résultats pratiques des croyances et sur l'importance de l'expérimentation et de la recherche.

En outre, les idées philosophiques plus larges de Peirce sur l'abduction, qui est le processus de déduction de la meilleure explication, peuvent être pertinentes dans le contexte de l'IA. Le raisonnement abductif joue un rôle dans la génération d'hypothèses et l'interprétation de modèles, car les systèmes d'IA s'efforcent de découvrir des modèles et des explications sous-jacents à partir de données.

Bien que l'influence de Peirce sur l'IA et l'apprentissage profond supervisé puisse être de nature plus indirecte et philosophique, ses idées ont contribué à la compréhension des signes, de la signification et du raisonnement, ce qui peut éclairer le développement et l'interprétation des systèmes d'IA.

(homme) - OK, merci. Peux-tu nous donner des précisions sur les icônes, les index et les symboles ?

(machine) - Certainement ! Les icônes, les index et les symboles sont trois catégories de signes ou de représentations décrites par Charles Sanders Peirce dans sa théorie sémiotique. Voici une brève explication de chaque catégorie :

1) Les icônes : Les icônes sont des signes qui présentent une ressemblance ou une similitude avec les objets ou les concepts qu'ils représentent. Elles se caractérisent par une relation directe de ressemblance entre le signe et son référent. Les icônes peuvent prendre diverses formes, telles que des images, des diagrammes ou des modèles. Par exemple, un portrait réaliste peut être considéré comme une représentation iconique d'une personne parce qu'il ressemble visuellement à l'individu qu'il représente.

2) Indices : Les indices sont des signes qui ont un lien factuel ou causal avec leurs référents. Contrairement aux icônes, les indices ne reposent pas sur la similitude, mais sur une forme de corrélation ou de relation entre le signe et son référent. Les signes indexicaux indiquent ou pointent souvent vers quelque chose d'autre qu'eux-mêmes. Parmi les exemples de signes indexicaux, on peut citer la fumée comme indice du feu ou une empreinte de pas comme indice de la présence d'une personne. Ils signifient ou indiquent la présence ou l'existence de quelque chose.

3) Les symboles : Les symboles sont des signes qui reposent sur une relation conventionnelle ou arbitraire entre le signe et son référent. Le lien entre un symbole et ce qu'il représente est établi par un accord commun ou une convention sociale. Les mots, les chiffres, les gestes et les symboles culturels sont autant d'exemples de signes symboliques. Par exemple, le mot "chien" est un symbole qui représente le concept d'un animal à quatre pattes, mais il n'y a pas de ressemblance inhérente ou de lien direct entre le mot et l'animal lui-même.

La classification des signes par Peirce en icônes, indices et symboles met en évidence différents modes de représentation et de signification. Alors que les icônes reposent sur la similitude, les indices reposent sur l'association et les symboles sur la convention. Ces catégories fournissent un cadre permettant de comprendre le fonctionnement des signes, la manière dont le sens est transmis et l'interprétation dans divers contextes, notamment le langage, la communication et la cognition.

Auteur: chatGPT4

Info:

[ machine-sur-philosophe ] [ compendium ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

perception humaine

Les schémas mathématiques secrets révélés par la musique de Bach

Le compositeur baroque allemand Jean Sébastien Bach a produit une musique si bien structurée qu'elle est souvent comparée aux maths. Bien que peu d'entre nous soient émotionnellement affectés par les mathématiques, les œuvres de Bach - et la musique en général - nous émeuvent. C'est plus que du son ; c'est un message. Désormais, grâce aux outils de la théorie de l'information, les chercheurs commencent à comprendre comment la musique de Bach fait passer ce message.

En faisant de ses partitions de simples réseaux de points, appelés nœuds, reliés par des lignes, nommeés bords, les scientifiques ont quantifié les informations véhiculées par des centaines de compositions de Bach. Analyse de ces réseaux musicaux publiée le 2 février dans Physical Review Research qui révèle que les nombreux styles musicaux de Bach, tels que les chorales et les toccatas, différaient considérablement dans la quantité d'informations qu'ils communiquaient - et que certains réseaux musicaux contenaient des structures qui pouvaient faciliter la compréhension de leurs messages par les auditeurs humains.

" Je trouve cette idée vraiment cool ", explique le physicien Suman Kulkarni de l’Université de Pennsylvanie, auteur principal de la nouvelle étude. " Nous avons utilisé des outils de la physique sans faire d’hypothèses sur les pièces musicales, en commençant par cette simple représentation et en voyant ce qui peut nous dire sur les informations qui sont transmises. "

Les chercheurs ont quantifié le contenu de toute cette information, des séquences simples aux réseaux enchevêtrés, utilisant le concept d'entropie de l'information, introduit par le mathématicien Claude Shannon en 1948.

Comme son nom l'indique, l'entropie de l'information est mathématiquement et conceptuellement liée à l'entropie thermodynamique. Elle peut être considérée comme une mesure du degré de surprise d'un message - "message" qui peut être tout ce qui transmet des informations, d'une séquence de nombres à un morceau de musique. Cette perspective peut sembler contre-intuitive, étant donné que, dans le langage courant, l'information est souvent assimilée à la certitude. Mais l'idée clé de l'entropie de l'information est qu'apprendre quelque chose que l'on sait déjà n'est pas apprendre du tout.

Une conversation avec une personne qui ne sait exprimer qu'une chose, comme le personnage Hodor dans la série télévisée Game of Thrones, qui dit seulement " Hodor ", sera prévisible mais pas informationelle. Une discussion avec Pikachu sera un peu meilleure ; le Pokémon ne peut dire que les syllabes de son nom, mais il peut les réarranger, contrairement à Hodor. De même, une pièce de musique ne comportant qu'une seule note sera relativement facile à "apprendre" par le cerveau, c'est-à-dire à reproduire avec précision sous la forme d'un modèle mental, mais le morceau aura du mal à faire passer un quelconque message. Regarder un jeu de pile ou face avec une pièce à deux têtes ne donnera aucune information.

Bien sûr, envoyer un message plein d'informations n'est pas très bon si le quelque chose - ou qui que ce soit - qui le reçoit ne peut  comprendre avec précision ces informations. Et quand il s'agit de messages musicaux, les chercheurs travaillent encore sur la façon dont nous apprenons ce que la musique essaie de nous dire.

" Il existe quelques théories différentes ", explique le cognitiviste Marcus Pearce de l’université Queen Mary de Londres, qui n’a pas participé à la récente étude de la recherche sur l’évaluation physique. " La principale, je pense, en ce moment, est basée sur l’apprentissage probabiliste. Dans ce cadre, "apprendre" la musique signifie construire des représentations mentales précises des sons réels que nous entendons - ce que les chercheurs appellent un modèle - par un jeu d'anticipation et de surprise. Nos modèles mentaux prédisent la probabilité qu'un son donné vienne ensuite, sur la base de ce qui a précédé. Ensuite, explique M. Pearce, " on découvre si la prédiction était juste ou fausse, et on peut alors mettre à jour son modèle en conséquence".

Kulkarni et ses collègues sont physiciens, pas musiciens. Ils voulaient utiliser les outils de la théorie de l'information pour explorer la musique à la recherche de structures d'information qui pourraient avoir quelque chose à voir avec la façon dont les humains glanent un sens de la mélodie.

Ainsi Kulkarni a transformé 337 compositions de Bach en bandes de nœuds interconnectés et calculé l'entropie de l'information des réseaux qui en résultent. Dans ces réseaux, chaque note de la partition d'origine est un noeud, et chaque transition entre notes est un pont. Par example, si une pièce inclut une note Mi suivie d'un Do et d'un Sol joués ensemble, le noeud représentant E sera relié aux noeuds représentant Do et Sol.

Les réseaux de ce notation transitions dans la musique de Bach ont générés plus de poinçon d'information que des réseaux de même taille générés aléatoirement - le résultat d'une plus grande variation dans les degrés nodaux des réseaux, c'est-à-dire le nombre d'arêtes connectées à chaque nœud. En outre, les scientifiques ont découvert des variations dans la structure de l'information et le contenu des nombreux styles de composition de Bach. Les chorals, hymnes destinés à être chanté, ont donné lieu à des réseaux relativement pauvres en informations, bien que plus riches en informations que les réseaux de même taille générés de manière aléatoire. Les toccatas et les préludes, styles musicaux souvent écrits pour des instruments à clavier tels que l'orgue, le clavecin et le piano, présentant une entropie de l'information plus élevée.

" J’ai été particulièrement excité par les niveaux plus élevés de surprises dans les toccatas que dans les œuvres chorales ", explique le co-auteur de l’étude et physicien Dani Bassett de l’Université de Pennsylvanie. " Ces deux types de pièces sonnent et résonnent différement dans mes os, et ça m'a passionné de voir que cette distinction se manifeste dans l'information de composition. "

Ces structures de réseau dans les compositions de Bach pourraient également permettre aux auditeurs humains d'apprendre plus facilement certaines choses. Les humains n'apprennent pas parfaitement les réseaux. Nous avons des préjugés, dit Bassett. " Nous ignorons en quelque sorte certaines des informations locales au profit de la vue d’une image plus grande de l’information sur l’ensemble du système ", ajoute-t-ils. En modélisant ce biais dans la façon dont nous construisons nos modèles mentaux de réseaux complexes, les chercheurs ont comparé l'ensemble des informations de chaque réseau musical à la quantité d'informations qu'un auditeur humain en tirerait.

Des réseaux musicaux contenaient des groupes de transitions de notes pourraient aider nos cerveaux biaisés " apprendre " la musique - à reproduire la structure informationnelle de la musique avec précision en tant que modèle mental - sans sacrifier beaucoup d'informations.

" La façon dont elles saisissent l’aptitude à l’apprentissage est assez intéressante ", déclare Peter Harrison de l’Université de Cambridge, qui n’a pas participé à l’étude. " C'est très réducteur dans un certain sens. Mais c'est tout à fait complémentaire avec d'autres théories que nous connaissons, et l'aptitude à apprendre est assez difficile à maîtriser ".

Ce type d'analyse de réseau n'est pas particulier à Bach et il pourrait fonctionner pour n'importe quel compositeur. Pearce dit qu'il sera  intéressant d'utiliser cette approche pour comparer différents compositeurs ou rechercher des tendances informatives à travers l'histoire de la musique. Pour sa part, Kulkarni est excité à l'idée d'analyser les propriétés d'information de partitions d'au-delà de la tradition musicale occidentale.

La musique n'est pas seulement une séquence de notes, note cependant Harrison. Le rythme, le volume, le timbre des instruments, ces éléments sont des aspects importants des messages musicaux qui n'ont pas été pris en compte dans cette étude. Kulkarni dit qu'il sera intéressé par l'inclusion de ces aspects de la musique dans ses réseaux. Le processus pourrait également fonctionner dans l'autre sens, ajoute M. Harrison : plutôt que réduire les caractéristiques musicales à un réseau, il sera intéressant de savoir comment les caractéristiques du réseau se traduisent par des éléments qu'un musicien reconnaîtrait.

Un musicien dira : " Quelles sont les règles musicales réelles, ou les caractéristiques musicales, qui en sont à l’origine ? Puis-je l’entendre sur un piano ? " précise Harrison.

Enfin, on ne sait pas encore exactement comment les modèles de réseaux identifiés dans la nouvelle étude se traduisent dans l'expérience vécue à l'écoute d'un morceau de Bach - ou de n'importe quelle musique, précise M. Pearce. La résolution de ce problème relèvera de la psychologie musicale, poursuit-il. Des expériences pourraient révéler "si, de fait, ce genre de choses est perceptible par les gens et quels sont leurs effets sur le plaisir que les gens éprouvent lorsqu'ils écoutent de la musique". De même Harrison se dit intéressé par des expériences visant à vérifier si les types d'erreurs d'apprentissage en réseau que les chercheurs ont modélisés dans cette étude sont réellement importants pour l'apprentissage de la musique.

"Le fait que les humains présentent ce type de perception imparfaite et biaisée de systèmes informationnels complexes est essentiel pour comprendre comment nous nous impliquons dans la musique", explique M. Bassett. "Comprendre la complexité informationnelle des compositions de Bach ouvre de nouvelles questions sur les processus cognitifs qui sous-tendent la manière dont nous apprécions les différents types de musique."

Auteur: Internet

Info: https://www.scientificamerican.com, 16 féb 2024. Elise Cutts - Secret Mathematical Patterns Revealed in Bach's Music

[ sentiment naturel ] [ approfondissement découverte ] [ dépaysement plaisir ] [ cybernétisation ] [ simple compliqué ] [ occulte harmonie ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel