Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 70
Temps de recherche: 0.055s

méta-moteur

Un cerveau moléculaire dans le ribosome ?
L'analyse des structures tridimensionnelles des ribosomes des trois grands phylums du vivant par des chercheurs de l'Institut de microbiologie de la Méditerranée, montre que les protéines ribosomiques communiquent entre-elles par des extensions qui forment un réseau étrangement similaire aux réseaux de neurones des "cerveaux" d'organismes simples. L'organisation de ce réseau qui interconnecte les sites fonctionnels distants du ribosome, suggère qu'il pourrait transférer et traiter le flux d'information qui circule entre eux pour coordonner par des "synapses moléculaires" les tâches complexes associées à la biosynthèse des protéines. Cette étude est publiée dans la revue Scientific Reports.
Le ribosome, organite cellulaire formé d'ARN et de protéines, assure la traduction du code génétique dans les cellules: il réunit les ARN de transfert aminoacylés le long de l'ARN messager, pour fabriquer une protéine dont la séquence est dictée par celle de l'ARN messager. Ce processus constitue une véritable chorégraphie dans laquelle la fixation de nombreux acteurs moléculaires (substrats, facteurs de traduction) s'accompagne de mouvements complexes coordonnés dans le temps et l'espace.
La résolution de la structure des ribosomes d'archées et de bactéries par cristallographie aux rayons X a permis d'observer ces mécanismes à l'échelle moléculaire. Elle a aussi mis en lumière le mode d'action des antibiotiques les plus courants et surtout ouvert une fenêtre sur les origines de la Vie. En effet, le ribosome est universel et a évolué par accrétion. Ces découvertes ont valu le prix Nobel de chimie 2009 à T. Steitz, V. Ramakrishnan et A. Yonath. Peu de temps après, Marat Yusupov à l'Institut de Génétique et de Biologie Moléculaire et Cellulaire à Strasbourg, a réalisé l'exploit considérable de résoudre la structure à haute résolution d'un ribosome eukaryote, beaucoup plus gros et plus complexe. Cependant, dans ces structures vertigineuses, il restait encore un mystère à élucider: pourquoi les protéines ribosomiques ont-elles de si longues extensions filamenteuses qui se faufilent entres les groupements phosphates du labyrinthe de l'ARN ribosomique ? On a longtemps pensé que ces extensions, très chargées positivement (riches en arginines et lysines), servaient à neutraliser les charges négatives de l'ARN et à aider son repliement en 3D.
En analysant l'ensemble de ces données cristallographiques, les chercheurs marseillais proposent une explication tout à fait différente. Ils montrent que ces extensions radient dans tout le ribosome pour former un vaste réseau qui interconnecte les protéines ribosomiques entre-elles. Celles-ci interagissent par des interfaces très particulières et très conservées au cours de l'évolution. Cependant, ces zones de contact sont bien plus petites que les zones de contact observées habituellement entre les protéines destinées à stabiliser leurs interactions. Ici, elles sont limitées à quelques acides aminés et sont caractérisées par un type d'interaction très particulier (interactions entre acides aminés basiques et aromatiques) que l'on retrouve justement entre de nombreux neuromédiateurs et récepteurs dans le cerveau. Ces zones de contact évoquent des "synapses moléculaires" qui permettraient la transmission d'une information d'une protéine à l'autre. Il est à noter que l'établissement de la structure cristallographique de la protéine ribosomique bL20 d'une bactérie thermophile, avait déjà montré qu'une information structurale pouvait se propager le long de sa longue extension en hélice, d'une extrémité à l'autre de la protéine.
En outre, ce réseau présente une analogie frappante avec des réseaux de neurones ou avec le cerveau d'organismes simples comme C. elegans qui ne comporte que quelques dizaines de neurones. Comme les neurones, les protéines ribosomiques se répartissent en protéines "sensorielles" qui innervent les sites fonctionnels distants à l'intérieur du ribosome (sites de fixation des tRNAs, des facteurs de traductions et sites qui canalisent la sortie de la protéine synthétisée) et les "inter-protéines" qui établissent des ponts entre-elles. Cette organisation suggère que ce réseau forme une sorte de "cerveau moléculaire" permettant d'échanger et de traiter le flux d'information traversant le ribosome, pour coordonner les différentes étapes et les mouvements complexes pendant la traduction.
Le concept de "cerveau moléculaire" fait faire un grand saut d'échelle dans les propriétés du vivant et en particulier ses systèmes de traitement de l'information. Il ouvre de nouvelles perspectives tant en biologie fondamentale qu'en nanotechnologie.
Il reste maintenant à élucider la nature des signaux échangés entre les protéines et les mécanismes "allostériques" qui permettent la communication et le traitement de l'information au sein de ces réseaux.

Auteur: Internet

Info: http://www.techno-science.net, 12 juin 2016

 

Commentaires: 0

sciences

Notre cerveau: un chaos bien organisé. Une équipe de l'UNIGE décrypte un des mécanismes de la conscience Déchiffrer le mystère de la conscience est le défi majeur des neurosciences actuelles. Dans ce contexte, l'équipe vient de mettre en lumière une caractéristique importante de la pensée consciente. Grâce aux technologies de pointe en neuroimagerie du Brain & Behaviour Laboratory (BBL) et à des méthodes d'analyses mathématiques, cette équipe a montré que la pensée consciente peut se décomposer en une succession de micro-états cérébraux ou "atomes de la pensée". La séquence temporelle de ces micro-états n'est ni aléatoire, ni déterminée, mais chaotique, ce qui signifie qu'elle a une structure, mais qui ne peut pas être anticipée. Cette organisation chaotique de l'activité cérébrale apparaît comme la clef permettant au cerveau de réagir rapidement à des événements inattendus. Cette étude, qui fait l'objet d'une publication dans la revue PNAS, constitue un pas en avant sur la piste de la compréhension de la conscience, ainsi que de certaines maladies mentales. Le fonctionnement de la conscience reste une question encore très mal comprise des scientifiques. Beaucoup ont essayé d'en saisir les fondements en élaborant des modèles théoriques, mais peu ont réellement tenté d'en comprendre l'organisation cérébrale à partir de mesures de l'activité neuronale. Les prof. Dimitri Van De Ville et Christoph Michel, de la Faculté de médecine et du Centre de neurosciences de l'UNIGE, en collaboration avec l'Institut de Bio-ingénierie de l'Ecole polytechnique fédérale de Lausanne (EPFL), ont mis en place une expérience pour mieux saisir comment la pensée spontanée et consciente s'organise. En effet, les chercheurs ont mesuré l'activité cérébrale de volontaires en utilisant simultanément deux méthodes de neuroimagerie du Brain & Behaviour Laboratory (BBL) de l'UNIGE: l'électro-encéphalographie (EEG), qui permet d'obtenir des mesures à des échelles de temps de l'ordre de la milliseconde, et l'imagerie par résonance magnétique fonctionnelle (IRMf), qui permet de suivre l'activité du cerveau sur des échelles de temps de l'ordre de la seconde. Durant les enregistrements, les volontaires devaient laisser libre cours à leurs pensées, sans se focaliser sur une idée particulière. Les signaux provenant de ces enregistrements ont été analysés à l'aide d'outils mathématiques. Les atomes de la pensée A la suite de ces expériences, les scientifiques ont d'abord remarqué que l'activité cérébrale s'organise en une succession de micro-états. Ces micro-états, considérés comme les "atomes de la pensée", sont les éléments constitutifs de la cognition, un peu comme des "morceaux" de pensée. Chaque micro-état correspond à une configuration particulière de l'activité des neurones dans le cerveau. Les chercheurs ont mis en évidence quatre micro-états distincts qui correspondent aux aspects visuels, auditifs, introspectifs et attentionnels de la pensée. Une pensée apparaît donc comme une alternance de composantes visuelles, auditives, introspectives et attentionnelles. Des fractales dans notre cerveau En outre, en appliquant une analyse mathématique avancée sur les mesures faites au moyen de l'EEG et de l'IRMf, les chercheurs ont fait une découverte surprenante: les atomes ou morceaux de pensée se succèdent avec une structure temporelle semblable aux deux échelles de temps. La même structure est ainsi observée tant à l'échelle de l'ordre du dixième de seconde (avec l'EEG) qu'à celle de l'ordre de la dizaine de secondes (avec IRMf). Cette propriété est la caractéristique principale des fractales dans la théorie du chaos. Un objet fractal présente le même motif lorsqu'il est regardé au microscope, à la loupe ou à l'oeil nu. Il semblerait que la durée des micro-états joue un rôle prédominant dans cette organisation fractale de la pensée. "Prenons l'analogie du livre dans lequel les lettres représentent les atomes de la pensée. Ceux-ci se combinent pour former des mots, qui eux-mêmes se combinent pour former des phrases ; les phrases se combinent en paragraphes, et ainsi de suite jusqu'à obtenir un livre, tout cela avec toujours les mêmes règles syntaxiques" explique Christoph Michel, un des auteurs de l'étude. "Ce que nous avons mis en évidence, c'est une syntaxe de la pensée". Fonctionnel grâce au chaos Ce serait donc grâce à cette organisation "chaotique" de la pensée que le cerveau peut se réorganiser et s'adapter très rapidement selon les besoins. Des perturbations dans les micro-états pourraient être à l'origine de certaines maladies mentales. Par exemple, on a observé chez les schizophrènes des micro-états de durée plus courte que la normale, suggérant la présence de pensées inabouties. Suite à cette découverte, les chercheurs vont maintenant pouvoir s'attacher à comprendre cette syntaxe neuronale chez des patients neurologiques et chez des sujets sains qui subissent un changement de l'état de conscience, comme pendant le sommeil.

Auteur: Internet

Info: Université de Genève 21 octobre 2010

[ réflexion ] [ hologramme ] [ désordre ] [ citation s'appliquant à ce logiciel ]

 

Commentaires: 0

extension

La conscience humaine pourrait être un effet de l’entropie 

Une nouvelle étude suggère que la conscience pourrait être une caractéristique émergente découlant de l’effet d’entropie, soit le mécanisme physique faisant que le désordre au sein de tout système ne peut faire qu’augmenter, et par le biais duquel le cerveau maximiserait les échanges d’informations. Cette conclusion a été déduite de l’analyse de l’activité cérébrale de patients épileptiques ou non, indiquant que les états d’éveil normaux (ou conscients) sont associés à des valeurs entropiques maximales.

En thermodynamique, l’entropie se traduit par le passage inéluctable d’un système d’un agencement ordonné à désordonné. La valeur entropique est le niveau de désorganisation de ce système. Les physiciens suggèrent qu’après le Big Bang, l’Univers est progressivement passé d’un état entropique faible à élevé et qu’à l’instar du temps, l’entropie ne peut qu’augmenter au sein d’un système. De leur côté, les neurobiologistes estiment que le principe est transposable à l’organisation de nos connexions neuronales.

La question est de savoir quel type d’organisation neuronale sous-tend les valeurs de synchronisation observées dans les états d’alerte normaux ou non. C’est ce que des chercheurs de l’Université de Toronto et de l’Université de Paris Descartes ont exploré. " Nous avons cherché à identifier les caractéristiques globales de l’organisation du cerveau qui sont optimales pour le traitement sensoriel et qui peuvent guider l’émergence de la conscience ", expliquent-ils dans leur étude, publiée dans la revue Physical Review E.

Les observations de l’activité cérébrale chez l’Homme ont montré qu’elle est sujette à une importante fluctuation au niveau des interactions cellulaires. Cette variabilité serait à la base d’un large éventail d’états, incluant la conscience. D’un autre côté, des travaux antérieurs traitant du fonctionnement cérébral ont suggéré que l’état conscient n’est pas nécessairement associé à des degrés élevés de synchronisation entre les neurones, mais davantage à des niveaux moyens. Les chercheurs de la nouvelle étude ont alors supposé que ce qui est maximisé au cours de cet état n’est pas la connectivité neuronale, mais le nombre de configurations par lesquelles un certain degré de connectivité peut être atteint.

État de conscience = entropie élevée ?

Dans le cadre de leur analyse, les scientifiques ont utilisé la mécanique statistique pour l’appliquer à la modélisation de réseaux neuronaux. Ainsi, cette méthode permet de calculer des caractéristiques thermodynamiques complexes. Parmi ces propriétés figure la manière dont l’activité électrique d’un ensemble de neurones oscille de façon synchronisée avec celle d’un autre ensemble. Cette évaluation permet de déterminer précisément de quelle façon les cellules cérébrales sont liées entre elles.

Selon les chercheurs, il existerait une multitude de façons d’organiser les connexions synaptiques en fonction de la taille de l’ensemble de neurones. Afin de tester leur hypothèse, des données d’émission de champs électriques et magnétiques provenant de 9 personnes distinctes ont été collectées. Parmi les participants, 7 souffraient d’épilepsie. Dans un premier temps, les modèles de connectivité ont été évalués et comparés lorsqu’une partie des volontaires était endormie ou éveillée. Dans un deuxième temps, la connectivité de 5 des patients épileptiques a été analysée, lorsqu’ils avaient des crises de convulsions ainsi que lorsqu’ils étaient en état d’alerte normal. Ces paramètres ont ensuite été rassemblés afin de calculer leurs niveaux d’entropie cérébrale. Le résultat est le même dans l’ensemble des cas : le cerveau affiche une entropie plus élevée lorsqu’il est dans un état de conscience.

Les chercheurs estiment qu’en maximisant l’entropie, le cerveau optimise l’échange d’informations entre les neurones. Cela nous permettrait de percevoir et d’interagir de manière optimale avec notre environnement. Quant à la conscience, ils en ont déduit qu’elle pourrait tout simplement être une caractéristique émergente découlant de cette entropie. Toutefois, ces conclusions sont encore hautement spéculatives en raison des limites que comporte l’étude, telles que le nombre restreint de participants à l’étude. Le terme " entropie " devrait même être considéré avec parcimonie dans ce cadre, selon l’auteur principal de l’étude, Ramon Guevarra Erra de l’Université de Paris Descartes.

De nouvelles expériences sur un échantillon plus large sont nécessaires afin de véritablement corroborer ces résultats. On pourrait aussi évaluer d’autres caractéristiques thermodynamiques par le biais de l’imagerie par résonance magnétique, qui peut être utilisée pour mesurer l’oxygénation — une propriété directement liée au métabolisme et donc à la génération de chaleur (et de ce fait d’augmentation de l’entropie). Des investigations menées en dehors de conditions d’hôpital seraient également intéressantes afin d’évaluer des états de conscience associés à des comportements cognitifs plus subtils. On pourrait par exemple analyser l’activité cérébrale de personnes exécutant une tâche spécifique, comme écouter ou jouer de la musique.

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano - 19 octobre 2023

[ complexification ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

théorie du tout

Notre réalité est pure information. Information géométrique. L'information étant le sens, sous forme de symbolisme. 

D'où la question, quel type d'information pour exprimer un langage géométrique ?

Information implique signification. Mais que veut dire signification ?

C'est une comparaison, c'est à dire la perception de quelque chose relativement à quelque chose d'autre. Ainsi, pour pouvoir exister une chose doit être perçue, ou mesurée, par quelque forme de conscience. 

Einstein a montré que passé et futur existent simultanément dans un objet géométrique ; de fait tous les temps existent conjointement (les mathématiques le montrent de plein de manières). Donc : passé et futur s'influençant sans cesse, tout est toujours dans l'instant présent. Alors, si chaque moment influence et co-crée chaque autre moment dans quelque sens que ce soit, la réalité ne peut qu'être un massif  réseau neuronal qui sillonne l'espace et le temps.

Réseau doté d'une spécificité étonnante. Il serait son propre créateur.

Parallèlement, comme l'a démontré la mécanique quantique, le futur n'est pas prédéterminé. Conséquemment existe le libre-arbitre.

Comment marche le libre-arbitre ? La physique quantique montre que la réalité n'existe que lorsqu'elle est observée. Wheeler déclara en son temps que la réalité est constitué d'informations, elles-mêmes créées par l'observation. Frank Wilczec ajouta ensuite que la physique quantique reste obscure et sujette à débat. Et qu'elle le restera tant qu'on aura pas défini, au sein du formalisme quantique, un observateur, entité moderne dont les conditions et/ou contours correspondent à une caricature reconnaissable de la conscience consciente. C'est à dire une entité, pas nécessairement terrestre, capable d'observer et mesurer.

Mais comment pourrait être cette entité ? Je suis, nous sommes... tous conscient, mais qu'est-.ce que cela veut dire ?

On sait juste que la conscience est liée de manière proche à  la science physique mais personne ne sait dire ce qu'elle hors de l'idée qu'elle joue un rôle central dans l'existence du réel.

Est-elle juste l'émergence d'une boucle de rétroaction de causalité ? Heisenberg développa en son temps les maths matricielles, arrivant à la conclusion que la réalité est pixelliseé en nano unités tridimensionnelles insécables, de la taille la plus petite dans l'échelle de Planck. Chacune (nommée tétrahedron, c'est à dire un polyèdre composé de quatre faces triangulaires) fonctionnant comme nos pixels sur les écrans TV.

Hélas ce qui précède n'apporte aucune preuve que cet espace, le notre, soit un tel ensemble uniforme, homogène, fluide, etc.  Malgré tout, mathématiquement, tout converge vers la consolidation de cette idée d'une pixellisation de la réalité.

Du coup quel code géométrique sera-t'il à même de modéliser cette réalité pixellisée ?

Les recherches au CERN ou ailleurs  sur la physique des particules conduisent toutes vers ce que les physiciens nomment "transformation de symétrie de jauge", chacune menant vers une notion de forme, géomètrique donc.

Mais ici apparait une forme, et pas n'importe laquelle. Il s'agit d'un modèle géométrique à 8 dimensions, plus précisément un crystal 8 D (Rappelons que crystal signifie motif périodique), modèle qu'on pourra se représenter tel un "treillis à 8  dimensions" (E8 lattice), structure 8 D qui présente 240 noeuds, ou points tournants (vertex-vertices), que nous nommons gosset polytope.

Lorsque ce gosset polytope est projeté en 4 dimensions il se métamorphose en deux formes identiques de tailles différentes, dont le ratio est précisément 0,618, c'est à dire celui du nombre d'or, constante fondamentale de la nature qui apparait à toutes les échelles de l'univers connu (par exemple il détermine le moment précis ou un trou noir passe de positif à négatif en étant partie de l'équation qui précise la limite inférieure de son entropie). Il se rapporte aussi à la gravité de la boucle quantique.

Ainsi ce ratio de Fibonnaci unifie les limites inférieures et supérieures (cosmiques - quantique) de la préhension du réel par les scientifiques, physiciens pour grande partie.

Et, si on revient aux maths matricielles qui fonctionnent à partir d'eigen values (Valeur propre, vecteur propre et espace propre) indiquées comme triviales (1,2 ou 0) ou non triviales (pour les nombres plus complexes.) on arrive à la partie intéressante : les deux plus grandes probabilités d'eigenvalues non triviales qui apparaissent dans une matrice binaire sont :

-  le golden ratio  et

-1 sur (over) le nombre d'or.

Tel est le lien très profond qui unit mécanique quantique et cosmologie. Ce ratio, qui est apparu dans un grand nombre d'observations, a cependant toujours été appréhendé par les scientifiques comme un truc d'amateurs. Et maintenant on constate, une fois de plus, que ce nombre d'or apparait vraiment partout.

Pour terminer résumons ici les sept indices que nous donne la nature pour contruire cette théorie du tout (emergence theory)

information

indéterminisme

boucle de causalité

conscience

pixellisation

cristal E 8  (à 8 dimensions)

nombre d'or

Auteur: Anonyme

Info: Youtube - Quantum Gravity Research, What Is Reality? Official Film. https://www.youtube.com/watch?v=w0ztlIAYTCU

[ sciences ] [ septénaire ] [ miroir anthropocentrique ] [ monde humain consensuel ] [ atemporalité ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimie organique

Des chercheurs créent un nouveau composé chimique pour résoudre un problème vieux de 120 ans

L’accès à ces molécules peut avoir des impacts majeurs sur l’agriculture, les produits pharmaceutiques et l’électronique.

(Image - graphique qui représente le composé chimique découvert)  

Pour la première fois, des chimistes du Twin Cities College of Science and Engineering de l'Université du Minnesota ont créé un composé chimique hautement réactif qui échappe aux scientifiques depuis plus de 120 ans. Cette découverte pourrait conduire à de nouveaux traitements médicamenteux, à des produits agricoles plus sûrs et à une meilleure électronique.

Depuis des décennies, les chercheurs étudient des molécules appelées N-hétéroarènes, qui sont des composés chimiques en forme d'anneau contenant un ou plusieurs atomes d'azote. Les molécules bioactives ayant un noyau N-hétéroarène sont largement utilisées pour de nombreuses applications médicales, pharmaceutiques vitales, pesticides et herbicides, et même dans l'électronique.

"Bien que la personne moyenne ne pense pas quotidiennement aux hétérocycles, ces molécules uniques contenant de l'azote sont largement utilisées dans toutes les facettes de la vie humaine", a déclaré Courtney Roberts, auteur principal de l'étude et professeur au département de chimie de l'Université du Minnesota.

Ces molécules sont très recherchées par de nombreuses industries, mais sont extrêmement difficiles à fabriquer pour les chimistes. Les stratégies précédentes ont pu cibler ces molécules spécifiques, mais les scientifiques n’ont pas réussi à créer une série de ces molécules. L’une des raisons à cela est que ces molécules sont extrêmement réactives. Elles sont si actives que les chimistes ont utilisé la modélisation informatique pour prédire qu’elles devraient être impossibles à réaliser. Cela a créé des défis pendant plus d’un siècle et a empêché de trouver une solution pour créer cette substance chimique.

"Ce que nous avons pu faire, c'est exécuter ces réactions chimiques avec un équipement spécialisé tout en éliminant les éléments couramment présents dans notre atmosphère", a déclaré Jenna Humke, étudiante diplômée en chimie à l'Université du Minnesota et auteur principal de l'article. " Heureusement, nous disposons des outils nécessaires pour le faire à l’Université du Minnesota. Nous avons mené des expériences sous azote dans une boîte à gants à chambre fermée, ce qui crée un environnement chimiquement inactif pour tester et déplacer les échantillons."

Ces expériences ont été réalisées en utilisant la catalyse organométallique, l'interaction entre les métaux et les molécules organiques. La recherche a nécessité une collaboration entre des chimistes organiques et inorganiques. C'est quelque chose de courant à l'Université du Minnesota.

"Nous avons pu résoudre ce défi de longue date parce que le département de chimie de l'Université du Minnesota est unique en ce sens que nous n'avons pas de divisions formelles", a ajouté Roberts. " Cela nous permet de constituer une équipe d’experts dans tous les domaines de la chimie, ce qui a été un élément essentiel pour mener à bien ce projet. "

Après avoir présenté le composé chimique dans cet article, les prochaines étapes consisteront à le rendre largement accessible aux chimistes de plusieurs domaines afin de rationaliser le processus de création. Cela pourrait aider à résoudre des problèmes importants tels que la prévention de la pénurie alimentaire et le traitement des maladies pour sauver des vies.

Aux côtés de Roberts et Humke, l'équipe de recherche de l'Université du Minnesota comprenait le chercheur postdoctoral Roman Belli, les étudiants diplômés Erin Plasek, Sallu S. Kargbo et l'ancienne chercheuse postdoctorale Annabel Ansel.  



(Résumé : jusqu'à quel point une triple liaison carbone-carbone peut-elle être confinée ? Avec les réactions motrices appropriées, il est devenu simple de comprimer le motif dans des anneaux à six chaînons tels que le benzyne et de récolter les bénéfices de la réactivité rapide favorisée par la contrainte. Cependant, les anneaux à cinq chaînons ont eu tendance à être trop serrés. Humke et al. rapportent maintenant que la coordination par le nickel peut soulager la contrainte juste assez pour stabiliser une triple liaison dans la partie pentagonale des azaindoles. Ces complexes azaindolynes ont été caractérisés cristallographiquement et ont réagi avec des nucléophiles et des électrophiles.  Jake S. Yeston

La liaison au nickel permet d'isoler et de réactiver des 7-aza-2,3-indolynes auparavant inaccessibles

Les N-hétéroaromatiques sont des éléments clés des produits pharmaceutiques, agrochimiques et des matériaux. Les N-hétéroarynes fournissent un échafaudage pour construire ces molécules essentielles, mais ils sont sous-utilisés parce que les N-hétéroarynes à cinq chaînons ont été largement inaccessibles en raison de la contrainte d'une triple liaison dans un anneau aussi petit. Sur la base des principes d'interactions métal-ligand qui sont fondamentaux pour la chimie organométallique, nous rapportons dans ce travail la stabilisation des N-hétéroarynes à cinq chaînons dans la sphère de coordination du nickel. Une série de complexes 1,2-bis(dicyclohexylphosphino)éthane-nickel 7-azaindol-2,3-yne ont été synthétisés et caractérisés par cristallographie et spectroscopie. La réactivité ambiphile des complexes de nickel 7-azaindol-2,3-yne a été observée avec de multiples partenaires de couplage nucléophiles, électrophiles et énophiles.)

Auteur: Internet

Info: https://www.eurekalert.org/ https://www.science.org/doi/10.1126/science.adi1606?adobe_mc=MCMID%3D03744988943267014683426377033153538910%7CMCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1714721362, 2 mai 2024

[ nanomonde ] [ N-hétéroarènes ] [ N-heterocycles ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

nanomonde

Pour la première fois, des physiciens observent des tourbillons d’électrons !

À l’instar de ce tourbillon d’eau, il peut exister des tourbillons d’électrons sous certaines conditions.

Des chercheurs du MIT aux États-Unis et de l’Institut Weismann en Israël ont réussi à apercevoir ce phénomène pour la première fois ! Prévu depuis de longues années, mais jamais observé, ce comportement caractéristique des fluides pourrait servir à la mise au point de systèmes électroniques à très basse consommation.

Qu’est-ce que des tourbillons d’électrons ?

Les tourbillons d’électrons observés par les scientifiques se comportent comme des fluides. Un fluide est constitué de particules pouvant s’écouler librement et peut être un liquide, un gaz et un plasma.

Un fluide est caractérisé par une grande mobilité de ses molécules. Celles-ci peuvent se mouvoir sans être limitées à une position précise comme dans les solides. Bien que tous les fluides soient compressibles, les gaz le sont beaucoup plus que les liquides et les plasmas. Les molécules des fluides sont maintenues entre elles par des forces d’interactions faibles. Elle sont appelées forces de Van der Walls qui assurent leur cohésion au sein du fluide.

L’eau reste le fluide le plus abondant sur Terre capable de s’écouler librement pour former les ruisseaux, les rivières et de vastes étendues d’eau. Telles que les lacs, les mers et les océans par exemple. Ces masses d’eau sont sujettes à la formation de courants, de vagues et de tourbillons.

On pourrait se demander si un courant électrique constitué d’un ensemble d’électrons en mouvement peut se comporter comme un fluide. Dans des conditions normales, les électrons qui sont infiniment plus petits que des molécules d’eau sont influencés par leur environnement. Par exemple le métal qu’ils traversent. Et  ils ne se comportent pas comme un fluide.

Cependant, la théorie prévoit depuis bien longtemps qu’à des températures très basses proches du zéro absolu (-273 °C), les électrons peuvent s’écouler à la manière d’un fluide pour autant que le matériau dans lequel ils circulent soit pur et sans aucun défaut. Jusqu’à aujourd’hui, cette théorie n’avait jamais été observée.

Les électrons peuvent former un fluide visqueux

Normalement, lorsque des électrons circulent au sein d’un matériau conducteur tel qu’un fil de cuivre, ou dans un matériau semi-conducteur comme le silicium, leur trajectoire est influencée par la présence d’impuretés au sein du matériau. Les vibrations des atomes qui composent le matériau conducteur ou semi-conducteur influencent aussi la trajectoire et le déplacement des électrons. Chaque électron se comporte alors comme une particule individuelle.

Par contre, dans un matériau d’une très grande pureté, dans lequel toutes les impuretés auraient été supprimées, les électrons ne se comportent plus comme des particules individuelles. Ils agissent alors comme des particules quantiques, chaque électron captant les comportements quantiques de ses congénères. Les électrons se déplacent ensemble et forment ce que les physiciens appellent un fluide électronique visqueux.

Il y a quelques années des chercheurs de l’université de Manchester en Angleterre avaient déjà prouvé que des électrons étaient capables de se comporter en fluide. Ceci en réalisant une expérience avec du graphène. Ce matériau est un simple feuillet constitué uniquement d’atomes de carbone disposés suivant un motif hexagonal et de l’épaisseur d’un atome. En faisant passer un courant électrique dans un mince canal "creusé" dans ce matériau, ils se sont rendu compte que la conductance des électrons était bien supérieure à la conductance des électrons libres. Les électrons s’écoulaient donc comme un fluide régulier.

L’une des caractéristiques les plus étonnantes d’un fluide comme l’eau est sa capacité à produire un tourbillon lorsqu’elle s’écoule. Les chercheurs du MIT et de l’institut Weismann ont tenté de découvrir si les électrons peuvent aussi s’écouler sous la forme de tourbillons.

Pour le vérifier, les chercheurs ont utilisé du ditelluride de tungstène de formule chimique WTe2, un composé semi-métallique extrêmement pur et présentant des propriétés quantiques lorsqu’il est épais de seulement un atome. Pour effectuer une comparaison avec un métal ordinaire, ils ont utilisé de fines paillettes d’or.

Ils ont gravé dans les fines paillettes de ditelluride de tungstène et dans celles d’or, un fin canal relié, au niveau de la moitié du canal, à deux chambres circulaires situées de part et d’autre du canal. Ces deux systèmes ont ensuite été placés à une température de -268,6 °C, proche du zéro absolu, puis les canaux ont été soumis au passage d’un courant électrique.

En réalisant des mesures en différents points, les chercheurs se sont rendu compte que dans l’or, le flux d’électrons se dirigeait toujours dans la même direction, que ce soit dans les deux chambres adjacentes et dans le canal.

Par contre, dans le ditelluride de tungstène, les électrons se sont mis à former des tourbillons dans les deux chambres circulaires en inversant leur direction. Puis sont revenus dans le canal central.

Ces résultats très encourageants sont probablement le signe d’un nouveau type d’écoulement hydrodynamique dans des cristaux très fin  d’une grande pureté. Cela ouvre la voie à la création de nouveaux dispositifs électronique nécessitant de faibles puissances de fonctionnement.

Auteur: Internet

Info: https://www.science-et-vie.com, 6 fév 2023, Source, revue Nature, juillet 2022 : Aharon-Steinberg, A., Völkl, T., Kaplan, A. et al.,”Direct observation of vortices in an electron fluid », Nature, 607, 74–80 (2022), https://doi.org/10.1038/s41586-022-04794-y

[ fermion(s) ] [ aquosité ] [ hydrodynamique ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

nano-monde relatif

Une expérience quantique montre que la réalité objective n'existe pas

Les faits alternatifs se répandent comme un virus dans la société. Aujourd'hui, il semble qu'ils aient même infecté la science, du moins le domaine quantique. Ce qui peut sembler contre-intuitif. Après tout, la méthode scientifique est fondée sur les notions de fiabilité d'observation, de mesure et de répétabilité. Un fait, tel qu'établi par une mesure, devrait être objectif, de sorte que tous les observateurs puissent en convenir.

Mais dans un article récemment publié dans Science Advances, nous montrons que, dans le micro-monde des atomes et des particules régi par les règles étranges de la mécanique quantique, deux observateurs différents ont droit à leurs propres faits. En d'autres termes, selon nos  meilleures théories des éléments constitutifs de la nature elle-même, les faits peuvent en fait être subjectifs.

Les observateurs sont des acteurs puissants dans le monde quantique. Selon la théorie, les particules peuvent se trouver dans plusieurs endroits ou états à la fois - c'est ce qu'on appelle une superposition. Mais curieusement, ce n'est le cas que lorsqu'elles ne sont pas observées. Dès que vous observez un système quantique, il choisit un emplacement ou un état spécifique, ce qui rompt la superposition. Le fait que la nature se comporte de cette manière a été prouvé à de multiples reprises en laboratoire, par exemple dans la célèbre expérience de la double fente.

En 1961, le physicien Eugene Wigner a proposé une expérience de pensée provocante. Il s'est demandé ce qui se passerait si l'on appliquait la mécanique quantique à un observateur qui serait lui-même observé. Imaginez qu'un ami de Wigner lance une pièce de monnaie quantique - qui se trouve dans une superposition de pile ou face - dans un laboratoire fermé. Chaque fois que l'ami lance la pièce, il obtient un résultat précis. On peut dire que l'ami de Wigner établit un fait : le résultat du lancer de la pièce est définitivement pile ou face.

Wigner n'a pas accès à ce fait de l'extérieur et, conformément à la mécanique quantique, il doit décrire l'ami et la pièce comme étant dans une superposition de tous les résultats possibles de l'expérience. Tout ça parce qu'ils sont " imbriqués " - connectés de manière effrayante au point que si vous manipulez l'un, vous manipulez également l'autre. Wigner peut maintenant vérifier en principe cette superposition à l'aide d'une "expérience d'interférence", un type de mesure quantique qui permet de démêler la superposition d'un système entier, confirmant ainsi que deux objets sont intriqués.

Lorsque Wigner et son ami compareront leurs notes par la suite, l'ami insistera sur le fait qu'ils ont observé des résultats précis pour chaque lancer de pièce. Wigner, cependant, ne sera pas d'accord lorsqu'il observera l'ami et la pièce dans une superposition. 

Voilà l'énigme. La réalité perçue par l'ami ne peut être réconciliée avec la réalité extérieure. À l'origine, Wigner ne considérait pas qu'il s'agissait d'un paradoxe, il affirmait qu'il serait absurde de décrire un observateur conscient comme un objet quantique. Cependant, il s'est ensuite écarté de cette opinion. De plus et, selon les canons officiels de mécanique quantique, la description est parfaitement valide.

L'expérience

Le scénario demeura longtemps une expérience de pensée intéressante. Mais reflètait-t-il la réalité ? Sur le plan scientifique, peu de progrès ont été réalisés à ce sujet jusqu'à très récemment, lorsque Časlav Brukner, de l'université de Vienne, a montré que, sous certaines hypothèses, l'idée de Wigner peut être utilisée pour prouver formellement que les mesures en mécanique quantique sont subjectives aux observateurs.

Brukner a proposé un moyen de tester cette notion en traduisant le scénario de l'ami de Wigner dans un cadre établi pour la première fois par le physicien John Bell en 1964.

Brukner a ainsi conçu deux paires de Wigner et de ses amis, dans deux boîtes distinctes, effectuant des mesures sur un état partagé - à l'intérieur et à l'extérieur de leur boîte respective. Les résultats pouvant  être récapitulés pour être finalement utilisés pour évaluer une "inégalité de Bell". Si cette inégalité est violée, les observateurs pourraient avoir des faits alternatifs.

Pour la première fois, nous avons réalisé ce test de manière expérimentale à l'université Heriot-Watt d'Édimbourg sur un ordinateur quantique à petite échelle, composé de trois paires de photons intriqués. La première paire de photons représente les pièces de monnaie, et les deux autres sont utilisées pour effectuer le tirage au sort - en mesurant la polarisation des photons - à l'intérieur de leur boîte respective. À l'extérieur des deux boîtes, il reste deux photons de chaque côté qui peuvent également être mesurés.

Malgré l'utilisation d'une technologie quantique de pointe, il a fallu des semaines pour collecter suffisamment de données à partir de ces seuls six photons afin de générer suffisamment de statistiques. Mais finalement, nous avons réussi à montrer que la mécanique quantique peut effectivement être incompatible avec l'hypothèse de faits objectifs - nous avions violé l'inégalité.

La théorie, cependant, repose sur quelques hypothèses. Notamment que les résultats des mesures ne sont pas influencés par des signaux se déplaçant à une vitesse supérieure à celle de la lumière et que les observateurs sont libres de choisir les mesures à effectuer. Ce qui peut être le cas ou non.

Une autre question importante est de savoir si les photons uniques peuvent être considérés comme des observateurs. Dans la proposition de théorie de Brukner, les observateurs n'ont pas besoin d'être conscients, ils doivent simplement être capables d'établir des faits sous la forme d'un résultat de mesure. Un détecteur inanimé serait donc un observateur valable. Et la mécanique quantique classique ne nous donne aucune raison de croire qu'un détecteur, qui peut être conçu comme aussi petit que quelques atomes, ne devrait pas être décrit comme un objet quantique au même titre qu'un photon. Il est également possible que la mécanique quantique standard ne s'applique pas aux grandes échelles de longueur, mais tester cela reste un problème distinct.

Cette expérience montre donc que, au moins pour les modèles locaux de la mécanique quantique, nous devons repenser notre notion d'objectivité. Les faits dont nous faisons l'expérience dans notre monde macroscopique semblent ne pas être menacés, mais une question majeure se pose quant à la manière dont les interprétations existantes de la mécanique quantique peuvent tenir compte des faits subjectifs.

Certains physiciens considèrent que ces nouveaux développements renforcent les interprétations qui autorisent plus d'un résultat pour une observation, par exemple l'existence d'univers parallèles dans lesquels chaque résultat se produit. D'autres y voient une preuve irréfutable de l'existence de théories intrinsèquement dépendantes de l'observateur, comme le bayésianisme quantique, dans lequel les actions et les expériences d'un agent sont au cœur de la théorie. D'autres encore y voient un indice fort que la mécanique quantique s'effondrera peut-être au-delà de certaines échelles de complexité.

Il est clair que nous avons là de profondes questions philosophiques sur la nature fondamentale de la réalité.

Quelle que soit la réponse, un avenir intéressant nous attend.

Auteur: Internet

Info: https://www.livescience.com/objective-reality-not-exist-quantum-physicists.html. Massimiliano Proietti et Alessandro Fedrizzi, 19 janvier 2022

 

Commentaires: 0

Ajouté à la BD par miguel

chaînon manquant

L'HUMANITÉ AURAIT ELLE FRÔLÉ L'EXTINCTION ?

"1 280 individus seulement : l'humanité a failli disparaître il y a près d'un million d'années

Une étude parue dans Science révèle que population humaine pourrait s'être maintenue à environ 1 300 individus pendant une centaine de milliers d'années. Une "presque extinction" qui pourrait avoir joué un rôle majeur dans l'évolution des hommes modernes et de parents disparus, les Néandertaliens et Dénisoviens.

Il y a près d’un million d’années, un événement dévastateur a presque anéanti nos ancêtres. Les données génomiques de 3 154 humains modernes suggèrent qu'à ce moment, la population aurait été réduite d’environ 100 000 à seulement 1 280 individus reproducteurs — soit un déclin démographique d'ampleur (98,7 %) sur une durée de 117 000 ans, qui aurait pu conduire l’humanité à l’extinction.

Le fait que vous puissiez lire cet article, et que la population mondiale atteigne aujourd'hui les plus de 8 milliards (chiffres de novembre 2022), montre bien que cela n'a pas été le cas. Mais les résultats de cette récente étude, publiée dans la revue Science le 31 août 2023, permettraient d'expliquer l'écart déjà observé entre les archives fossiles humaines d'Afrique et d'Eurasie durant le Pléistocène.

La génétique pour comprendre l'évolution de la lignée humaine

Les datations récentes situent les plus anciens Homo sapiens il y a environ 300 000 ans, en Afrique. Seulement, avec si peu de fossiles datant de cette époque parvenus jusqu'à nous, la manière dont la lignée humaine a évolué avant l'émergence de l'espèce reste plutôt incertaine.

Pour en savoir plus sur cette très secrète période, proche de l’évolution de l’Homme moderne, une équipe a étudié le génome de plus de 3 150 humains actuels. Des individus issus de dix populations africaines et de quarante populations non africaines, plus précisément.

Elle a pour cela développé un nouvel outil analytique, le "processus de coalescence rapide en temps infinitésimal" (FitCoal). Grossièrement, le FitCoal leur a permis, en examinant la diversité des séquences génétiques observées chez les descendants et comment elles ont divergé au fil du temps, de déduire la taille des groupes composant leurs lointains ancêtres.

Leurs résultats ont ainsi révélé un "goulot d'étranglement démographique" important il y a environ 930 000 à 813 000 ans, c'est-à-dire un épisode de réduction sévère de la population — suivi d'une nouvelle expansion démographique, d'où les termes de "goulot d'étranglement".

Un risque élevé d'extinction lié aux changements climatiques ?

Dans l'étude de l'évolution d'une espèce, les goulots d'étranglement démographiques liés à une guerre, une famine ou encore une crise climatique, ne sont pas rares. La baisse de la diversité génétique qui en résulte peut même être retracée jusqu’à la descendance des survivants.

C’est ainsi que les scientifiques ont pu en déduire qu'un tel phénomène s'est produit plus récemment, il y a environ 7 000 ans, dans la population humaine de l’hémisphère nord.

Toutefois, le cas du goulot d'étranglement bien plus ancien semble avoir été d'une gravité particulièrement exceptionnelle, puisque le groupe a alors perdu 65,85 % de sa diversité génétique et environ 98,7 % de sa population reproductrice, selon les données. Pendant plus ou moins 117 000 ans, cette dernière aurait été limitée à environ 1 280 individus.

Nos ancêtres ont connu un goulot d'étranglement démographique si grave pendant très longtemps qu'ils ont été confrontés à un risque élevé d'extinction. — Wangjie Hu, coauteur principal de l'étude de l'École de médecine du Mont Sinaï à New York (États-Unis) interrogé par LiveScience.

S'il est aujourd'hui difficile d'établir avec certitude les différents facteurs qui ont mené à ce goulot d'étranglement, un événement majeur semble coïncider dans les datations : la transition du milieu du Pléistocène (il y a entre 1,25 et 0,7 million d’années), où la Terre s'est vue sévèrement refroidie en raison de l'allongement des cycles glaciaires et interglaciaires.

Les glaciers ont émergé, les températures des océans ont diminué… et de longues sécheresses ont touché l'Afrique et en Eurasie. Pour les populations humaines luttant alors pour leur survie, ces conditions plus que défavorables auraient pu entraîner famines et conflits. La disparition d'autres espèces, sources de nourritures, pourrait aussi avoir contribué à leur déclin.

Encore une fois, les conséquences de ces bouleversements climatiques ne peuvent être constatées, tant les fossiles et les artefacts humains de cette période sont relativement rares. Peut-être, parce que la population était si faible durant cette fameuse période.

Cette donnée permet en tout cas d'enfin expliquer chronologiquement "l'écart entre les archives fossiles africaines et eurasiennes [...] au début de l'âge de pierre". "[Cet écart] coïncide avec la période proposée de perte significative de preuves fossiles", explique en effet l'anthropologue Giorgio Manzi de l'université Sapienza de Rome (Italie), coauteur principal de l'étude dans un communiqué.

Un changement de génome et une divergence des hominidés

Ce goulot d'étranglement pourrait aussi avoir contribué à une caractéristique du génome humain : la fusion de deux chromosomes en un seul, le chromosome 2. Les autres hominidés encore vivants, dont les grands singes, en possèdent en effet 24 paires, nous, 23. Cet événement de spéciation semble d'ailleurs avoir contribué à ce que les humains prennent une voie évolutive différente. Expliquons.

Des recherches ont déjà suggéré que le dernier ancêtre commun, partagé par les Hommes modernes (Homo Sapiens), les Néandertaliens (Homo neanderthalensis) et les Dénisoviens (Homo denisovensis), vivait il y a environ 765 000 à 550 000 ans… soit à peu en même temps que le phénomène décrit.

Si dernier ancêtre commun a vécu pendant ou peu après le goulot d'étranglement, celui-ci aurait pu jouer un rôle dans la division des groupes d'hominidés, suggèrent les chercheurs : la population pourrait s'être séparée en de petits groupes survivants, qui, au fil du temps, auraient développé des caractéristiques suffisamment importantes pour que les différents groupes deviennent distincts — avec d'une part l'Homme moderne, d'autre part l'Homme de Néandertal et l'Homme de Denisova.

Or, c'est aussi il y a environ 900 000 à 740 000 ans, que les deux chromosomes anciens semblent avoir convergé. Et puisque tout cela coïncide, les nouvelles découvertes suggèrent finalement que la quasi-éradication de l'homme pourrait avoir un lien avec ce changement majeur dans le génome humain.

En outre, "puisque les Néandertaliens et les Dénisoviens partagent cette fusion avec nous, elle a dû se produire avant que nos lignées ne se séparent", suggère à nos confrères Chris Stringer, paléoanthropologue au Musée d'histoire naturelle de Londres (Angleterre) qui n'a pas participé à l'étude.

"Brosser un tableau complet de l'évolution humaine"

Si la lutte pour la survie, il y a environ 930 000 à 813 000 ans, semble avoir joué un rôle dans la formation des chromosomes de l'Homme moderne, l'inverse est-il vrai ?

L'équipe suggère plutôt qu'un climat plus hospitalier il y a environ 813 000 ans, ainsi que la maîtrise du feu, sont des facteurs cruciaux qui pourraient avoir permis à nos ancêtres de rebondir. De plus amples recherches seront nécessaires pour y voir plus clair, ainsi que pour établir si la sélection naturelle qui a eu lieu durant cette période a accéléré l'évolution du cerveau humain.

Ces résultats ne sont qu'un début. — Haipeng Li, généticien théorique des populations et biologiste informatique de l'Académie chinoise des sciences, coauteur principal dans le communiqué.

Les objectifs futurs de ces connaissances visent à brosser un tableau plus complet de l'évolution humaine au cours de cette période de transition entre le Pléistocène précoce et le Pléistocène moyen, ce qui permettra à son tour de continuer à percer le mystère de l'ascendance et de l'évolution de l'homme primitif.

Auteur: Internet

Info: https://www.science.org, 31 aout 2023, trad et résumé Mathilde Ragot

[ paléolithique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Les progrès récents de l'intelligence artificielle (IA), notamment avec ChatGPT en novembre 2022, ont suscité interrogations, espoirs et craintes, menant à des auditions par le Congrès américain et l'adoption d'une réglementation par l'UE au printemps 2023. 

Dans les parlements comme sur les réseaux sociaux, les rapides progrès de l’IA animent les discussions. À l’avenir, à quels impacts faut-il s’attendre sur notre société ? Pour tenter de répondre à cette question de manière dépassionnée, nous proposons de regarder ce qui s’est passé dans un secteur qui a déjà connu l’arrivée et la victoire de l’IA sur les capacités humaines : les échecs. La machine y a en effet un niveau supérieur à celui des humains depuis maintenant plus d’un quart de siècle.

Pourquoi le jeu d’échecs comme indicateur ?

Depuis les débuts de l’informatique, les échecs ont été utilisés comme un indicateur des progrès logiciels et matériels. C’est un jeu intéressant à de multiples niveaux pour étudier les impacts des IA sur la société :

1 C’est une activité intellectuelle qui demande différentes compétences : visualisation spatiale, mémoire, calcul mental, créativité, capacité d’adaptation, etc., compétences sur lesquelles l’IA vient concurrencer l’esprit humain.

2 Le jeu n’a pas changé depuis des siècles. Les règles sont bien établies et cela donne une base stable pour étudier l’évolution des joueurs.

3  Il est possible de mesurer la force des machines de manière objective et de comparer ce niveau à celui des humains avec le classement Elo.

4 Le champ d’études est restreint : il est clair que les échecs ne sont qu’un tout petit aspect de la vie, mais c’est justement le but. Cette étroitesse du sujet permet de mieux cibler les impacts des IA sur la vie courante.

5  Les IA ont dépassé le niveau des meilleurs joueurs humains depuis plus de 20 ans. Il est donc possible de voir quels ont été les impacts concrets sur le jeu d’échecs et la vie de sa communauté, qui peut être vue comme un microcosme de la société. On peut également étudier ces impacts en regard de la progression des IA au cours du temps.

Explorons quelles ont été les évolutions dans le monde des échecs depuis que Gary Kasparov, alors champion du monde en titre, a perdu une partie contre Deep Blue en 1996, puis le match revanche joué en 1997. Nous allons passer en revue plusieurs thèmes qui reviennent dans la discussion sur les risques liés aux IA et voir ce qu’il en a été de ces spéculations dans le domaine particulier des échecs.

Les performances de l’IA vont-elles continuer à augmenter toujours plus vite ?

Il existe deux grandes écoles pour programmer un logiciel d’échecs : pendant longtemps, seule la force brute fonctionnait. Il s’agissait essentiellement de calculer le plus vite possible pour avoir un arbre de coups plus profonds, c’est-à-dire capable d’anticiper la partie plus loin dans le futur.

(Image : À partir d’une position initiale, l’ordinateur calcule un ensemble de possibilités, à une certaine profondeur, c’est-à-dire un nombre de coups futurs dans la partie.)

Aujourd’hui, la force brute est mise en concurrence avec des techniques d’IA issues des réseaux de neurones. En 2018, la filiale de Google DeepMind a produit AlphaZero, une IA d’apprentissage profond par réseau de neurones artificiels, qui a appris tout seul en jouant contre lui-même aux échecs. Parmi les logiciels les plus puissants de nos jours, il est remarquable que LC0, qui est une IA par réseau de neurones, et Stockfish, qui est essentiellement un logiciel de calcul par force brute, aient tous les deux des résultats similaires. Dans le dernier classement de l’Association suédoise des échecs sur  ordinateur (SSDF), ils ne sont séparés que de 4 points Elo : 3 582 pour LC0 contre 3 586 pour Stockfish. Ces deux manières totalement différentes d’implanter un moteur d’échecs sont virtuellement indistinguables en termes de force.

En termes de points Elo, la progression des machines a été linéaire. Le graphique suivant donne le niveau du meilleur logiciel chaque année selon le classement SSDF qui a commencé depuis le milieu des années 1980. Le meilleur logiciel actuel, LC0, en est à 3586, ce qui prolonge la figure comme on pourrait s’y attendre.

(Image : courbe du classement ELO )

Cette progression linéaire est en fait le reflet d’une progression assez lente des logiciels. En effet, le progrès en puissance de calcul est, lui, exponentiel. C’est la célèbre loi de Moore qui stipule que les puissances de calcul des ordinateurs doublent tous les dix-huit mois.

Cependant, Ken Thompson, informaticien américain ayant travaillé dans les années 80 sur Belle, à l’époque le meilleur programme d’échecs, avait expérimentalement constaté qu’une augmentation exponentielle de puissance de calcul conduisait à une augmentation linéaire de la force des logiciels, telle qu’elle a été observée ces dernières dizaines d’années. En effet, le fait d’ajouter un coup supplémentaire de profondeur de calcul implique de calculer bien plus de nouvelles positions. On voit ainsi que l’arbre des coups possibles est de plus en plus large à chaque étape.

Les progrès des IA en tant que tels semblent donc faibles : même si elles ne progressaient pas, on observerait quand même une progression de la force des logiciels du simple fait de l’amélioration de la puissance de calcul des machines. On ne peut donc pas accorder aux progrès de l’IA tout le crédit de l’amélioration constante des ordinateurs aux échecs.

La réception par la communauté de joueurs d’échecs

Avec l’arrivée de machines puissantes dans le monde de l'échiquier, la communauté a nécessairement évolué. Ce point est moins scientifique mais est peut-être le plus important. Observons quelles ont été ces évolutions.

" Pourquoi les gens continueraient-ils de jouer aux échecs ? " Cette question se posait réellement juste après la défaite de Kasparov, alors que le futur des échecs amateurs et professionnels paraissait sombre. Il se trouve que les humains préfèrent jouer contre d’autres humains et sont toujours intéressés par le spectacle de forts grands maîtres jouant entre eux, et ce même si les machines peuvent déceler leurs erreurs en temps réel. Le prestige des joueurs d’échecs de haut niveau n’a pas été diminué par le fait que les machines soient capables de les battre.

Le style de jeu a quant à lui été impacté à de nombreux niveaux. Essentiellement, les joueurs se sont rendu compte qu’il y avait beaucoup plus d’approches possibles du jeu qu’on le pensait. C’est l’académisme, les règles rigides, qui en ont pris un coup. Encore faut-il réussir à analyser les choix faits par les machines. Les IA sont par ailleurs très fortes pour pointer les erreurs tactiques, c’est-à-dire les erreurs de calcul sur de courtes séquences. En ligne, il est possible d’analyser les parties de manière quasi instantanée. C’est un peu l’équivalent d’avoir un professeur particulier à portée de main. Cela a sûrement contribué à une augmentation du niveau général des joueurs humains et à la démocratisation du jeu ces dernières années. Pour le moment, les IA n’arrivent pas à prodiguer de bons conseils en stratégie, c’est-à-dire des considérations à plus long terme dans la partie. Il est possible que cela change avec les modèles de langage, tel que ChatGPT.

Les IA ont aussi introduit la possibilité de tricher. Il y a eu de nombreux scandales à ce propos, et on se doit de reconnaître qu’il n’a pas à ce jour de " bonne solution " pour gérer ce problème, qui rejoint les interrogations des professeurs, qui ne savent plus qui, de ChatGPT ou des étudiants, leur rendent les devoirs.

Conclusions temporaires

Cette revue rapide semble indiquer qu’à l’heure actuelle, la plupart des peurs exprimées vis-à-vis des IA ne sont pas expérimentalement justifiées. Le jeu d’échecs est un précédent historique intéressant pour étudier les impacts de ces nouvelles technologies quand leurs capacités se mettent à dépasser celles des humains. Bien sûr, cet exemple est très limité, et il n’est pas possible de le généraliser à l’ensemble de la société sans précaution. En particulier, les modèles d’IA qui jouent aux échecs ne sont pas des IA génératives, comme ChatGPT, qui sont celles qui font le plus parler d’elles récemment. Néanmoins, les échecs sont un exemple concret qui peut être utile pour mettre en perspective les risques associés aux IA et à l’influence notable qu’elles promettent d’avoir sur la société.


Auteur: Internet

Info: https://www.science-et-vie.com/ - Article issu de The Conversation, écrit par Frédéric Prost Maître de conférences en informatique, INSA Lyon – Université de Lyon 14 avril 2024

[ ouverture ] [ conformisme limitant ]

 

Commentaires: 0

Ajouté à la BD par miguel

mimétisme

La surexposition a déformé la science des neurones miroirs

Après une décennie passée à l’écart des projecteurs, les cellules cérébrales autrefois censées expliquer l’empathie, l’autisme et la théorie de l’esprit sont en train d’être affinées et redéfinies.

Au cours de l'été 1991, le neuroscientifique Vittorio Gallese étudiait la représentation du mouvement dans le cerveau lorsqu'il remarqua quelque chose d'étrange. Lui et son conseiller de recherche, Giacomo Rizzolatti, de l'Université de Parme, suivaient les neurones qui devenaient actifs lorsque les singes interagissaient avec certains objets. Comme les scientifiques l'avaient déjà observé, les mêmes neurones se déclenchaient lorsque les singes remarquaient les objets ou les ramassaient.

Mais ensuite, les neurones ont fait quelque chose auquel les chercheurs ne s'attendaient pas. Avant le début officiel de l'expérience, Gallese a saisi les objets pour les montrer à un singe. À ce moment-là, l’activité a augmenté dans les mêmes neurones qui s’étaient déclenchés lorsque le singe avait saisi les objets. C’était la première fois que quelqu’un observait des neurones coder des informations à la fois pour une action et pour un autre individu effectuant cette action.

Ces neurones firent penser à un miroir aux chercheurs : les actions observées par les singes se reflétaient dans leur cerveau à travers ces cellules motrices particulières. En 1992, Gallese et Rizzolatti ont décrit pour la première fois ces cellules dans la revue Experimental Brain Research , puis en 1996 les ont nommées " neurones miroirs " dans Brain.

Les chercheurs savaient qu’ils avaient trouvé quelque chose d’intéressant, mais rien n’aurait pu les préparer à la réaction du reste du monde. Dix ans après la découverte, l’idée d’un neurone miroir était devenue un des rare concept neuroscientifique capable de captiver l’imagination du public. De 2002 à 2009, des scientifiques de toutes disciplines se sont joints aux vulgarisateurs scientifiques pour faire sensation sur ces cellules, leur attribuant davantage de propriétés permettant d'expliquer des comportements humains aussi complexes que l'empathie, l'altruisme, l'apprentissage, l'imitation, l'autisme et la parole.

Puis, presque aussi rapidement que les neurones miroirs ont émergé les doutes scientifiques quant à leur pouvoir explicatif. En quelques années, ces cellules de célébrités ont été classées dans le tiroir des découvertes prometteuses pas à la hauteur des espérances.

Pourtant, les résultats expérimentaux originaux sont toujours valables. Les neurones du cortex prémoteur et des zones cérébrales associées reflètent des comportements. Même s'ils n'expliquent pas facilement de vastes catégories de l'expérience humaine, les neurones miroirs " sont vivants et actifs ", a déclaré Gallese.

Aujourd'hui, une nouvelle génération de neuroscientifiques sociaux relance les travaux pour étudier comment les neurones dotés de propriétés miroir dans tout le cerveau codent le comportement social.

L'ascension et la chute

Les neurones miroirs ont d'abord fasciné par le fait qu'ils n'étaient pas du tout à leur place. Dans une zone du cerveau dédiée à la planification motrice, on trouvait des cellules aux propriétés uniques qui réagissaient pendant la perception. En outre, les chercheurs de Parme ont interprété leurs résultats comme une preuve de ce que l'on appelle la "compréhension de l'action" dans le cerveau : Ils affirmaient que les singes pouvaient comprendre ce que faisait un autre individu et que cette intuition était résolue dans une seule cellule.

Le neurone miroir était donc un " moyen immédiatement accessible pour expliquer un mécanisme bien plus complexe ", a déclaré Luca Bonini, professeur de psychobiologie à l'Université de Parme qui n'a pas participé à l'étude originale. Galvanisés par cette interprétation, les chercheurs ont commencé à projeter leur " compréhension " sur un nombre illimité de cellules qui semblaient semblables à des miroirs.

Cette fanfare enthousiaste faussa l’étude des neurones miroirs et perturba la carrière des chercheurs.

Au début des années 2000, le spécialiste des sciences cognitives Gregory Hickok de l'Université de Californie à Irvine a découvert que les neurones des zones motrices du cerveau liées à la production de la parole devenaient actifs lorsque les participants écoutaient la parole. Bien que cette découverte ne soit pas choquante – " c’est exactement ainsi que fonctionne le système ", déclara Hickok – d’autres scientifiques ont commencé à visualiser ses résultats sous l'angle des neurones miroir. Il savait que cette théorie ne pouvait pas s'appliquer à son travail. D’autres encore ont suggéré que lorsque les auditeurs percevaient la parole, les neurones du cortex moteur " reflétaient " ce qu’ils entendaient.

(Photo : Gregory Hickok étudie les circuits neurologiques impliqués dans la parole. Ses doutes sur la théorie des neurones miroirs l'ont amené à devenir l'adversaire scientifique de Vittorio Gallese et lui ont valu un contrat pour le livre Le Mythe des neurones miroirs – " dont le titre n'était vraiment pas juste ", selon Gallese.)

Pour bien se positionner, Hickok commença par dire au début de ses exposés de recherche que son travail n'avait rien à voir avec les neurones miroirs – un choix qui le plaça par inadvertance au centre du débat. En 2009, le rédacteur en chef du Journal of Cognitive Neuroscience invita Hickok à rédiger une critique de cette théorie. Il utilisa la parole comme test pour réfuter l'affirmation grandiose selon laquelle les neurones miroirs du cortex moteur permettaient à un singe de comprendre les actions d'un autre. Si, selon Hickok, il existe un mécanisme neuronal unique qui code la production d’une action et la compréhension de cette action, alors les dommages causés à ce mécanisme devraient empêcher les deux de se produire. Hickok a rassemblé un dossier d'études montrant que les dommages causés aux zones de production de la parole ne perturbaient pas la compréhension de la parole. Les données, écrit-il, " démontrent sans équivoque que la théorie des neurones miroirs sur la perception de la parole est incorrecte, quelle que soit sa présentation ».

Critique qui conduisit à un livre puis en 2015, à une invitation à débattre publiquement avec Gallese au Centre pour l'esprit, le cerveau et la conscience de l'Université de New York. Partageant la scène pour la première fois, les deux scientifiques distingués échangèrent des points de vue concurrents avec quelques légères taquineries, suivies de sourires autour de quelques bières.

Si cette confrontation s'est déroulée à l'amiable, il n'en fut pas de même des réactions à l'engouement pour les neurones miroirs.  Aujourd’hui, Gallese reste surpris par " l’acrimonie " à laquelle il fut confronté au sein de la communauté scientifique. " Je ne pense pas que quiconque ait été scruté aussi profondément que nous ", dit-il.  Et l’effet sur l’étude de ces cellules cérébrales fut profond. Dans les années qui ont suivi le débat à New York, les neurones miroirs disparurent du discours scientifique. En 2013, au plus fort du battage médiatique, les scientifiques ont publié plus de 300 articles portant le titre " neurone miroir ". En 2020, ce nombre avait diminué de moitié, pour atteindre moins de 150.

Le neurone miroir, redéfini

Cet épisode est représentatif de la manière dont l'enthousiasme suscité par certaines idées peut transformer le cours de leurs recherches. Gallese a attribué le déclin des études sur les neurones miroirs à la peur collective et à l'autocensure. " Les chercheurs craignent que s'ils évoquent l'étiquette neurones miroirs, l'article pourrait être rejeté ", a-t-il déclaré.

En conséquence, les chercheurs ont adopté une terminologie différente – " réseau d’activation d’action ", par exemple – pour expliquer les mécanismes miroirs dans le cerveau. Le terme " neurone miroir " est également devenu obscur. Au début, sa définition était claire : c'était une cellule motrice qui tirait lors d'un mouvement et également lors de la perception d'un mouvement identique ou similaire. Cependant, à mesure que les chercheurs utilisaient ce terme pour expliquer les phénomènes sociaux, la définition devenait lourde au point de devenir une " théorie invérifiable ", a déclaré Hickok.

Aujourd’hui, après une période de réflexion, les neuroscientifiques sociaux extraient les cellules de la boue biologique. En regardant au-delà des zones motrices du cerveau, ils découvrent ce qui ressemble étrangement à des neurones miroirs. L'année dernière, une équipe de l'Université de Stanford a rapporté dans Cell la découverte de neurones qui reflètent l'agressivité chez la souris. Cette suite de cellules se déclenchait à la fois lorsqu’une souris se comportait de manière agressive et lorsqu’elle regardait les autres se battre. Parce que les cellules sont devenues actives dans les deux contextes, les chercheurs ont suggéré qu’elles seraient des neurones miroirs.

"C'était le premier exemple démontrant l'existence de neurones miroirs associés à un comportement social complexe", a déclaré Emily Wu, professeur adjoint de neurologie à l'Université de Californie à Los Angeles, qui n'a pas participé à la recherche.

Cette découverte s’ajoute à un nombre croissant de preuves selon lesquelles les neurones situés au-delà du cortex prémoteur ont des propriétés miroir lorsque deux animaux interagissent socialement. Ces mêmes cellules se déclenchent lors d’actions ou d’émotions  personnelles et en réponse au fait de voir d’autres vivre les mêmes expériences.

Techniquement, selon la définition originale, ces cellules ne sont pas des neurones miroirs, a déclaré Hickok : Les neurones miroirs sont des cellules motrices, pas des cellules sociales. Cependant, Wu ne se soucie pas des définitions. Plutôt que débattre de ce qui est ou non un neurone miroir, elle pense qu'il est plus important de cataloguer les propriétés fonctionnelles du miroir qui caractérisent les cellules, où qu'elles se trouvent dans le cerveau.

L’objectif serait de décrire l’étendue de ces neurones et comment, au niveau électrophysiologique, ils se comportent de manière unique. Ce faisant, ces scientifiques dissipent le nuage de battage médiatique autour de la vision de ces cellules telles qu’elles sont réellement.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Meghan Willcoxon, 2 avril 2024

[ pulsions partagées ] [ actions symboles ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste