Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 577
Temps de recherche: 0.0538s

évolution subatomique

Une nouvelle idée pour assembler la vie         (Avec l'aimable autorisation de Lee Cronin)

Si nous voulons comprendre des constructions complexes, telles que nous-mêmes, la théorie de l'assemblage affirme que nous devons tenir compte de toute l'histoire de la création de ces entités, du pourquoi et comment elles sont ce qu'elles sont.

La théorie de l'assemblage explique pourquoi, étant donné les possibilités combinatoires apparemment infinies, nous n'observons qu'un certain sous-ensemble d'objets dans notre univers.

La vie sur d'autres mondes - si elle existe - pourrait être si étrangère qu'elle en serait méconnaissable. Il n'est pas certain que la biologie extraterrestre utilise la même chimie que celle de la Terre, avec des éléments constitutifs familiers tels que l'ADN et les protéines. Avec cette approche les scientifiques pourraient même repérer les signatures de ces formes de vie sans savoir qu'elles sont le fruit de la biologie.

Ce problème est loin d'être hypothétique. En avril, la sonde Juice de l'Agence spatiale européenne a décollé de la Guyane française en direction de Jupiter et de ses lunes. L'une de ces lunes, Europe, abrite un océan profond et saumâtre sous sa croûte gelée et figure parmi les endroits les plus prometteurs du système solaire pour la recherche d'une vie extraterrestre. L'année prochaine, le vaisseau spatial Europa Clipper de la NASA sera lancé, lui aussi en direction d'Europe. Les deux engins spatiaux sont équipés d'instruments embarqués qui rechercheront les empreintes de molécules organiques complexes, signe possible de vie sous la glace. En 2027, la NASA prévoit de lancer un hélicoptère ressemblant à un drone, appelé Dragonfly, pour survoler la surface de Titan, une lune de Saturne, un monde brumeux, riche en carbone, avec des lacs d'hydrocarbures liquides qui pourraient être propices à la vie, mais pas telle que nous la connaissons.

Ces missions et d'autres encore se heurteront au même obstacle que celui auquel se heurtent les scientifiques depuis qu'ils ont tenté pour la première fois de rechercher des signes de biologie martienne avec les atterrisseurs Viking dans les années 1970 : Il n'y a pas de signature définitive de la vie.

C'est peut-être sur le point de changer. En 2021, une équipe dirigée par Lee Cronin, de l'université de Glasgow, en Écosse, et Sara Walker, de l'université d'État de l'Arizona, a proposé une méthode très générale pour identifier les molécules produites par les systèmes vivants, même ceux qui utilisent des chimies inconnues. Leur méthode suppose simplement que les formes de vie extraterrestres produisent des molécules dont la complexité chimique est similaire à celle de la vie sur Terre.

Appelée théorie de l'assemblage, l'idée qui sous-tend la stratégie des deux chercheurs a des objectifs encore plus ambitieux. Comme l'indique une récente série de publications, elle tente d'expliquer pourquoi des choses apparemment improbables, telles que vous et moi, existent. Et elle cherche cette explication non pas, à la manière habituelle de la physique, dans des lois physiques intemporelles, mais dans un processus qui imprègne les objets d'histoires et de souvenirs de ce qui les a précédés. Elle cherche même à répondre à une question qui laisse les scientifiques et les philosophes perplexes depuis des millénaires : qu'est-ce que la vie, de toute façon ?

Il n'est pas surprenant qu'un projet aussi ambitieux ait suscité le scepticisme. Ses partisans n'ont pas encore précisé comment il pourrait être testé en laboratoire. Et certains scientifiques se demandent si la théorie de l'assemblage peut même tenir ses promesses les plus modestes, à savoir distinguer la vie de la non-vie et envisager la complexité d'une nouvelle manière.

La théorie de l'assemblage a évolué, en partie, pour répondre au soupçon de Lee Cronin selon lequel "les molécules complexes ne peuvent pas simplement émerger, parce que l'espace combinatoire est trop vaste".

Mais d'autres estiment que la théorie de l'assemblage n'en est qu'à ses débuts et qu'il existe une réelle possibilité qu'elle apporte une nouvelle perspective à la question de la naissance et de l'évolution de la complexité. "Il est amusant de s'engager dans cette voie", a déclaré le théoricien de l'évolution David Krakauer, président de l'Institut Santa Fe. Selon lui, la théorie de l'assemblage permet de découvrir l'histoire contingente des objets, une question ignorée par la plupart des théories de la complexité, qui ont tendance à se concentrer sur la façon dont les choses sont, mais pas sur la façon dont elles sont devenues telles. Paul Davies, physicien à l'université de l'Arizona, est d'accord avec cette idée, qu'il qualifie de "nouvelle, susceptible de transformer notre façon de penser la complexité".

Sur l'ordre des choses

La théorie de l'assemblage est née lorsque M. Cronin s'est demandé pourquoi, compte tenu du nombre astronomique de façons de combiner différents atomes, la nature fabrique certaines molécules et pas d'autres. C'est une chose de dire qu'un objet est possible selon les lois de la physique, c'en est une autre de dire qu'il existe une voie réelle pour le fabriquer à partir de ses composants. "La théorie de l'assemblage a été élaborée pour traduire mon intuition selon laquelle les molécules complexes ne peuvent pas simplement émerger parce que l'espace combinatoire est trop vaste", a déclaré M. Cronin.

Walker, quant à lui, s'est penché sur la question de l'origine de la vie - une question étroitement liée à la fabrication de molécules complexes, car celles des organismes vivants sont bien trop complexes pour avoir été assemblées par hasard. Walker s'est dit que quelque chose avait dû guider ce processus avant même que la sélection darwinienne ne prenne le dessus.

Cronin et Walker ont uni leurs forces après avoir participé à un atelier d'astrobiologie de la NASA en 2012. "Sara et moi discutions de la théorie de l'information, de la vie et des voies minimales pour construire des machines autoreproductibles", se souvient M. Cronin. "Et il m'est apparu très clairement que nous convergions tous les deux sur le fait qu'il manquait une 'force motrice' avant la biologie."

Aujourd'hui, la théorie de l'assemblage fournit une explication cohérente et mathématiquement précise de l'apparente contingence historique de la fabrication des objets - pourquoi, par exemple, ne peut-on pas développer de fusées avant d'avoir d'abord la vie multicellulaire, puis l'homme, puis la civilisation et la science. Il existe un ordre particulier dans lequel les objets peuvent apparaître.

"Nous vivons dans un univers structuré de manière récursive*", a déclaré M. Walker. "La plupart des structures doivent être construites à partir de la mémoire du passé. L'information se construit au fil du temps.

Cela peut sembler intuitivement évident, mais il est plus difficile de répondre à certaines questions sur l'ordre des choses. Les dinosaures ont-ils dû précéder les oiseaux ? Mozart devait-il précéder John Coltrane ? Peut-on dire quelles molécules ont nécessairement précédé l'ADN et les protéines ?

Quantifier la complexité

La théorie de l'assemblage repose sur l'hypothèse apparemment incontestable que les objets complexes résultent de la combinaison de nombreux objets plus simples. Selon cette théorie, il est possible de mesurer objectivement la complexité d'un objet en examinant la manière dont il a été fabriqué. Pour ce faire, on calcule le nombre minimum d'étapes nécessaires pour fabriquer l'objet à partir de ses ingrédients, que l'on quantifie en tant qu'indice d'assemblage (IA).

En outre, pour qu'un objet complexe soit intéressant d'un point de vue scientifique, il faut qu'il y en ait beaucoup. Des objets très complexes peuvent résulter de processus d'assemblage aléatoires - par exemple, on peut fabriquer des molécules de type protéine en reliant n'importe quels acides aminés en chaînes. En général, cependant, ces molécules aléatoires ne feront rien d'intéressant, comme se comporter comme une enzyme. En outre, les chances d'obtenir deux molécules identiques de cette manière sont extrêmement faibles.

En revanche, les enzymes fonctionnelles sont fabriquées de manière fiable à maintes reprises en biologie, car elles sont assemblées non pas au hasard, mais à partir d'instructions génétiques transmises de génération en génération. Ainsi, si le fait de trouver une seule molécule très complexe ne vous dit rien sur la manière dont elle a été fabriquée, il est improbable de trouver plusieurs molécules complexes identiques, à moins qu'un processus orchestré - peut-être la vie - ne soit à l'œuvre.

Cronin et Walker ont calculé que si une molécule est suffisamment abondante pour être détectable, son indice d'assemblage peut indiquer si elle a été produite par un processus organisé et réaliste. L'intérêt de cette approche est qu'elle ne suppose rien sur la chimie détaillée de la molécule elle-même, ni sur celle de l'entité vivante qui l'a produite. Elle est chimiquement agnostique. C'est ce qui la rend particulièrement précieuse lorsque nous recherchons des formes de vie qui pourraient ne pas être conformes à la biochimie terrestre, a déclaré Jonathan Lunine, planétologue à l'université Cornell et chercheur principal d'une mission proposée pour rechercher la vie sur la lune glacée de Saturne, Encelade.

"Il est bien qu'au moins une technique relativement agnostique soit embarquée à bord des missions de détection de la vie", a déclaré Jonathan Lunine.

Il ajoute qu'il est possible d'effectuer les mesures requises par la théorie de l'assemblage avec des techniques déjà utilisées pour étudier la chimie des surfaces planétaires. "La mise en œuvre de mesures permettant l'utilisation de la théorie de l'assemblage pour l'interprétation des données est éminemment réalisable", a-t-il déclaré.

La mesure du travail d'une vie

Ce qu'il faut, c'est une méthode expérimentale rapide et facile pour déterminer l'IA (indice d'assemblage) de certaines molécules. À l'aide d'une base de données de structures chimiques, Cronin, Walker et leurs collègues ont conçu un moyen de calculer le nombre minimum d'étapes nécessaires à la fabrication de différentes structures moléculaires. Leurs résultats ont montré que, pour les molécules relativement petites, l'indice d'assemblage est à peu près proportionnel au poids moléculaire. Mais pour les molécules plus grandes (tout ce qui est plus grand que les petits peptides, par exemple), cette relation est rompue.

Dans ces cas, les chercheurs ont découvert qu'ils pouvaient estimer l'IA à l'aide de la spectrométrie de masse, une technique déjà utilisée par le rover Curiosity de la NASA pour identifier les composés chimiques à la surface de Mars, et par la sonde Cassini de la NASA pour étudier les molécules qui jaillissent d'Encelade.

La spectrométrie de masse décompose généralement les grosses molécules en fragments. Cronin, Walker et leurs collègues ont constaté qu'au cours de ce processus, les grosses molécules à IA élevé se fracturent en mélanges de fragments plus complexes que celles à IA faible (comme les polymères simples et répétitifs). Les chercheurs ont ainsi pu déterminer de manière fiable l'IA (indice d'assemblage) en fonction de la complexité du spectre de masse de la molécule.

Lorsque les chercheurs ont ensuite testé la technique, ils ont constaté que les mélanges complexes de molécules produites par des systèmes vivants - une culture de bactéries E. coli, des produits naturels comme le taxol (un métabolite de l'if du Pacifique aux propriétés anticancéreuses), de la bière et des cellules de levure - présentaient généralement des IA moyens nettement plus élevés que les minéraux ou les simples substances organiques.

L'analyse est susceptible de donner lieu à des faux négatifs : certains produits issus de systèmes vivants, tels que le scotch Ardbeg single malt, ont des IA qui suggèrent une origine non vivante. Mais ce qui est peut-être plus important encore, c'est que l'expérience n'a produit aucun faux positif : Les systèmes abiotiques ne peuvent pas obtenir des IA suffisamment élevés pour imiter la biologie. Les chercheurs ont donc conclu que si un échantillon doté d'un IA moléculaire élevé est mesuré sur un autre monde, il est probable qu'il ait été fabriqué par une entité que l'on pourrait qualifier de vivante.

(Photo-schéma : Une échelle de la vie)

Les chercheurs ont établi/estimé l'indice d'assemblage (IA) de substance variées par des mesures répétés de leurs structures moléculaires, Seules celles assemblées biologiquement ont un AI au-dessus d'un certain palier. 

Non biologique        (vert)

Indice               bas        moyen       haut

charbon             10...    12

quarz                    11... 12

granit                 10  ..   12..   15

Biologique               (jaune)

levure                10                         24

urine                9                          ...   27

eau de mer      9                                 ....28

e-Coli                                    15                        31

bière                 10                                 ..            34

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.1038/s41467-021-23258-x)

La spectrométrie de masse ne fonctionnerait que dans le cadre de recherches astrobiologiques ayant accès à des échantillons physiques, c'est-à-dire des missions d'atterrissage ou des orbiteurs comme Europa Clipper, qui peuvent ramasser et analyser des molécules éjectées de la surface d'un monde. Mais Cronin et ses collègues viennent de montrer qu'ils peuvent mesurer l'IA moléculaire en utilisant deux autres techniques qui donnent des résultats cohérents. L'une d'entre elles, la spectroscopie infrarouge, pourrait être utilisée par des instruments tels que ceux du télescope spatial James Webb, qui étudient à distance la composition chimique de mondes lointains.

Cela ne veut pas dire que ces méthodes de détection moléculaire offrent un instrument de mesure précis permettant de passer de la pierre au reptile. Hector Zenil, informaticien et biotechnologue à l'université de Cambridge, a souligné que la substance présentant l'IA le plus élevé de tous les échantillons testés par le groupe de Glasgow - une substance qui, selon cette mesure, pourrait être considérée comme la plus "biologique" - n'était pas une bactérie.

C'était de la bière.

Se débarrasser des chaînes du déterminisme

La théorie de l'assemblage prédit que des objets comme nous ne peuvent pas naître isolément - que certains objets complexes ne peuvent émerger qu'en conjonction avec d'autres. C'est intuitivement logique : l'univers n'a jamais pu produire un seul être humain. Pour qu'il y ait des êtres humains, il faut qu'il y en ait beaucoup.

La physique traditionnelle n'a qu'une utilité limitée lorsqu'il s'agit de prendre en compte des entités spécifiques et réelles telles que les êtres humains en général (et vous et moi en particulier). Elle fournit les lois de la nature et suppose que des résultats spécifiques sont le fruit de conditions initiales spécifiques. Selon ce point de vue, nous devrions avoir été codés d'une manière ou d'une autre dans les premiers instants de l'univers. Mais il faut certainement des conditions initiales extrêmement bien réglées pour que l'Homo sapiens (et a fortiori vous) soit inévitable.

La théorie de l'assemblage, selon ses défenseurs, échappe à ce type d'image surdéterminée. Ici, les conditions initiales n'ont pas beaucoup d'importance. Les informations nécessaires à la fabrication d'objets spécifiques tels que nous n'étaient pas présentes au départ, mais se sont accumulées au cours du processus d'évolution cosmique, ce qui nous dispense de faire porter toute la responsabilité à un Big Bang incroyablement bien réglé. L'information "est dans le chemin", a déclaré M. Walker, "pas dans les conditions initiales".

Cronin et Walker ne sont pas les seuls scientifiques à tenter d'expliquer que les clés de la réalité observée pourraient bien ne pas résider dans des lois universelles, mais dans la manière dont certains objets sont assemblés et se transforment en d'autres. La physicienne théorique Chiara Marletto, de l'université d'Oxford, développe une idée similaire avec le physicien David Deutsch. Leur approche, qu'ils appellent la théorie des constructeurs et que Marletto considère comme "proche dans l'esprit" de la théorie de l'assemblage, examine quels types de transformations sont possibles et lesquels ne le sont pas.

"La théorie des constructeurs parle de l'univers des tâches capables d'effectuer certaines transformations", explique M. Cronin. "On peut considérer qu'elle limite ce qui peut se produire dans le cadre des lois de la physique. La théorie de l'assemblage, ajoute-t-il, ajoute le temps et l'histoire à cette équation.

Pour expliquer pourquoi certains objets sont fabriqués et d'autres non, la théorie de l'assemblage identifie une hiérarchie imbriquée de quatre "univers" distincts.

1 Dans l'univers de l'assemblage, toutes les permutations des éléments de base sont autorisées. 2 Dans l'univers de l'assemblage possible, les lois de la physique limitent ces combinaisons, de sorte que seuls certains objets sont réalisables. 3 L'univers de l'assemblage contingenté élague alors le vaste éventail d'objets physiquement autorisés en sélectionnant ceux qui peuvent effectivement être assemblés selon des chemins possibles. 4 Le quatrième univers est l'assemblage observé, qui comprend uniquement les processus d'assemblage qui ont généré les objets spécifiques que nous voyons actuellement.

(Photo - schéma montrant l'univers de l'assemblage dès son origine via un entonnoir inversé présentant ces 4 étapes, qui élargissent en descendant)

1 Univers assembleur

Espace non contraint contenant toutes les permutations possibles des blocs de base de l'univers

2 Assemblage possibles

Seuls les objets physiquement possibles existent, limités par les lois de la physique.

3 Assemblages contingents

Objets qui peuvent effectivement être assemblés en utilisant des chemins possibles

4 Assemblage dans le réel

Ce que nous pouvons observer

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.48550/arXiv.2206.02279)

La théorie de l'assemblage explore la structure de tous ces univers, en utilisant des idées tirées de l'étude mathématique des graphes, ou réseaux de nœuds interconnectés. Il s'agit d'une "théorie de l'objet d'abord", a déclaré M. Walker, selon laquelle "les choses [dans la théorie] sont les objets qui sont effectivement fabriqués, et non leurs composants".

Pour comprendre comment les processus d'assemblage fonctionnent dans ces univers notionnels, prenons le problème de l'évolution darwinienne. Conventionnellement, l'évolution est quelque chose qui "s'est produit" une fois que des molécules répliquées sont apparues par hasard - un point de vue qui risque d'être une tautologie (affirmation/certitude), parce qu'il semble dire que l'évolution a commencé une fois que des molécules évolutives ont existé. Les partisans de la théorie de l'assemblage et de la théorie du constructeur recherchent au contraire "une compréhension quantitative de l'évolution ancrée dans la physique", a déclaré M. Marletto.

Selon la théorie de l'assemblage, pour que l'évolution darwinienne puisse avoir lieu, il faut que quelque chose sélectionne de multiples copies d'objets à forte intelligence artificielle dans l'assemblage possible. Selon M. Cronin, la chimie à elle seule pourrait en être capable, en réduisant des molécules relativement complexes à un petit sous-ensemble. Les réactions chimiques ordinaires "sélectionnent" déjà certains produits parmi toutes les permutations possibles parce que leur vitesse de réaction est plus rapide.

Les conditions spécifiques de l'environnement prébiotique, telles que la température ou les surfaces minérales catalytiques, pourraient donc avoir commencé à vidanger/filtrer le pool des précurseurs moléculaires de la vie parmi ceux de l'assemblage possible. Selon la théorie de l'assemblage, ces préférences prébiotiques seront "mémorisées" dans les molécules biologiques actuelles : Elles encodent leur propre histoire. Une fois que la sélection darwinienne a pris le dessus, elle a favorisé les objets les plus aptes à se répliquer. Ce faisant, ce codage de l'histoire s'est encore renforcé. C'est précisément la raison pour laquelle les scientifiques peuvent utiliser les structures moléculaires des protéines et de l'ADN pour faire des déductions sur les relations évolutives des organismes.

Ainsi, la théorie de l'assemblage "fournit un cadre permettant d'unifier les descriptions de la sélection en physique et en biologie", écrivent Cronin, Walker et leurs collègues. Plus un objet est "assemblé", plus il faut de sélections successives pour qu'il parvienne à l'existence.

"Nous essayons d'élaborer une théorie qui explique comment la vie naît de la chimie", a déclaré M. Cronin, "et de le faire d'une manière rigoureuse et vérifiable sur le plan empirique".

Une mesure pour tous les gouverner ?

Krakauer estime que la théorie de l'assemblage et la théorie du constructeur offrent toutes deux de nouvelles façons stimulantes de réfléchir à la manière dont les objets complexes prennent naissance. "Ces théories sont davantage des télescopes que des laboratoires de chimie", a-t-il déclaré. "Elles nous permettent de voir les choses, pas de les fabriquer. Ce n'est pas du tout une mauvaise chose et cela pourrait être très puissant".

Mais il prévient que "comme pour toute la science, la preuve sera dans le pudding".

Zenil, quant à lui, estime que, compte tenu de l'existence d'une liste déjà considérable de mesures de la complexité telles que la complexité de Kolmogorov, la théorie de l'assemblage ne fait que réinventer la roue. Marletto n'est pas d'accord. "Il existe plusieurs mesures de la complexité, chacune capturant une notion différente de cette dernière", a-t-elle déclaré. Mais la plupart de ces mesures ne sont pas liées à des processus réels. Par exemple, la complexité de Kolmogorov suppose une sorte d'appareil capable d'assembler tout ce que les lois de la physique permettent. Il s'agit d'une mesure appropriée à l'assemblage possible, a déclaré Mme Marletto, mais pas nécessairement à l'assemblage observé. En revanche, la théorie de l'assemblage est "une approche prometteuse parce qu'elle se concentre sur des propriétés physiques définies de manière opérationnelle", a-t-elle déclaré, "plutôt que sur des notions abstraites de complexité".

Selon M. Cronin, ce qui manque dans les mesures de complexité précédentes, c'est un sens de l'histoire de l'objet complexe - les mesures ne font pas la distinction entre une enzyme et un polypeptide aléatoire.

Cronin et Walker espèrent que la théorie de l'assemblage permettra à terme de répondre à des questions très vastes en physique, telles que la nature du temps et l'origine de la deuxième loi de la thermodynamique. Mais ces objectifs sont encore lointains. "Le programme de la théorie de l'assemblage n'en est qu'à ses débuts", a déclaré Mme Marletto. Elle espère voir la théorie mise à l'épreuve en laboratoire. Mais cela pourrait aussi se produire dans la nature, dans le cadre de la recherche de processus réalistes se déroulant sur des mondes extraterrestres.

 

Auteur: Internet

Info: https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=78bedba296 - Philip Ball , contributing Writer,  4 mai 2023. *Qui peut être répété un nombre indéfini de fois par l'application de la même règle.

[ ergodicité mystère ] [ exobiologie ] [ astrobiologie ] [ exploration spatiale ] [ origine de la vie ] [ xénobiologie ] [ itération nécessaire ] [ ordre caché ] [ univers mécanique ] [ théorie-pratique ] [ macromolécules ] [ progression orthogonale ] [ décentrement anthropique ]

 

Commentaires: 0

Ajouté à la BD par miguel

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

Afrique-Occident

Robert Farris Thompson: les canons du Cool
Une bouteille de Cinzano, une boîte de fixatif, un chandelier à sept branches, une machette et un juke-box cassé sont des objets de dévotion ornant l'autel d'un temple vodun ("vaudou") en périphérie de Port-au-Prince. Le temple est situé dans l'enceinte d'André Pierre, prêtre vodun et peintre, en bordure d'un fossé sur la route du Cap-Haïtien. Il y a des voitures accidentées dans la cour, des chiens, des chèvres et un petit taureau attaché. En arrivant de l'aéroport international François Duvalier, l'esprit prédisposé aux présages, je ne peux m'empêcher de remarquer un grand panneau de signalisation à proximité. On y lit "LA ROUTE TUE ET BLESSE."

Robert Farris Thompson et moi sommes descendus de New York vers Haïti pour passer le week-end avec André Pierre et Madame Nerva, une prêtresse vaudou. Thompson est historien de l'art, professeur titulaire à Yale et maître au Timothy Dwight College. Je suis un de ses anciens élèves, venu voir Bob faire ce qu'il nomme "un petit sondage". André Pierre est le Fra Angelico haïtien, un clerc vodun dont les toiles sont accrochées au musée national de Haïti; des copies de son travail remplissent les porte-cartes de l'aéroport. La femme, les enfants et les enfants des cousins ​​d'André Pierre légument dans l'ombre alors que Thompson fait pénétrer sa voiture de location verte dans l'enceinte, criant: "Bam nouvelle" et "Comment ouyé?"

Nous retrouvons André Pierre, petit, noir, visage marqué, dans la chaleur de son atelier. Les murs sont couverts de brillants motifs vodun - diptyques et triptyques d'Ogûn, dieu du fer; Agoué, seigneur de la mer; Erzuli, déesse de l'amour; et Damballah, dieu serpent de la créativité, de la fécondité et de la pluie. À côté du chevalet, il y a un uniforme militaire à glands pour le Baron Samedi, seigneur des cimetières, soigneusement protégé dans son sac de nettoyage à sec.

Avec la révérence et l'attitude d'un abbé pilotant ses visiteurs dans un vénérable monastère du sud de la France, André Pierre nous fait visiter ce temple d'étain ondulé. Il nous montre des salles-autels contenant des tambours, des bassins, des faux, des cartes à jouer, de l'alcool, des fouets et des lits (dans lesquels André Pierre dort quand il passe la nuit avec une divinité particulière). Il s'exprime via une sorte de flux créole théoloco-vodun tout en marchant et en pointant des choses. Soudain, André Pierre se met à chanter pour illustrer une idée particulière; elle correspond à un tableau et il l'explique, de la même façon qu'un requiem correspond à une crucifixion. Thompson attrape un tambour et commence à tambouriner et à chanter. Lorsqu'ils ont fini, en geste de célébration, ils versent chacun une cuillerée de liqueur de racine sur le sol. Thompson m'avertit à part en anglais de faire attention près des bassins en pierre dans la pièce sombre, car c'est un de ceux dédiés à Damballah, le dieu serpent, et ils contiennent parfois des serpents.

À la tombée de la nuit, Thompson, polo humide de transpiration, a empli un carnet et demi de croquis et de notes, commencé une monographie sur l'iconographie de 10 peintures vodun, tambouriné, bu des coups et pris rendez-vous pour revenir tôt le lendemain. Alors que nous partons à la recherche de notre hôtel, Thompson, excité, m'explique les subtilités morales de tout ce que nous avons vu. Il me parle de notre emploi du temps: nous devons aller demain soir à Jacmel, de l'autre côté des montagnes, voir Madame Nerva célébrer les rites de la déesse de l'amour, Erzuli. Je suis épuisé, ayant trouvé que le voyage de Manhattan au temple d'André Pierre en un après-midi c'est déjà beaucoup. Thompson ne semble ressentir aucune tension suite à cette journée; il entre en Haïti tout en fluidité. En fait il semble juste revenir chez lui.

Blanc de peau, blanc de cheveux et blanc d'origine, d'éducation et de par sa société, Robert Farris Thompson est tombé amoureux de la musique noire, de l'art noir et de la négritude il y a 30 ans et a basé toute sa carrière sur cette passion particulière. Suivant cet instinct, suscité par un mambo entendu en 1950, Thompson a appris couramment le ki-kongo, le yoruba, le français, l'espagnol et le portugais et s'est familiarisé avec une vingtaine de langues créoles et tribales; il a parcouru la forêt de l'Ituri au Zaïre avec des pygmées; est grand connaisseur du vaudou; a écrit quatre livres sur la religion, la philosophie et l'art ouest-africains; a organisé deux grandes expositions à la National Gallery de Washington. Il est également devenu, dansant dans un costume indigo brodé de coquillages pris sur les gésiers de crocodiles morts, "universitaire junioir membre de la Basinjon Society", agence tribale camerounaise qui contrôle la foudre et autres forces naturelles.

Incorporant l'anthropologie, la sociologie, l'ethnomusicologie et ce que Thompson nomme une "bourse scolaire pour guérilla" (il dit : "laissons les crétins se débrouiller avec ça"), la carrière de Thompson tend vers une seule fin: un savant plaidoyer de la civilisation atlantique noire. Il passe sa vie à poursuivre ce frisson cérébral qui est de rendre cohérent et significatif tout ce qui est mal compris, ou vu comme aléatoire, superficiel ou obscur à son sujet. Comme un historien de l'art extrairait des plans détaillés de la basilique une compréhension de l'esprit médiéval ou de la statuaire romaine tardive une compréhension du déclin de l'empire, Thompson travaille sur l'iconographie de la salsa, les pas de danse, les vêtements, la sculpture, le geste et l'argot pour une définition de la négritude. Il aime montrer à quel point le "primitif" est sophistiqué. Comme archéologue, il donne vie à des artefacts; comme critique, il les déchiffre; et comme vrai croyant, il promeut leur valeur artistique et spirituelle.

Le dernier livre de Thompson, Flash of the Spirit, explique les racines de l'influence africaine dans le Nouveau Monde. Il est une sorte de Baedeker du funk. Un critique a écrit: "Ce livre fait pour l'histoire de l'art ce que le dunk shot a fait pour le basket-ball."

Sous la manche droite de sa chemise Brooks Brothers, Bob Thompson porte le bracelet d'initiation en maille de fer de la divinité chasseuse de rivière Yoruba. Avec ses deux enfants, son récent divorce, ses études à Yale et Andover et ses 55 ans, il ressemble à un avocat d'entreprise en pleine forme ou à un brillant dirigeant pétrolier américain qui aurait mené une carrière polyglotte à l'étranger. Il vit à New Haven, dans le manoir géorgien du maître du collège, où l'on peut entendre le son des percussions résonner dans la cour.

En parallèle à Yale, ses élèves, des bonnes bouffes et de ses conférences, au travers de rencontres au coin de la rue et de conversations précieuses, Thompson fait du prosélytisme. Il enseigne à 100 ou 150 étudiants chaque trimestre et possède l'enthousiasme amusé d'un élève de premier cycle. Le reste de l'université connaît Thompson sous le nom de "Mambo". Pour clarifier ils diront même "noir comme Bob". Ce qui compte, c'est que le président de Yale, Bart Giamatti, brillant franc-tireur lui-même, admire suffisamment la singularité intrépide de Thompson pour l'avoir reconduit dans ses fonctions durant cinq ans.

Sur le campus, les affiches du Chubb Fellowship expriment un peu mieux le statut de Thompson et sa particularité majeure. La bourse Chubb est un programme destiné à amener des visiteurs politiques sur le campus, elle est aussi étoffée que les bourses bien dotées peuvent l'être. Pendant le mandat de Thompson, des personnages habituels - Walter Mondale, Alexander Haig, John Kenneth Galbraith - furent parmi les conférenciers invités. Des affiches commémorant leurs visites tapissent les murs de la maison du maître comme des trophées sportifs de conférences. Une affiche, plus grande et plus audacieuse que les autres, est suspendue dans le bureau de Thompson. Elle annonce que la Chubb Fellowship parraine, pour un colloque et une réception au Timothy Dwight College, une visite de Son Altesse le Granman de la Djuka, du Surinam, "roi afro-américain véritable".

Bob Thompson donne des cours à sa classe comme un prédicateur fondamentaliste réveille sa congrégation, genoux pliés, microphone branché, le fil traînant derrière lui. Il marche parmi les 200 étudiants qui débordent de l'auditorium de Street Hall dans le couloir. Le cours d'automne de Thompson, HoA 379a, est intitulé "La structure du New York Mambo: le microcosme de la créativité noire". Sur scène, un magnétophone émet un jog pygmée; du pupitre vacant pend une carte des dominions tribales ouest-africaines; et sur l'écran : des diapositives flash de Harlem, des pygmées, des tissus de motifs syncopés et des sculptures funéraires influencées par le Kongo des cimetières de Caroline du Nord. "Pourquoi" demande Thompson, "les Noirs sont-ils si impertinents ?"

La réponse commence par l'étymologie de l'expression "descendre - get down". Il passe aux concepts yoruba de cool (itutu) et de commandement (àshe); il parle durant une marche latérale et aussi sagittale (d'avant en arrière ou inversément); de l'esthétique de la batterie; de l'importance du phrasé décalé (off-beat/à contre-temps) ; des appels et réponses; et enfin de Muhammad Ali. Puis la voix de Thompson redevient celle du prof sérieux standard et il énumère une litanie d'influences africaines:

"Une grande partie de notre argot fut créée par des gens qui pensent en yoruba et en ki-kongo, tout en parlant en anglais. Les sons de base de l'accord et du désaccord, uh-huh et unh-unh, sont purement ouest-africains. Funky est du Ki-Kongo lu-fuki, "sueur positive". Boogie vient de Ki-Kongo mbugi, qui signifie "diablement bon". Le jazz et le jism dérivent probablement de la même racine Ki-Kongo dinza, qui signifie "éjaculer". Mojo vient du terme Ki-Kongo pour "âme"; juke, comme dans jukebox, de Mande-kan qui veut dire 'mauvais'; et Babalu-Aye - comme pourle disc-jockey Babalu - est du Yoruba pur et simple qui signifie "Père et maître de l'univers".

"La plupart de nos danses de salon sont africanisées" poursuit-il, "la rhumba, le tango, même les claquettes et le Lindy. Le poulet frit est africain. Et le short patchwork J. Press est lié à un tissu d'Afrique. Même le cheerleading incorpore certains gestes Kongo apparents: main gauche sur la hanche, main droite levée faisant tournoyer un bâton. Il s'est développé au travers des groupes Vodun Rara de la Nouvelle-Orléans jusqu'au spectacle de la mi-temps des Cowboys de Dallas."

"Laisse-moi te raconter comment tout ceci s'est mis en marche", explique Thompson, assis dans un restaurant du campus. "J'ai grandi au Texas; J'étais fou de boogie. Je n'étais pas footballeur ou quoi que ce soit, et je me rends compte maintenant que tous les éléments d'attractivité que j'avais pour les filles étaient à la fois musicaux et influencés par les noirs. Durant ma dernière année à l'école préparatoire, je suis allé en voyage à Mexico. Il y avait ce mambo - Mexico était inondé de mambo - j'ai entendu des serveurs le fredonner, je l'ai entendu sur les lèvres des préposés de station-service, je l'ai entendu en arrière-plan lorsque je parlait au téléphone de l'exploitant de l'hôtel. Ce fut mon premier bain complet de musique africaine: polyphonie noire totale, multimétrie mambo. Une femme magnifique s'est arrêtée devant moi dans un café; elle a écouté cette musique et je l'ai entendue dire à son compagnon: "Mais chéri, c'est un rythme si différent."

Un mambo, titré La Camisa de Papel - de Justi Barretto, est l'icône principale de la carrière de Thompson. Une partie brisée du disque mexicain 78 tours, chanté par Perez Prado, est encadré dans son étude. "Plus précisément, il s'agit d'un noir qui porte une chemise littéralement composée de mots effrayants - d'assemblage de titres de journaux. La chanson ne craignait pas d'aborder un sujet fort - celui du début de la guerre de Corée et de la peur de la guerre thermonucléaire. Une phrase dit: "Hé, homme noir, t'as les nouvelles?" J'ai été irradié par cette musique, désespérément accro au mambo."

En 1954, Thompson passa les vacances de Thanksgiving de sa dernière année à Yale enfermé à l'hôtel Carlton House à New York, essayant de commencer un livre. Il l'avait titré : Notes vers une définition de Mambo. "Mon père était chirurgien, et avec ma mère ils étaient un peu déboussolés par ce que je faisais: 'Mon fils le mambologue!!??' Alors que j'essayais de leur expliquer cette passion..."

"La musique questionnait", dit Thompson, "et l'histoire de l'art fut la réponse." Il décida de devenir étudiant à Yale. "Plus j'étudiais, plus je voyais comment le monde avait dissimulé la source de tout cela. Ce n'était pas de la musique latine - c'était de la musique Kongo-Cubano-Brésilienne. Vous pouvez entendre les rythmes Kongo dans "The Newspaper Shirt". Et mambu en Ki-Kongo signifie "questions, questions importantes, texte". Un mambo est un séminaire sur l'entrecroisement des courants africains.

"Ce sont quelques-uns des fils du tissu: la salsa et le reggae partagent l'impulsion du mambo, et la composante mambo est à son tour sortie de Cuba en fin des années 1930. Le yoruba y est encore parlé. Si vous étiez Yoruba et pris en esclavage au XIXe siècle, vous risquiez de vous retrouver à Cuba ou dans le nord-est du Brésil. La culture afro-cubaine a survécu à l'esclavage. Ces rythmes afro-cubains sont chauds, âcres et cahotants. J'ai passé ma vie de critique littéraire", dit-il, "à essayer de rassembler tous les textes pertinents pour décoder "The Newspaper Shirt Mambo".

La prochaine étape importante dans le développement de Thompson fut une bourse de la Fondation Ford pour aller au Yoruba-land (Nigéria) pour un travail sur le terrain; il a fait 14 allers-retours entre Yale et l'Afrique. Thompson habite les deux mondes. Il raconte par exemple comment un grand prêtre de la religion Yoruba à New York est venu le voir à New Haven. La voiture du prêtre yoruba est tombée en panne. Thompson raconte que le prêtre a ouvert le capot, puis a emprunté du rhum à Thompson pour faire une brume de rhum qu'il a soufflé de sa bouche sur le moteur surchauffé (c'est un geste yoruba pour refroidir les choses). Ensuite, le prêtre a sorti sa carte de l'American Automobile Association et a appelé Triple-A.

Dans ce processus pour accéder à Yale, Thompson a publié Black Gods and Kings, The Four Moments of the Sun et African Art in Motion, à propos de l'esthétique entrelacée de la sculpture, du tissu et de la danse ouest-africains. "Flash of the Spirit" atteint maintenant des lecteurs qui ne sont pas des spécialistes, des iconographes ou des universitaires. Son prochain livre, enfin, dans 30 ans, sera le "livre mambo".

"Chaque vague d'immigration successive - dominicaine, porto-ricaine, haïtienne, jamaïcaine - améliore la musique. On peut parler de "conjugaison" d'un battement. C'est explosif. La salsa fut le tournant majeur - en 1968, New York est devenue pratiquement la capitale musicale du monde latin. Et tout cela est en pollinisation croisée avec du jazz et de la pure musique yoruba comme King Sunny Ade, et puis, via des réverbérations secondaires, vers des groupes blancs, comme les Talking Heads.

"La musique est un domaine où l'influence noire est omniprésente. Leurs rythmes secouent ce siècle. Quoi qu'on ait pu refuser aux Noirs, les ondes sont à eux. À l'heure actuelle, d'importantes collisions culturelles ont lieu à New York. La ville est devenue un organe coloré des cultures. Si vous avez manqué le Ballet Russe et le Rite de Stravinsky à Paris au début du siècle, ne vous inquiétez pas. Il y a maintenant des événements de cet ordre stravinskien dans le quartier."

"New York en tant que ville africaine secrète" voilà ce que Thompson appelle son cours de premier cycle à Yale. "Quasi voyage scolaire" que nous entreprenons tous les deux un jour et qui commence à 89th Street et sur Amsterdam Avenue dans un botanica, ou boutique d'articles religieux, où les autels fumants des divinités ouest-africaines partagent l'espace avec Pac-Man et Donkey Kong. Juste au coin de la rue se trouve la Claremont Riding Academy, où les élèves de sixième année des écoles privées prennent des cours, et deux pâtés de maisons plus à l'est se trouvent les coopératives de logements dans lesquelles ils vivent sur Central Park. Cet après-midi, nous traversons le sombre bidonville dominicain sous Columbia University, Harlem, Queens et les bandes jamaïcaines et haïtiennes de Brooklyn. Près de la coupole néoclassique du Musée de Brooklyn se trouve La Boutanique St. Jacques Mejur, qui vend des figurines en cire, des bougies conditionnelles "Du Me", un aérosol "Love", "Success" et "Commanding Do My Will". L'une des bougies est une bougie de vengeance, qui promet de transmettre le mal, le déshonneur, les conflits, l'infidélité, la pauvreté, le danger et les puissants ennemis au nom de celui qui est inscrit sur son côté.

"Ce truc est une combine touristique", dit Thompson. "Le vodun est un système moral de croyance comme les autres, mélange de croyances dahoméennes, kongo et chrétiennes. Nous vivons dans le péché intellectuel avec la culture Kongo et Yoruba. Le Kongo est une culture légale-thérapeutique-visionnaire aussi riche et dense que le christianisme ou le judaïsme; elle me rappelle le judaïsme.

"Mais les Occidentaux restent toujours dans les même zones tempérées lorsqu'ils recherchent la philosophie. Les juifs deviennent bouddhistes, les méthodistes deviennent bahaïs; ils ne vont jamais au sud. Mais maintenant, les religions Kongo et Yoruba prospèrent à New York. Traversez simplement la rue et vous êtes en Afrique. "

Pour Thompson, les trois étapes progressives de la culture atlantique noire sont comme trois versions d'un texte inscrit sur une sorte de pierre de Rosette noire Atlantique. Elle se déplace à New York, intellectuellement péripatéticienne, dans les deux sens via les traces des trois étapes de son sujet. Primo, les tribus dont les esclaves furent pris au Nigeria, au Mali, au Cameroun et au Zaïre. Deuxièmement, les cultures afro-antillaises qui en résultent, y compris les célébrités vodun d'Haïti et les adeptes de Capoera du Brésil. Enfin, les salles de danse, les clubs, la culture ghetto pop de New York.

Au club brésilien SOB's, sur Varick Street, amis, collègues, diffuseurs de livres et éditeurs se rassemblent, un peu sous le charme, alors que cinq batteurs cubo-yoruba tiennent un rythme féroce sur scène. C'est la fête de Random House bool pour le lancement de "Flash of the Spirit" de Thompson. Une démonstration de Capoera suit - mélange brésilien de ballet et d'art martial - produite par deux athlètes torse nu, devant le bar. Thompson danse doucement dans sa combinaison J. Press, tête haute, dos et bras relâchés. C'est intrinsèque à son alternance constante entre participer et observer, de même qu'on peut le voir à la fois donner des conférences et danser durant ces dernières.

"Les religions africaines entremêlent une critique morale élevée doublée d'un délicieux backbeat boogie", dit Thompson. "Elles nous attirent vers une perspicacité morale qui active le corps tout en exigeant une conscience sociale. Les mambos d'Eddie Palmieri peuvent recouper les phrasés musicaux yoruba religieux avec le populaire New York noir."

Alors qu'il danse, Thompson note mentalement le sens et le contenu culturel de ce que tout le monde dans la salle pense n'être qu'une danse. "Derrière toute la viscosité et le groove se cache une philosophie qui dit que dans l'horreur de ces temps qu'il y a un antidote. C'est de ces petits villages ternes de stalles en béton et de générateurs portables que vient cette musique, elle porte un message qui dit que tu peux "rejouer" le désastre - que tu peux le transformer, prendre la mort et l'horreur et les transformer en roue et en carrousel."

Un autre soir, au Château Royal, une salle de danse haïtienne dans le Queens, Thompson est à peu près le seul visage blanc parmi un millier d'élégants Haïtiens. Criant en créole au-dessus du merengue, il est en conversation profonde avec le chef d'orchestre; le groupe a été invité à Yale. Sur la piste de danse, Thompson semble transporté - regard d'un homme dans un bain chaud.

"Il s'agit de libérer les impératifs moraux dans le divertissement", explique Thompson. "La musique est à la fois morale et sournoise; elle porte autant de dandysme et de ruse urbaine que tout ce qui fut écrit à Paris à l'époque de Ravel. L'Occident peut en extraire les parties les plus ambrosiales et se laisser emporter par le rythme vers des sublimités morales."

Bien que Thompson vive et se déplace au sein d'un milieu hip, lui-même n'a rien de particulièrement branché. Il agit de la manière inconsciente et directe du soldat professionnel - marche ordonnée, jamais de pagaille, léger balancement des bras lors de la foulée - qui donne l'impression qu'il est toujours sur le point de faire quelque chose. Sa position et ses perspectives n'ont rien de la morosité typique de l'universitaire. Mais son attention est hautement idiosyncrasique; ses actions semblent dictées par un programme connu de lui seul.

Lorsqu'il est plongé dans une ambiance tout à fait blanche, comme une conférence au Metropolitan Museum of Art de New York ou assis dans cet endroit incongru que sont les salons de la maison du maître de Yale, Thompson perd parfois le rythme. Il s'éloigne, comme privé de l'objet de ses affections. Ensuite, quelque chose de banal - une remarque, le phrasé d'une remarque ou peut-être une scène d'un film diffusé au Showcase Cinema à Orange - lui offre une petite étincelle de négritude, et il est à nouveau attentif. Il donne parfois l'impression d'être en tournée d'inspection, cherchant dans le monde blanc des signes salutaires de culture noire. On sent qu'il suit sans cesse, avec ce qu'il appelle ses "yeux noirs", les contours de l'objet d'un désir spirituel.

Thompson tient à faire la distinction entre pratique de la religion ouest-africaine et l'enseignement de la culture dont elle fait partie. Récemment, quelqu'un qu'il connaissait à peine lui a demandé des conseils spirituels et Thompson en fut consterné. Il se considère comme un médium, mais un médium du genre le plus ordinaire. Il pense que ce qu'il doit enseigner n'est que ce qu'il choisit et filtre de toutes ses "informations" du monde. Dans les livres de Thompson, les sections de notes biographiques contiennent des centaines et des centaines de minuscules petits noms sonores, qui, s'ils sont lus à haute voix, ressemblent aux listes des annuaires téléphoniques de Lagos, Rio, Ouagadougou et New Haven combinés. Telles sont les sources du "flash de l'esprit" sans lequel, Thompson, n'est "que Joe, l'universitaire aux cheveux gris".

S'il y a une partie des croyances africaines auxquelles Thompson adhère, c'est ce qu'il perçoit comme leur génie social. L'épiphanie de Thompson, s'il y en a une dans sa sphère très privée, se distingue par les accents pleine de sens qu' utilise lorsqu'il parle des incendies dans les forêts pygmées, des prêtresses de la rivière au Cameroun, de l'escalade des arbres zaïrois pour le miel et de la dernière veille de Nouvel An sur la plage de Copacabana à Rio, où Thompson a vu des milliers de femmes de chambre, gardiennes, journalières et leurs enfants, creuser des trous dans le sable à minuit pour y mettre des bougies, applaudissant lorsque les lumières furent emportée hors du rivage par la marée.

Ceux qui minimisent l'importance de ces rituels folkloriques noirs et du travail de la vie de Thompson le rendent furieux. "Comment les gens osent-ils fréquenter l'Afrique?" il demande. "Ces gens sont des géants qui nous apprennent à vivre. Il y a une voix morale ancrée dans l'esthétique afro-atlantique que l'Occident est infichu de saisir. Les occidentaux ne voient pas les monuments, juste la philosophie pieds nus venant des anciens du village. Alors que le monument est une grande forme d'art qui réconcilie, qui tente de reconstruire moralement une personne sans l'humilier. "Parfois, lorsque Thompson commence à s'échauffer, sa voix prend des cadences du discours noir."

"Ce sont les canons du cool: il n'y a pas de crise qui ne puisse être pesée et résolue; rien ne peut être réalisé par l'hystérie ou la lâcheté; vous devez porter et montrer votre capacité à réaliser la réconciliation sociale. Sortez du cauchemar. C'est un appel au dialogue, au con-gress et à l'auto con-fiance. "Ce tea-shirt avec ces phrases issue de titres de journaux" ne fait que poser le problème sur ta poitrine. Les formes d'art afro-atlantique sont à la fois juridiques, médicales et esthétiques. C'est une manière intransigeante d'utiliser l'art."

À Jacmel, à 8 h 30 du matin, Thompson et moi déjeunons avec des croissants à bord de la piscine de l'hôtel, discutant au son des tambours qui résonnent sur la plage. La veille au soir, dans son temple en carton ondulé, la charmante prêtresse Madame Nerva, qui aime beaucoup plaisanter, a donné son bâton constellé de bonbons à un homme, avec pour consigne d'appeler les batteurs et la congrégation pour le lendemain matin. Il y a 50 voduistes à l'intérieur du temple vibrant quand nous arrivons, y compris le flic local. Cinq batteurs, dirigés par un homme du nom de "Gasoline", suivent un rythme sauvage et déferlant. Dix-neuf femmes noires vêtues de robes blanches et de turbans blancs sortent en dansant d'une porte de l'autel pour se mettre en en cercle autour de Madame Nerva, qui, vêtue d'une robe dorée, secoue un hochet et une cloche sacrés pour donner le tempo. À tour de rôle, chacune des femmes prend la main de Madame Nerva et tombe dans un geste à la fois révérencieux et prostré, lui tenant la main tout en descendant pour embrasser le sol à ses pieds.

Tandis que deux femmes tenant des drapeaux dansent autour de lui, un jeune homme dessine lentement dans la poudre blanche sur le sol un cœur ou une vulve, avec en superposé des épées et un serpent. Au moment où il termine l'image, la cérémonie double d'intensité et les femmes tournent avec des bougies, puis s'agenouillent. Soudain, l'icône est effacée et Madame Nerva se précipite dans la pièce en tenant une poupée américaine en plastique blanche d'un mètre (elle est faite de rangées de maïs et d'une main droite d'enfant qui fait le salut Kongo). Un à la fois, nous sommes embrassés par la poupée sur nos joues gauches. Une femme, tourbillonnant avec un turban sur la tête, devient possédée et commence à se trémousser et à tanguer. Les autres danseurs la frappent doucement pour la calmer et faire partir l'esprit. Elle s'évanouit et ils la retiennent. La ligne des danseurs s'est rompue; les tambours s'arrêtent.

"Un peu sauvage pour un simple sondage", me dit Thompson alors que nous faisons nos adieux. "Cette femme n'était pas censée être possédée. As-tu entendu comment Mme Nerva a décrit la possession - tel "un dialogue avec l'Afrique"? "

Nous retournons par les montagnes vers Port-au-Prince, pour un retour dans l'après-midi à New York. À 15 heures, après le déjeuner et un saut dans la piscine de l'hôtel, nous sommes en train de prendre un verre dans l'avion, Thompson est en train de remplir ses carnets de croquis et de notes.

"Il y a tout un langage dans la possession", dit-il, "une expression et une position différentes pour chaque dieu. L'Occident a oublié les états de ravissement sacré, mais l'art chrétien s'est construit sur l'extase. Le gothique était extatique - les cathédrales ne peuvent pas être comprises sans référence à lui." Il montre une photo sur la couverture de son cahier qui présente une femme aux yeux retournés. "C'est l'histoire de l'art vivant. Et il faut comprendre les états extatiques pour comprendre l'art extatique."

Thompson se tord sur son siège pour montrer les gestes de possession. Il lève les bras, les plie au coude, puis les lève les paumes vers le haut, doigts écartés. Il projette sa tête en arrière, yeux fermés; puis avance rapidement; puis fait des grimaces, trois façons différentes. Il baisse les bras, prend un verre et dit: "Ce n'est pas si hérétique d'examiner l’extase. Après tout". Ici il dessine dans son cahier une figure d'homme, tête renversée en arrière avec une ligne de visée qui va vers le haut - "la rosace de Chartres ne peut être vue que sous un angle extatique."

Auteur: Iseman Fred

Info: https://www.rollingstone.com 22 novembre 1984. Trad Mg (à peaufiner)

[ transe ] [ portrait ] [ perméabilités ethniques ] [ osmose ] [ nord-sud ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-végétal

Il arrive parfois qu’une personne puisse nommer le moment exact où sa vie a changé de manière irrévocable. Pour Cleve Backster, ce fut tôt le matin du 2 février 1966, treize minutes et cinquante-cinq secondes après le début d'un test polygraphique qu'il administrait. Backster, un expert en polygraphie de premier plan dont le test de comparaison de zones Backster est la norme mondiale en matière de détection de mensonge, avait à ce moment-là menacé le bien-être de son sujet de test. Le sujet répondit électrochimiquement à sa menace. Le sujet était une plante.

Depuis lors, Backster a mené des centaines d’expériences démontrant non seulement que les plantes réagissent à nos émotions et à nos intentions, mais aussi les feuilles coupées, les œufs (fécondés ou non), les yaourts et les échantillons de cellules humaines. Il a découvert, par exemple, que les globules blancs prélevés dans la bouche d'une personne et placés dans un tube à essai réagissent toujours électrochimiquement aux états émotionnels du donneur, même lorsque celui-ci est hors de la pièce, du bâtiment ou de l'État.

J'ai entendu parler du travail de Backster pour la première fois quand j'étais enfant. Ses observations ont confirmé une compréhension que j’avais alors, une compréhension que même un diplôme en physique ne pourrait éradiquer plus tard : que le monde est vivant et sensible.

J'ai parlé avec Backster à San Diego, trente et un ans et vingt-deux jours après sa première observation, et à un continent entier du bureau de Times Square à New York où il avait autrefois travaillé et vécu. Avant de commencer, il a placé du yaourt dans un tube à essai stérilisé, a inséré deux électrodes en or et a allumé la mire d'enregistrement. J'étais excité, mais dubitatif. Nous avons commencé à parler et le stylo s'est tortillé de haut en bas. Puis, juste au moment où je reprenais mon souffle avant d'être en désaccord avec quelque chose qu'il avait dit, le stylo sembla vaciller. Mais est-ce que ça avait vraiment bougé, ou est-ce que je voyais seulement ce que je voulais voir ?

À un moment donné, alors que Backster était hors de la pièce, j'ai essayé d'exprimer ma colère en pensant aux forêts coupées à blanc et aux politiciens qui les sanctionnent, aux enfants maltraités et à leurs agresseurs. Mais la ligne représentant la réponse électrochimique du yaourt est restée parfaitement plate. Peut-être que le yaourt ne m'intéressait pas. Perdant moi-même tout intérêt, j'ai commencé à errer dans le laboratoire. Mes yeux sont tombés sur un calendrier qui, après une inspection plus approfondie, s'est avéré être une publicité pour une compagnie maritime. J’ai ressenti une soudaine montée de colère face à l’omniprésence de la publicité. Puis j'ai réalisé : une émotion spontanée ! Je me suis précipité vers le graphique et j'y ai vu un pic soudain correspondant apparemment au moment où j'avais vu l'annonce.

Au retour de Backster, j’ai continué l’entretien, toujours excité et peut-être un peu moins sceptique.

Jensen : Pouvez-vous nous raconter en détail comment vous avez remarqué pour la première fois une réaction électrochimique dans une plante ?

Backster : C'était une plante de canne à sucre dracaena que j'avais dans mon laboratoire à Manhattan. Les plantes ne m'intéressaient pas particulièrement, mais il y avait une vente suite à une cessation d'activité chez un fleuriste au rez-de-chaussée de l'immeuble, et la secrétaire avait acheté quelques plantes pour le bureau : une plante à caoutchouc et cette dracaena. J'avais arrosé ces plantes jusqu'à saturation – en les mettant sous le robinet jusqu'à ce que l'eau coule du fond des pots – et j'étais curieux de voir combien de temps il faudrait à l'humidité pour atteindre le sommet. J'étais particulièrement intéressé par le dracaena, car l'eau devait remonter le long d'un long tronc, puis ressortir jusqu'au bout des longues feuilles. Je pensais que si je plaçais le détecteur de réponse galvanique cutanée du polygraphe au bout de la feuille, une baisse de résistance serait enregistrée sur le papier à mesure que l'humidité arriverait entre les électrodes.

C’est du moins ma façon de voir les choses. Je ne sais pas s’il y avait une autre raison, plus profonde, à mon action. Il se pourrait que mon subconscient m'ait poussé à faire ça – je ne sais pas.

En tout cas, j’ai remarqué quelque chose sur le graphique qui ressemblait à une réponse humaine sur un polygraphe : ce n’est pas du tout ce à quoi j’aurais pu m’attendre si de l’eau pénétrait dans une feuille. Les détecteurs de mensonge fonctionnent sur le principe selon lequel lorsque les gens perçoivent une menace pour leur bien-être, ils réagissent physiologiquement de manière prévisible. Par exemple, si vous effectuez un test polygraphique dans le cadre d’une enquête pour meurtre, vous pourriez demander à un suspect : " Est-ce vous qui avez tiré le coup mortel ? " Si la vraie réponse était oui , le suspect craindrait de mentir et les électrodes placées sur sa peau détecteraient la réponse physiologique à cette peur. J’ai donc commencé à réfléchir à des moyens de menacer le bien-être de la plante. J’ai d’abord essayé de tremper une de ses feuilles dans une tasse de café chaud. La plante, au contraire, montrait de l’ennui – la ligne sur le graphique continuait de baisser.

Puis, à treize minutes et cinquante-cinq secondes de temps graphique, l'idée m'est venue à l'esprit de brûler la feuille. Je n'ai pas verbalisé l'idée ; Je n'ai pas touché à la plante ; Je n'ai pas touché au matériel. Pourtant, la plante s'est comme affolée. Le stylo a sauté du haut du graphique. La seule chose à laquelle il avait pu réagir était mon image mentale.

Ensuite, j'ai récupéré quelques allumettes sur le bureau de mon secrétaire et, en allumant une, j'ai fait quelques passages sur la feuille. Cependant, j'ai réalisé que je constatais déjà une réaction si extrême qu'aucune augmentation ne serait perceptible. J'ai donc essayé une approche différente : j'ai éloigné la menace en remettant les allumettes sur le bureau du secrétaire. La plante s'est immédiatement calmée.

J’ai tout de suite compris qu’il se passait quelque chose d’important. Je ne trouvais aucune explication scientifique conventionnelle. Il n'y avait personne d'autre dans le laboratoire et je ne faisais rien qui aurait pu déclencher un mécanisme de déclenchement. A partir de ce moment, ma conscience n'a plus été la même. Toute ma vie a été consacrée à étudier ce phénomène.

Après cette première observation, j’ai parlé à des scientifiques de différents domaines pour obtenir leurs explications sur ce qui se passait. Mais cela leur était totalement étranger. J’ai donc conçu une expérience pour explorer plus en profondeur ce que j’ai commencé à appeler la perception primaire.

Jensen : Pourquoi  " perception primaire " ?

Backster : Je ne puis nommer ce dont j'ai été témoin perception extrasensorielle, car les plantes ne possèdent pas la plupart des cinq sens. Cette perception de la part de la plante semblait se produire à un niveau beaucoup plus basique – ou primaire.

Quoi qu’il en soit, ce qui a émergé est une expérience dans laquelle j’ai fait tomber automatiquement les crevettes de saumure, à intervalles aléatoires, dans de l’eau frémissante, tandis que la réaction des plantes était enregistrée à l’autre bout du laboratoire.

Jensen : Comment pouviez-vous savoir si les plantes réagissaient à la mort de la crevette ou à vos émotions ?

Backster : Il est très difficile d'éliminer le lien entre l'expérimentateur et les plantes testées. Même une brève association avec les plantes – quelques heures seulement – ​​suffit pour qu’elles s’adaptent à vous. Ensuite, même si vous automatisez et randomisez l’expérience et quittez le laboratoire, ce qui garantit que vous ignorez totalement le moment où l’expérience commence, les plantes resteront à votre écoute, peu importe où vous irez. Au début, mon partenaire et moi allions dans un bar situé à un pâté de maisons, mais au bout d'un certain temps, nous avons commencé à soupçonner que les plantes réagissaient, non pas à la mort des crevettes saumâtres, mais à l'augmentation et à la diminution du niveau d'excitation dans nos conversations.

Finalement, quelqu'un d'autre a acheté les plantes et les a stockées dans une autre partie du bâtiment. Le jour de l’expérience, nous sommes allés chercher les plantes, les avons amenées, les avons branchées et sommes partis. Cela signifiait que les plantes étaient seules dans un environnement étrange, avec seulement la pression des électrodes et un petit filet d'électricité traversant leurs feuilles. Parce qu’il n’y avait pas d’humains avec lesquels s’harmoniser, elles ont commencé à " regarder autour " de leur environnement. Ce n’est qu’à ce moment-là que quelque chose d’aussi subtil que la mort des artémias a été capté par les plantes.

Jensen : Les plantes s'adaptent-elles uniquement aux humains, ou également aux autres créatures vivantes de leur environnement ?

Backster : Je vais répondre à cette question avec un exemple. Souvent, je branche une plante et je m'occupe de mes affaires, puis j'observe ce qui la fait réagir. Un jour, je faisais bouillir de l'eau dans une bouilloire pour faire du café. Puis j’ai réalisé que j’avais besoin de la bouilloire pour autre chose, alors j’ai versé l’eau bouillante dans l’évier. Le végétal en question, surveillé, a réagi énormément à cela. Maintenant, si vous ne mettez pas de produits chimiques ou d’eau chaude dans l’évier pendant une longue période, une jungle microscopique commence à s’y développer. Il s’est avéré que la plante réagissait à la mort des microbes présents dans les égouts.

À maintes reprises, j'ai été étonné de constater que la capacité de perception s'étend jusqu'au niveau bactérien. Un échantillon de yaourt, par exemple, réagira lorsqu'un autre est nourri, comme pour dire : " Celui-là reçoit de la nourriture. Où est la mienne? " Cela se produit avec un certain degré de répétabilité. Ou si vous déposez des antibiotiques dans l’autre échantillon, le premier échantillon de yaourt montre une énorme réponse à la mort de l’autre. Et il n’est même pas nécessaire qu’il s’agisse de bactéries du même type pour que cela se produise. Mon premier chat siamois ne mangeait que du poulet. J'en gardais un cuit dans le réfrigérateur du laboratoire et en retirais un morceau chaque jour pour nourrir le chat. Au moment où j'arriverais à la fin, la carcasse serait assez vieille et des bactéries auraient commencé à s'y développer. Un jour, j'ai fait brancher du yaourt, et alors que je sortais le poulet du réfrigérateur et commençais à retirer des lanières de viande, le yaourt a répondu. Ensuite, je mets le poulet sous une lampe chauffante pour le ramener à température ambiante.

Jensen : Vous avez visiblement chouchouté votre chat.

Backster : Je n'aurais pas voulu que le chat doive manger du poulet froid ! Quoi qu’il en soit, la chaleur frappant les bactéries a provoqué une énorme réaction dans le yaourt.

Jensen : Comment saviez-vous que vous n'aviez pas d'influence sur cela ?

Backster : Je n’étais pas au courant de la réaction à l’époque. Vous voyez, j'avais installé des commutateurs pip partout dans le laboratoire ; chaque fois que j'effectuais une action, j'appuyais sur un interrupteur, ce qui plaçait une marque sur un tableau distant. Ce n’est que plus tard que j’ai comparé la réaction du yaourt à ce qui s’était passé en laboratoire.

Jensen : Et quand le chat a commencé à ingérer le poulet ?

Backster : Chose intéressante, les bactéries semblent avoir un mécanisme de défense tel qu'un danger extrême les amène dans un état similaire à un choc : en fait, elles s'évanouissent. De nombreuses plantes font cela également ; si vous les harcelez suffisamment, elles se bloquent. C'est apparemment ce que les bactéries ont fait, car dès qu'elles ont touché le système digestif du chat, le signal s'est éteint. À partir de ce moment-là, la ligne est plate.

Jensen : Le Dr David Livingstone, l'explorateur africain, a été mutilé par un lion. Il a déclaré plus tard que lors de l'attaque, il n'avait pas ressenti de douleur, mais plutôt un sentiment de bonheur. Il a dit que cela n'aurait posé aucun problème de se livrer au lion.

Backster : Une fois, j'étais dans un avion et j'avais avec moi un petit compteur à réponse galvanique alimenté par batterie. Juste au moment où les agents de bord commençaient à servir le déjeuner, j'ai dit à l'homme assis à côté de moi : " Vous voulez voir quelque chose d'intéressant ? J'ai mis un morceau de laitue entre les électrodes, et quand les gens ont commencé à manger leurs salades, nous avons eu des réactions, mais elles se sont arrêtées car les feuilles étaient en état de choc. " Attendez qu'ils récupèrent les plateaux ", dis-je, "et voyez ce qui se passe." Lorsque les préposés ont retiré nos repas, la laitue a retrouvé sa réactivité. Le fait est que la laitue passait dans un état de latence pour ne pas souffrir. Quand le danger est parti, la réactivité est revenue. Cet arrêt de l’énergie électrique au niveau cellulaire est lié, je crois, à l’état de choc chez les humains.

Les cellules extérieures au corps réagissent toujours aux émotions que vous ressentez, même si vous êtes à des kilomètres de vous. La plus grande distance que nous avons testée est d’environ trois cents milles.

Jensen : Vous avez donc testé des plantes, des bactéries, des feuilles de laitue. . .

Backster : Et des œufs. J'ai eu un Doberman pinscher pendant un certain temps et je lui donnais un œuf par jour. Un jour, j'avais une plante reliée à un grand compteur à réponse galvanique, et alors que je cassais un œuf pour nourrir le chien, le compteur est devenu fou. Après cela, j’ai passé des centaines d’heures à surveiller les œufs, fécondés et non fécondés, c'est pareil ; c'est toujours une cellule vivante.

Après avoir travaillé avec des plantes, des bactéries et des œufs, j’ai commencé à me demander comment les animaux réagiraient. Mais je n’arrivais pas à faire en sorte qu’un chat ou un chien reste immobile assez longtemps pour effectuer une surveillance significative. J'ai donc pensé essayer les spermatozoïdes humains, qui sont capables de rester vivants en dehors du corps pendant de longues périodes et sont certainement assez faciles à obtenir. Dans cette expérience, l’échantillon du donneur était placé dans un tube à essai doté d’électrodes et le donneur était séparé du sperme par plusieurs pièces. Ensuite, le donneur a inhalé du nitrite d'amyle, qui dilate les vaisseaux sanguins et est classiquement utilisé pour arrêter un accident vasculaire cérébral. Le simple fait d’écraser le nitrite d’amyle a provoqué une réaction importante du sperme, et lorsque le donneur a inhalé, le sperme s’est déchaîné.

Cependant, je ne pouvais pas poursuivre ces recherches. Cela aurait été scientifiquement valable, mais politiquement stupide. Les sceptiques dévoués m'auraient sans doute ridiculisé en me demandant où se trouvait mon masturbatorium, etc.

Puis j’ai rencontré un chercheur dentaire qui avait mis au point une méthode de collecte de globules blancs dans la bouche. C’était politiquement faisable, facile à réaliser et ne nécessitait aucune surveillance médicale. J'ai commencé à faire des expériences enregistrées sur écran partagé, avec l'affichage du graphique superposé au bas d'un écran montrant les activités du donneur. Nous avons prélevé des échantillons de globules blancs, puis renvoyé les gens chez eux pour regarder un programme télévisé présélectionné susceptible de susciter une réaction émotionnelle – par exemple, montrer à un vétéran de Pearl Harbor un documentaire sur les attaques aériennes japonaises. Ce que nous avons découvert, c'est que les cellules situées à l'extérieur du corps réagissent toujours aux émotions que vous ressentez, même si elles sont à des kilomètres de vous.

La plus grande distance que nous avons testée est d’environ trois cents milles. Brian O'Leary, qui a écrit Exploring Inner and Outer Space , a laissé ses globules blancs ici à San Diego, puis s'est envolé pour Phoenix. En chemin, il a gardé une trace des événements qui l'avaient agacé, en notant soigneusement l'heure de chacun. La corrélation est restée, même sur cette distance.

Jensen : Les implications de tout cela...

Backster : – sont stupéfiantes, oui. J'ai des tiroirs remplis de données anecdotiques de haute qualité montrant à maintes reprises comment les bactéries, les plantes, etc. sont toutes incroyablement en harmonie les unes avec les autres. Les cellules humaines ont elles aussi cette capacité de perception primaire, mais d'une manière ou d'une autre, elle s'est perdue au niveau conscient. Ou peut-être n’avons-nous jamais eu un tel talent.

Je soupçonne que lorsqu’une personne est suffisamment avancée spirituellement pour gérer de telles perceptions, elle sera correctement à l’écoute. En attendant, il serait peut-être préférable de ne pas être à l’écoute, à cause des dommages que nous pourrions causer en manipulant mal les informations reçues.

Nous avons tendance à nous considérer comme la forme de vie la plus évoluée de la planète. C'est vrai, nous réussissons très bien dans nos efforts intellectuels. Mais ce n’est peut-être pas le critère ultime permettant de juger. Il se pourrait que d’autres formes de vie soient plus avancées spirituellement. Il se pourrait également que nous nous approchons de quelque chose qui nous permettra d'améliorer notre perception en toute sécurité. De plus en plus de personnes travaillent ouvertement dans ces domaines de recherche encore marginalisés. Par exemple, avez-vous entendu parler du travail de Rupert Sheldrake avec les chiens ? Il installe une caméra d'enregistrement du temps sur le chien à la maison et sur le compagnon humain au travail. Il a découvert que, même si les gens rentrent du travail à une heure différente chaque jour, au moment où la personne quitte le travail, le chien de la maison se dirige vers la porte.

Jensen : Comment la communauté scientifique a-t-elle accueilli votre travail ?

Backster : À l’exception de scientifiques marginalisés comme Sheldrake, la réponse a été d’abord la dérision, puis l’hostilité, et maintenant surtout le silence.

Au début, les scientifiques appelaient la perception primaire " l’effet Backster ", espérant peut-être pouvoir banaliser les observations en leur donnant le nom de cet homme sauvage qui prétendait voir des choses qui avaient échappé à la science dominante. Le nom est resté, mais comme la perception primaire ne peut pas être facilement écartée, ce n'est plus un terme de mépris.

Au moment même où les scientifiques ridiculisaient mon travail, la presse populaire lui prêtait une très grande attention, dans des dizaines d'articles et dans des livres, comme The Secret Life of Plants de Peter Tompkins . Je n’ai jamais demandé aucune attention et je n’en ai jamais profité. Les gens sont toujours venus me chercher des informations.

Pendant ce temps, la communauté botanique était de plus en plus mécontente. Ils voulaient " aller au fond de toutes ces absurdités " et prévoyaient de résoudre le problème lors de la réunion de 1975 de l’Association américaine pour l’avancement de la science à New York. Arthur Galston, un botaniste bien connu de l'Université de Yale, a réuni un groupe restreint de scientifiques pour, à mon avis, tenter de discréditer mon travail ; il s’agit d’une réponse typique de la communauté scientifique aux théories controversées. J'avais déjà appris qu'on ne se lance pas dans ces combats pour gagner ; vous y allez pour survivre. Et c’est exactement ce que j’ai pu faire.

Ils en sont maintenant arrivés au point où ils ne peuvent plus contrer mes recherches, leur stratégie consiste donc simplement à m'ignorer et à espérer que je m'en aille. Bien sûr, cela ne fonctionne pas non plus.

Jensen : Quelle est leur principale critique ?

Backster : Le gros problème – et c’est un gros problème en ce qui concerne la recherche sur la conscience en général – est la répétabilité. Les événements que j'ai observés ont tous été spontanés. Elles doivent être. Si vous les planifiez à l'avance, vous les avez déjà modifiés. Tout se résume à ceci : répétabilité et spontanéité ne font pas bon ménage, et aussi longtemps que les membres de la communauté scientifique insisteront trop sur la répétabilité dans la méthodologie scientifique, ils n’iront pas très loin dans la recherche sur la conscience.

Non seulement la spontanéité est importante, mais l’intention l’est aussi. Vous ne pouvez pas faire semblant. Si vous dites que vous allez brûler une feuille sur la plante, mais que vous ne le pensez pas, rien ne se passera. J'entends constamment des gens de tout le pays vouloir savoir comment provoquer des réactions chez les plantes. Je leur dis : " Ne faites rien. Allez à votre travail; prenez des notes sur ce que vous faites à des moments précis et comparez-les plus tard à votre enregistrement graphique. Mais ne planifiez rien, sinon l’expérience ne fonctionnera pas. " Les gens qui font cela obtiennent souvent les mêmes résultats que moi et remportent le premier prix aux expo-sciences. Mais lorsqu'ils arrivent au cours de biologie 101, on leur dit que ce qu'ils ont vécu n'est pas important.

Il y a eu quelques tentatives de la part des scientifiques pour reproduire mon expérience avec les crevettes Artemia, mais elles se sont toutes révélées inadéquates sur le plan méthodologique. Lorsqu’ils ont appris qu’ils devaient automatiser l’expérience, ils se sont simplement rendus de l’autre côté d’un mur et ont utilisé la télévision en circuit fermé pour regarder ce qui se passait. De toute évidence, ils ne retiraient pas leur conscience de l’expérience, il leur était donc très facile d’échouer. Et soyons honnêtes : certains scientifiques ont été soulagés lorsqu’ils ont échoué, car le succès aurait été contraire à l’ensemble des connaissances scientifiques.

Jensen : L'accent mis sur la répétabilité semble anti-vie, car la vie elle-même n'est pas reproductible. Comme Francis Bacon l’a clairement indiqué, la répétabilité est inextricablement liée au contrôle, et le contrôle est fondamentalement l’essence même de la science occidentale, de la culture occidentale. Pour que les scientifiques abandonnent la répétabilité, ils devraient abandonner le contrôle, ce qui signifie qu’ils devraient abandonner la culture occidentale, et cela n’arrivera pas tant que cette civilisation ne s’effondrera pas sous le poids de ses propres excès écologiques.

Backster : J’ai renoncé à lutter contre d’autres scientifiques sur ce point. Mais je sais que s’ils réalisent mon expérience, même si elle échoue, ils verront quand même des choses qui changeront leur conscience. Ils ne seront plus jamais tout à fait les mêmes.

Des gens qui n’auraient rien dit il y a vingt ans me disent souvent : " Je pense que je peux maintenant vous dire en toute sécurité à quel point vous avez vraiment changé ma vie avec ce que vous faisiez au début des années soixante-dix. " À l’époque, ces scientifiques ne pensaient pas avoir le luxe de faire bouger les choses ; leur crédibilité, et donc leurs demandes de subvention, en auraient été affectées.

Jensen : En regardant votre travail, nous sommes confrontés à plusieurs options : Nous pouvons croire que vous mentez, ainsi que tous ceux qui ont déjà fait des observations similaires. On peut croire que ce que vous dites est vrai, ce qui nécessiterait de retravailler toute la notion de répétabilité dans la méthode scientifique, ainsi que nos notions de conscience, de communication, de perception, etc. Ou bien on peut croire que vous avez commis une erreur. Est-il possible que vous ayez négligé une explication strictement mécaniste de vos observations ? Un scientifique a dit qu’il devait y avoir un fil lâche dans votre détecteur de mensonge.

Backster : En trente et un ans de recherche, c'est comme si j'avais " desserré tous les noeuds ". Non, je ne vois aucune solution mécaniste. Certains parapsychologues pensent que je maîtrise l'art de la psychokinésie, que je fait bouger les aiguilles et autres indicateurs avec mon esprit – ce qui serait en soi une très bonne astuce. Mais ils négligent le fait que j'ai automatisé et randomisé de nombreuses expériences, de sorte que je ne suis même conscient de ce qui se passe que plus tard, lorsque j'étudie les graphiques et les bandes vidéo qui en résultent. Les explications conventionnelles sont devenues assez minces. L’une de ces explications, proposée dans un article du Harper’s, était l’électricité statique : si vous vous déplacez à travers la pièce et touchez la plante, vous obtenez une réponse. Mais bien sûr, je touche rarement la plante pendant l'observation, et de toute façon cette réaction serait totalement différente.

Jensen : Alors, quel est le signal capté par la plante ?

Backster : Je ne sais pas. Quoi qu’il en soit, je ne crois pas que le signal se dissipe à distance, comme ce serait le cas si nous avions affaire à un phénomène électromagnétique. Le signal de Phoenix, par exemple, était aussi fort que si Brian O'Leary avait été dans la pièce voisine.

Nous avons également tenté d'obstruer le signal à l'aide de plomb et d'autres matériaux, mais nous ne pouvons pas l'arrêter. Cela me fait penser que le signal ne va pas réellement d'ici à là, mais se manifeste plutôt à différents endroits. Je soupçonne que le signal ne prend pas de temps pour se déplacer. Il n'y a aucun moyen, en utilisant les distances terrestres, de tester cela, car si le signal était électromagnétique, il se propagerait à la vitesse de la lumière, et les retards biologiques consommeraient plus que la fraction de seconde qu'il faudrait au signal pour se propager. La seule façon de tester cela serait dans l’espace.

Certains physiciens quantiques soutiennent cette conviction – selon laquelle le signal ne dépend ni du temps ni de la distance. Il existe une théorie quantique appelée théorème de Bell, qui stipule que deux atomes éloignés l'un de l'autre changent parfois simultanément la direction de leur rotation.

Bien entendu, tout cela nous amène fermement sur le territoire du métaphysique et du spirituel. Pensez à la prière, par exemple. Si vous deviez prier Dieu, et que Dieu se trouvait de l’autre côté de la galaxie, et que votre prière voyageait à la vitesse de la lumière, vos os seraient depuis longtemps poussière avant que Dieu puisse répondre. Mais si Dieu – quelle que soit la manière dont vous définissez Dieu – est partout, la prière n'a pas besoin de voyager.

Jensen : Soyons plus concrets. Vous avez une image mentale de la plante en train de brûler et la plante réagit. Que se passe-t-il précisément à cet instant ? Comment la plante sait-elle réagir ?

Backster : Je ne prétends pas savoir. En fait, j’ai attribué une grande partie de ma réussite à pouvoir rester actif dans ce domaine – et à ne pas avoir été discrédité – au fait que je ne prétends pas le savoir. Vous voyez, si je donne une explication erronée, peu importe la quantité de données dont je dispose ou le nombre d’observations de qualité que j’ai faites. La communauté scientifique dominante utilisera l’explication incorrecte comme excuse pour rejeter mes données et mes observations. J'ai donc toujours dit que je ne savais pas comment cela se produisait. Je suis un expérimentateur, pas un théoricien.

Jensen : La capacité des plantes à percevoir l'intention me suggère une redéfinition radicale de la conscience.

Backster : Vous voulez dire que cela supprimerait la notion de conscience comme quelque chose sur lequel les humains ont le monopole ?

Jensen : Les humains et autres animaux dits supérieurs. Selon la pensée occidentale, parce que les plantes n’ont pas de cerveau, elles ne peuvent pas avoir de conscience.

Backster : Je pense que la science occidentale exagère le rôle du cerveau dans la conscience. Des livres entiers ont été écrits sur la conscience de l’atome. La conscience pourrait exister à un tout autre niveau. De très bonnes recherches ont été réalisées sur la survie de la conscience après la mort corporelle. Tout cela pointe vers l’idée selon laquelle la conscience n’a pas besoin d’être spécifiquement liée à la matière grise. Cette notion est une autre camisole de force dont nous devons nous débarrasser. Le cerveau a peut-être quelque chose à voir avec la mémoire, mais on peut affirmer avec force qu’une grande partie de notre mémoire n’y est pas stockée.

Jensen : La notion de mémoire corporelle est familière à tout athlète : lorsque vous vous entraînez, vous essayez de créer des souvenirs dans vos muscles.

Backster : Le cerveau ne fait peut-être même pas partie de cette boucle.

Jensen : J'ai également lu des articles sur les séquelles physiologiques des traumatismes – maltraitance des enfants, viol, guerre. De nombreuses recherches montrent que le traumatisme s’imprime sur différentes parties du corps ; une victime de viol pourrait plus tard ressentir une brûlure dans son vagin, par exemple.

Backster : Si je me cogne, j'explique aux tissus de cette zone ce qui s'est passé. Je ne sais pas à quel point cette méthode de guérison est efficace, mais elle ne peut pas faire de mal.

Jensen : Avez-vous également travaillé avec ce que l'on appelle normalement des matériaux inanimés ?

Backster : J'ai déchiqueté certaines substances et je les ai mises en suspension dans de la gélose. Je reçois des signaux électriques, mais ils ne sont pas nécessairement liés à quoi que ce soit qui se passe dans l'environnement. Les schémas sont trop grossiers pour que je puisse les déchiffrer. Mais je soupçonne que la conscience est plus répandue.

En 1987, j'ai participé à un programme de l'Université du Missouri qui comprenait une conférence du Dr Sidney Fox, qui était alors lié à l'Institut pour l'évolution moléculaire et cellulaire de l'Université de Miami. Fox avait enregistré des signaux électriques provenant d’un matériau semblable à une protéine qui présentait des propriétés étonnamment similaires à celles des cellules vivantes. La simplicité du matériel qu'il a utilisé et la capacité d'auto-organisation dont il fait preuve me suggèrent que la biocommunication était présente dès les tout premiers stades de l'évolution de la vie sur cette planète.

Bien sûr, l’hypothèse de Gaia – selon laquelle la Terre est un grand, grand organisme fonctionnel – s’inscrit parfaitement dans ce contexte. La planète va avoir le dernier mot concernant les dégâts que les humains lui infligent. Il ne lui faudra qu'un certain nombre d'abus, et alors il pourrait bien roter et renifler un peu, et détruire une bonne partie de la population. Je ne pense pas qu'il serait exagéré de pousser l'hypothèse un peu plus loin et d'attribuer une telle stratégie de défense à une sorte d'intelligence planétaire.

Jensen : Comment votre travail a-t-il été reçu dans d'autres parties du monde ?

Backster : Les Russes ont toujours été très intéressés et n'ont pas eu peur de s'aventurer dans ces domaines de recherche. À bien des égards, ils semblent beaucoup plus sensibles aux concepts spirituels que la plupart des scientifiques occidentaux. Et chaque fois que je parle de ce que je fais avec des scientifiques indiens – bouddhistes ou hindous –, ils me demandent : " Qu’est-ce qui vous a pris autant de temps ? " Mon travail s'accorde très bien avec de nombreux concepts adoptés par l'hindouisme et le bouddhisme.

Jensen : De quoi avons-nous peur, nous, les Occidentaux ?

Backster : La crainte est que, si ce que j’observe est exact, bon nombre des théories sur lesquelles nous avons construit nos vies doivent être complètement remaniées. J'ai connu des biologistes dire : " Si Backster a raison, nous sommes dans la merde . " Cela signifierait une refonte radicale de notre place dans le monde. Je pense que nous le voyons déjà.

Notre communauté scientifique occidentale en général se trouve dans une situation difficile car, pour maintenir notre mode de pensée scientifique actuel, nous devons ignorer une énorme quantité d’informations. Et de plus en plus d’informations de ce type sont recueillies en permanence. Les chercheurs butent partout sur ce phénomène de biocommunication. Il semble impossible, compte tenu de la sophistication des instruments modernes, de passer à côté de cette harmonisation fondamentale entre les êtres vivants. Seulement pendant un certain temps, ils pourront prétendre qu’il s’agit que de " cables déconnectés ".

Auteur: Internet

Info: Les plantes réagissent - Une entrevue avec Cleve Backster, Derrick Jensen,  Juillet 1997 - https://www.thesunmagazine.org/

[ télépathie ] [ adéquation corps-esprit ] [ universel esprit ] [ ego prison ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

post-quantique

Vers une physique de la conscience :   (Attention, article long et ardu, encore en cours de correction)

"Une vision scientifique du monde qui ne résout pas profondément le problème des esprits conscients ne peut avoir de sérieuses prétentions à l'exhaustivité. La conscience fait partie de notre univers. Ainsi, toute théorie physique qui ne lui fait pas de place appropriée est fondamentalement à court de fournir une véritable description du Monde."  Sir Roger Penrose : Les ombres de l'esprit

Où va la physique dans ce siècle ? Pour de nombreux scientifiques, ce type de question évoquera très probablement des réponses tournant autour de la relativité quantique, de la naissance et de l'évolution probable de l'Univers, de la physique des trous noirs ou de la nature de la "matière noire". L'importance et la fascination durable de ces questions sont incontestables.

Cependant, pour une minorité croissante de physiciens, une question encore plus grande se profile à l'horizon : le problème persistant de la conscience.

La révolution de l'information des dernières décennies a eu un impact sur nos vies plus profond qu'il parait. De la physique fondamentale au calcul quantique en passant par la biophysique et la recherche médicale, on prend de plus en plus conscience que l'information est profondément et subtilement encodée dans chaque fibre de l'Univers matériel, et que les mécanismes de contrôle que nous avons l'habitude d'étudier sur des bases purement mécaniques ne sont plus adéquats. Dans de nombreux laboratoires à travers le monde, les scientifiques sondent tranquillement cette interface esprit-matière et esquissent les premières lignes d'une nouvelle vision du monde.

Nous avons demandé à 2 de ces scientifiques de partager leur vision de ce que signifie ce changement de paradigme pour la physique théorique et du type de travail expérimental susceptible de produire les percées les plus importantes.

Lian Sidorov : Vous abordez tous deux les problèmes du modèle standard en révisant ses axiomes de base - en commençant essentiellement par une nouvelle interprétation de ses blocs de construction physiques. Pourriez-vous résumer brièvement cette approche?

M.P. : L'identification des espaces-temps en tant que surfaces à 4 dimensions d'un certain espace à 8 dimensions est l'élément central de TGD (Topological Geometrodynamics) et résout les problèmes conceptuels liés à la définition de l'énergie dans la relativité générale. Le nouveau concept d'espace-temps - "l'espace-temps à plusieurs feuilles" comme je l'appelle - a des implications considérables non seulement pour la physique, mais aussi pour la biologie et pour la conscience. Fondamentalement, parce que la vision réductionniste dure de l'Univers est remplacée par une vision quantitative de la façon dont le réductionnisme échoue.

La mathématisation de la vision de base se fonde sur l'idée que la physique quantique se réduit à une géométrie classique de dimension infinie pour ce qu'on pourrait appeler un "monde des mondes" - l'espace de toutes les surfaces possibles en 3 D. Cette idée est, en un certain sens, très conservatrice. Il n'y a pas de quantification dans cette théorie et son seul aspect quantique est le saut quantique. La croyance est que l'existence géométrique de dimension infinie (et donc aussi la physique) est hautement unique. Que cela puisse être le cas est suggéré par une énorme quantité de travaux probablement futiles qui s'essayent à construire des théories quantiques de champs sans infinis ainsi que par l'expérience avec des géométries de dimension infinie plus simples.

La formulation la plus abstraite de la TGD est une théorie des nombres généraliste obtenue en généralisant la notion de nombre de manière à permettre des nombres premiers infinis, des nombres entiers, etc.  Par conséquent les objets géométriques tels que les surfaces spatio-temporelles peuvent être considérés comme des représentations de nombres infinis, entiers, etc.  La formulation de la théorie des nombres conduit naturellement à la notion de physique p-adique (les champs de nombres p-adiques sont des compléments de nombres rationnels, un pour chaque nombre premier p=2,3,5,7,...).  Et l'on aboutit à la généralisation de la surface de l'espace-temps en permettant à la fois des régions d'espace-temps réelles et p-adiques (ces dernières représentant les corrélats géométriques de la cognition, de l'intention et de l'imagination tandis que les régions réelles représentent la matière).

Une des implication est l'hypothèse dite de l'échelle de longueur p-adique qui prédit une hiérarchie d'échelles de longueur et de temps servant d'échelles caractéristiques des systèmes physiques. La possibilité de généraliser la théorie de l'information en utilisant la notion théorique d'entropie des nombres conduit à une caractérisation théorique des nombres très générale des systèmes vivants pour lesquels une entropie p-adique appropriée est négative et indique ainsi que le système a un contenu d'information positif. La nouvelle vision de la relation entre le temps subjectif et géométrique est un aspect important de l'approche et résout le paradoxe fondamental de la théorie de la mesure quantique et une longue liste de paradoxes étroitement liés de la physique moderne. Il est également crucial pour la théorie de la conscience inspirée du TGD.

LS : Y a-t-il des personnages historiques dont vous pouvez vous inspirer ? Ou des théories physiques en cours de discussion qui offrent des points de convergence avec votre modèle ?

MP : John Wheeler était mon gourou du visionnage à distance, et la lecture de ses écrits fut pour moi une sorte d'expérience charnière. Wheeler a introduit la topologie dans la physique théorique. Wheeler a également introduit la notion de "super-espace" - espace de dimension infinie de toutes les géométries possibles ayant la métrique de Riemann et servant d'arène de gravitation quantique. Le remplacement du super-espace par l'espace des surfaces 3-D dans l'espace imbriqué 8-D ("monde des mondes") s'est avéré être la seule approche donnant l'espoir de construire un TGD quantique. Toutes les autres approches ont complètement échoué. 

Einstein a, bien sûr, été la deuxième grande figure. Il a été assez surprenant de constater que l'invariance générale des coordonnées généralisée au niveau de l'espace de configuration des surfaces 3 D ("monde des mondes") fixe la formulation de base de TGD presque exclusivement, tout comme elle fixe la dynamique de la relativité générale. Soit dit en passant, j'ai appris d'un article d'Einstein qu'il était très conscient des problèmes liés à la relation entre le temps subjectif et le temps géométrique et qu'il croyait que la réalité était en fait à 4 dimensions. Mais que notre capacité à "voir" dans le sens du temps est faible.

La TGD peut également être considéré comme une généralisation de l'approche des super-cordes qui généralise les symétries de base du modèle superstring (la symétrie la plus importante étant la symétrie dite conforme). Dans l'approche superstring, la symétrie conforme contraint les objets de base à être des chaînes unidimensionnelles. Dans TGD, cela les force à être des surfaces 3D. Au niveau algébrique, TGD ressemble beaucoup aux modèles de supercordes. Mais la dimension de l'espace-temps est la dimension physique D=4 plutôt que D=2.

LS : Comment voyez-vous la relation entre les systèmes matériels et la conscience ? L'une est-elle une propriété émergente de l'autre ou sont-elles équivalentes à un certain niveau ?

MP : Je ne partage pas la croyance matérialiste sur l'équivalence de l'esprit et de la matière. Je crois que la conscience - et même la cognition - sont présentes même au niveau des particules élémentaires. Pas de monisme, pas même de dualisme… mais de tripartisme. Le champ de spinor dans le "monde des mondes", l'histoire quantique et la "solution des équations du champ quantique", tout ceci définit ce que l'on pourrait appeler la réalité objective particulière. L'existence subjective correspond à une séquence de sauts quantiques entre des histoires quantiques. L'existence matérielle au sens géométrique correspond aux surfaces d'espace-temps - les réalités de la physique classique.

Dans ce cadre, il n'est pas nécessaire de postuler l'existence séparée de la théorie et de la réalité. Les "solutions des équations de champ quantique" ne représentent pas seulement des réalités, ce sont les réalités objectives. L'expérience subjective correspond à des sauts quantiques entre des "solutions d'équations de champs quantiques" - un truc toujours entre deux réalités objectives. Abandonner la croyance matérialiste en une réalité objective unique résout les problèmes fondamentaux de la théorie de la mesure quantique et offre une nouvelle vision de la relation entre le temps subjectif (séquence de sauts quantiques) et le temps géométrique (coordonnée de la surface espace-temps).

Le prix payé est un niveau d'abstraction assez élevé. Il n'est pas facile de traduire la vision des réalités en tant que champs de spineurs dans le "monde expérimental des mondes" en tests pratiques ! Ici, cependant, la correspondance quantique-classique aide.

LS : Comment résumeriez-vous votre approche des interactions mentales à distance comme la cognition anormale (vision à distance) et la perturbation anormale (PK) ?

MP : Il y a plusieurs éléments en jeu. La quantification topologique du champ, la notion d'hologramme conscient, le partage d'images mentales et le mécanisme de base des interactions mentales à distance basées sur les ME.

(a) L'ingrédient clé est la quantification topologique des champs classiques impliqués par le concept d'espace-temps à plusieurs feuilles. La surface de l'espace-temps est comme un diagramme de Feynman extrêmement complexe avec des lignes épaissies en feuilles d'espace-temps à 4 dimensions. Ces lignes à 4 dimensions représentent les régions de cohérence des champs classiques et de la matière (atomes, molécules, cellules,..). Aux sommets où les droites quadridimensionnelles se rencontrent, les champs classiques interfèrent. Les sommets sont comme des points d'un hologramme tandis que les lignes sont comme des faisceaux laser.

Les "lignes" particulièrement importantes du diagramme de Feynman généralisé sont les "extrémaux sans masse" (ME, "rayons lumineux topologiques"). Ils représentent des champs classiques se propageant avec la vitesse de la lumière d'une manière ciblée précise sans affaiblissement et sans perte d'information - un peu comme un rayonnement se propageant dans un guide d'ondes dans une seule direction. Les ME sont des facteurs clés dans la théorie de la matière vivante basée sur le TGD. Les tubes de flux magnétique et leurs homologues électriques (les biosystèmes ! sont remplis d'électrets) sont des "lignes" tout aussi importantes du diagramme de Feynman généralisé.

(b) L'hologramme conscient est une structure semblable à une fractale. L'implication de base est qu'il n'y a pas d'échelle de longueur préférée où la vie et la conscience émergeraient ou pourraient exister. Le transfert de supra-courants de nappes spatio-temporelles supraconductrices (généralement des tubes à flux magnétique) vers des nappes spatio-temporelles plus petites (par exemple, des nappes spatio-temporelles atomiques) induit une rupture de supraconductivité, une dissipation et une sélection darwinienne par auto-organisation.

Le flux cyclique d'ions entre 2 feuillets d'espace-temps est aussi le mécanisme de base du métabolisme. Un hologramme ordinaire donne lieu à une vision stéréo. Pour l'hologramme conscient, cela correspond à une fusion d'images mentales associées à différents points de l'hologramme. Lorsque les images mentales se ressemblent suffisamment, elles peuvent fusionner et donner lieu à une conscience stéréo (c'est-à-dire que les champs visuels droit et gauche fusionnent pour donner lieu à une stéréovision s'ils se ressemblent suffisamment).

(c) Le partage d'images mentales est une notion nouvelle. Les sous-moi de 2 moi non enchevêtrés peuvent s'entremêler, ce qui signifie qu'il en résulte une image mentale partagée et plus complexe. C'est le mécanisme de base de la télédétection. L'intrication de sous-systèmes de systèmes non intriqués n'est pas possible si l'on utilise la notion standard de sous-système. La nouvelle notion de sous-système s'inspire de la pensée d'échelle de longueur des théories quantiques des champs (tout est toujours défini dans une résolution d'échelle de longueur) et des aspects de type trou noir des feuilles d'espace-temps. L'intrication des sous-systèmes ne se voit pas dans la résolution caractérisant les systèmes, de sorte que l'on peut dire que les systèmes sont "non enchevêtrés" alors que les sous-systèmes sont intriqués.

(d) Un mécanisme plus détaillé pour les interactions mentales à distance est le suivant. Les ME à basse fréquence (gamme EEG généralement) connectent le téléspectateur 'A' à un soi magnétosphérique collectif multi-cerveau 'M' agissant comme un moyen et 'M' à la cible 'T' de sorte que l'enchevêtrement 'A'-'T' et le partage d'images mentales devient possible. Toutes les communications 'A'-'M' (comme poser des questions sur une cible donnée) pourraient être basées sur le partage d'images mentales. Les téléspectateurs pourraient avoir des lignes de communication plus ou moins permanentes avec la magnétosphère.

C'est suffisant pour la télédétection. Pour les interactions motrices à distance (disons PK), des ME à haute fréquence sont également nécessaires. Ils se propagent comme des particules sans masse le long des ME basse fréquence et induisent à la seconde extrémité des fuites de supracourants entre les tubes de flux magnétiques et les nappes d'espace-temps atomiques induisant l'auto-organisation ainsi que l'effet PK. La dichotomie bas-haut correspond à la dichotomie sensori-motrice et à la dichotomie quantique-classique pour les communications quantiques. Les fréquences préférées des ME à haute et basse fréquence devraient être dans certaines proportions constantes, et les découvertes de l'homéopathie appuient cette prédiction.

Les cellules et autres structures ont des "interactions mentales à distance" à l'intérieur du corps via ce mécanisme. De plus, les représentations sensorielles au corps du champ magnétique sont réalisées par le même mécanisme avec des rayons lumineux topologiques micro-ondes (très probablement) du cerveau qui se propagent le long des EEG ME et induisent une auto-organisation au niveau du corps magnétique personnel. Des représentations sensorielles sont également possibles pour une magnétosphère et peut-être même à pour des structures magnétiques plus grandes (qui pourraient avoir des tailles de durée de vie lumineuse). Ainsi, la conscience humaine a un aspect astrophysique défini.

LS : Comment interprétez-vous l'effet des fluctuations géomagnétiques et du temps sidéral local sur la cognition anormale ?

MP : Le faible niveau de bruit magnétique semble être le premier pré-requis pour des performances cognitives anormales. L'interprétation est que l'esprit magnétosphérique doit avoir un faible niveau d'excitation. La performance semble augmenter autour d'un intervalle de 2 heures autour de 13h30 heure sidérale locale, qui est l'heure dans un système de coordonnées fixé par rapport aux étoiles plutôt qu'au Soleil. Ces découvertes - ainsi que la vision générale sur les structures de tubes de flux magnétiques comme modèles de vie - suggèrent que non seulement le champ magnétique terrestre, mais aussi que les champs magnétiques interstellaires pourraient être des acteurs clés dans les interactions mentales à distance.

(a) Que les fluctuations magnétiques puissent masquer des interactions mentales à distance donne une idée de la force du champ magnétique interstellaire. Le délai pour les interactions mentales à distance est de l'ordre de t=13-17 secondes et devrait correspondre à l'échelle de temps définie par la fréquence cyclotron du proton du champ magnétique interstellaire. Cela implique qu'il devrait avoir une force dans l'intervalle 10-13nT. Par contre, aux fréquences correspondant à f = 1/t, l'intensité des fluctuations géomagnétiques est d'environ 10nT. Il semblerait qu'un champ magnétique interstellaire non masqué d'une force d'environ 10-13 nT soit crucial pour les interactions mentales à distance.

(b) Les champs magnétiques interstellaires ont généralement une intensité comprise entre 100 et 0,01 nT, et diverses échelles de temps de cyclotron sont des échelles de temps de la conscience humaine. Le seul champ magnétique interstellaire dont les tubes de flux pourraient émerger dans la direction qui est au méridien 13.30 ST est le champ magnétique de type dipôle créé par le centre galactique ayant une intensité d'ordre 100 nT près du centre galactique et coupant orthogonalement le plan galactique. Les supernovae transportent des champs magnétiques de l'ordre de 10 à 30 nT ; le vent solaire transporte un champ magnétique d'une force moyenne de 6 nT ; la nappe de plasma du côté nuit de la Terre - connue pour être une structure fortement auto-organisée - porte un champ magnétique d'une force d'environ 10 nT. Au moins pour un habitant de l'univers TGD croyant en la fractalité de la conscience, ces découvertes suggèrent que les champs magnétiques galactiques forment une sorte de système nerveux galactique, tout comme le champ magnétique terrestre forme le système nerveux de Mère Gaïa.

c) Pourquoi 13h30 ST est si spécial pourrait être compris si les tubes de flux du champ magnétique interstellaire attachés à la matière vivante vent pendant la rotation de la Terre. Cet enroulement introduit du bruit rendant les interactions mentales à distance moins probables. Pendant l'intervalle de 2 heures autour de 13h30 ST, les effets de l'enroulement sont les plus faibles.

LS : Les effets temporels tels que la pré-cognition et la rétro-pk ont ​​été un casse-tête et une complication de longue date pour l'émergence de modèles physiques convaincants en parapsychologie. Comment résolvez-vous ces paradoxes dans le cadre de votre théorie ?

MP : Dans le cadre du TGD, on est obligé de modifier les croyances de base sur le temps. Le "temps vécu subjectivement" correspond à une séquence de sauts quantiques entre des histoires quantiques. Le temps subjectif n'est cependant pas vécu comme discret puisque les soi ("soi" est un système capable d'éviter l'enchevêtrement de l'état lié avec l'environnement et a une feuille d'espace-temps comme corrélat géométrique) expérimentent la séquence de sauts quantiques comme une sorte de moyenne. La réalité résultant d'un saut quantique donné est une superposition de surfaces d'espace-temps qui se ressemblent dans la résolution dépendante de l'observateur définie par l'échelle de longueur p-adique.

On peut dire que chaque saut quantique conduit à ce qui ressemble sensoriellement à un espace-temps classique unique (sorte d'espace-temps moyen quantique). Le temps subjectif correspond au temps géométrique dans le sens où les contenus de conscience sont fortement localisés autour d'un certain moment du temps géométrique à la surface de l'espace-temps classique. L'espace-temps est à 4 dimensions. Mais notre expérience consciente à ce sujet ne nous renseigne que sur une tranche de temps étroite (du moins nous le croyons) définissant ce que l'on pourrait appeler "le temps psychologique". L'incrément de temps psychologique dans un saut quantique unique est d'environ 10 à 39 secondes selon une estimation basée sur les hypothèses les plus simples possibles. Le temps psychologique correspond aussi au front d'une transition de phase transformant des feuilles d'espace-temps p-adiques (e.g., intentions, plans) en feuilles d'espace-temps réelles (actions) et se propageant vers le Futur géométrique.

A chaque saut quantique, l'espace-temps moyen quantique classique est remplacé par un nouveau. De plus, le passé géométrique change en saut quantique de sorte qu'il n'y a pas de passé géométrique absolu (le passé subjectif étant, bien sûr, absolu). Ceci explique des anomalies causales comme celles observées par Libet, Radin et Bierman, et Peoch. La mémoire géométrique consiste essentiellement à voir dans le passé géométrique. Intentions, plans et attentes signifient voir le Futur géométrique au sens p-adique. La précognition est une mémoire inversée dans le temps. L'intention, la précognition et les souvenirs ne sont pas absolus puisque le futur géométrique et le passé changent à chaque saut quantique. Le "montage" du Passé géométrique (disons changer les mémoires en changeant l'état du cerveau en Passé géométrique) est possible.

LS : Les découvertes de Mark Germine semblent suggérer que la mesure consciente d'un événement par un cerveau tend à réduire l'élément de surprise pour les observateurs conscients ultérieurs, tel que mesuré par le potentiel lié à l'événement associé. Comment interprétez-vous ces résultats ?

MP : La nouvelle vision de champs classiques contraints par la quantification topologique conduit à vers la notion de champ/corps électromagnétique/magnétique. Chaque système matériel, atome, cellule, etc. est généralement accompagné d'un corps de champ qui est beaucoup plus grand que le corps physique et fournit une sorte de représentation symbolique du système analogue au manuel d'un instrument électronique. Le corps magnétique joue le rôle d'un écran d'ordinateur sur lequel sont réalisées des représentations sensorielles. Les "caractéristiques" produites par le traitement de l'information dans le cerveau sont attribuées à un point donné (appelons-le "P") du corps magnétique personnel en enchevêtrant les images mentales correspondantes avec l'image mentale "simple sentiment d'existence" en "P". Les ME EEG ("rayons lumineux topologiques") sont des corrélats de cet enchevêtrement.

Outre les corps magnétiques personnels, des représentations sensorielles dans la magnétosphère terrestre sont également possibles et donnent lieu à la conscience magnétosphérique. Les soi magnétosphériques recevant des informations conscientes de nombreux cerveaux sont possibles et pourraient être un aspect crucial de toutes les structures sociales. Les découvertes de Mark Germine peuvent être comprises si l'on suppose que 2 personnes recevant le stimulus inattendu à des moments légèrement différents sont des "neurones" du même soi multi-cerveau. Après avoir perçu le stimulus bizarre une fois à travers le premier cerveau, le soi multi-cérébral est moins surpris lorsqu'il expérimente le stimulus bizarre à travers le deuxième cerveau.

LS : Vos deux modèles nécessitent une cohérence quantique massive comme base d'une expérience consciente. Comment résoudre le fameux problème de décohérence ?

MP : Dans l'espace-temps à plusieurs nappes, les nappes d'espace-temps atomiques "chaudes, humides et bruyantes" ne sont pas les seules. Il existe des nappes d'espace-temps plus grandes et très froides contenant de faibles densités de matière supraconductrice. En particulier, les tubes de flux magnétique de la Terre sont supraconducteurs. On a donc une cohérence quantique macroscopique. Mais ce n'est pas assez. Il faut aussi avoir une cohérence quantique macro-temporelle. Au début, cela semble impossible. Un seul saut quantique correspond à un incrément de temps géométrique d'environ 10-39 secondes. Ce temps est identifiable comme le temps de décohérence si bien que la situation semble encore pire qu'en physique standard ! Cette image ne peut pas être correcte, et l'explication est simple.

L'intrication à l'état lié est stable dans le saut quantique. Et lorsqu'un état lié est formé, aucune réduction de fonction d'état ni préparation d'état ne se produit dans les degrés de liberté liés. La séquence entière de sauts quantiques (particules élémentaires de conscience) se lie pour former ce qui est effectivement comme un seul saut quantique, période de cohérence quantique macrotemporelle (atome, molécule,... de conscience). Le "temps de décohérence" peut être identifié comme la durée de vie de l'état lié.

Malheureusement, même cela ne suffit pas puisque c'est essentiellement ce que prédit la physique standard. La dernière pièce du puzzle provient de la dégénérescence du verre de spin quantique. La dégénérescence du verre de spin signifie qu'il existe un nombre gigantesque de surfaces d'espace-temps qui diffèrent les unes des autres uniquement parce qu'elles ont des champs gravitationnels classiques légèrement différents. Les états liés se produisent lorsque 2 feuilles d'espace-temps sont connectées par une liaison le long des frontières. La "dégénérescence du verre de spin" signifie que dans ce cas, il existe un grand nombre de liens différents le long des frontières et donc également une immense dégénérescence des états liés. Lorsqu'un état lié est formé, il se désintègre avec une très forte probabilité en un nouvel état lié de ce type puisque pour l'état libre (pas de jointure le long des liaisons aux frontières !), la dégénérescence du verre de spin n'est pas présente et le nombre de ces états est beaucoup plus petit .

Ainsi, le temps passé dans les états liés dégénérés du verre de spin ("temps de décohérence") est beaucoup plus long que dans l'univers physique standard ! Du point de vue de la physique standard, les nouveaux degrés de liberté du verre de spin sont cachés et le physicien standard identifie les états liés dégénérés comme un seul et même état lié. Par conséquent, la durée de vie mesurée de l'état lié semble être beaucoup plus longue que prévu par la physique standard.

LS : Une suite naturelle à la question précédente : Quelle est la base physique de la mémoire individuelle et du partage d'images mentales comme on le voit dans la vision à distance, la télépathie et d'autres expériences transpersonnelles (Jung, Grof, Stevenson) ?

MP : La différence essentielle entre le paradigme du cerveau à 4 dimensions et les neurosciences standard est qu'il n'y a pas besoin de stocker les souvenirs dans le 'Maintenant' géométrique. Le mécanisme le plus simple de la mémoire géométrique est le "mécanisme du miroir quantique". Se souvenir d'un événement qui s'est produit il y a un an, c'est regarder un miroir à une distance d'une demi-année-lumière et voir ce qui se passe "subjectivement maintenant" dans le temps géométrique à une distance temporelle d'un an.

L'option minimale est basée sur le partage d'images mentales rendu possible par l'intrication temporelle. L'intrication temporelle n'est pas autorisée par la physique standard. Dans TGD, l'intrication de type temps est rendue possible par le non-déterminisme partiel du principe variationnel indiquant quelles surfaces d'espace-temps sont possibles. Ce non-déterminisme ainsi que le non-déterminisme inhérent aux équations de champ p-adiques sont des éléments centraux de la théorie de la conscience inspirée du TGD.

Ils rendent également possibles la correspondance quantique-classique et les représentations symboliques et cognitives des réalités objectives et subjectives (niveau du monde des mondes) au niveau de l'espace-temps (niveau du monde) responsables des aspects autoréférentiels de la conscience. J'ai déjà parlé du partage d'images mentales comme mécanisme télépathique de base. Et l'intrication temporelle rend également possible le partage d'images mentales entre le Présent géométrique et le Passé géométrique. La signalisation classique n'est pas nécessaire mais n'est bien sûr pas exclue. Les microtubules semblent être des candidats optimaux en ce qui concerne les mémoires déclaratives à long terme.

Le partage d'images mentales est un mécanisme universel d'expériences sensorielles à distance (mémoire à long terme, représentations sensorielles, télédétection, expériences transpersonnelles). Les actions motrices à distance telles que PK nécessitent l'implication de ME à haute fréquence se propageant le long de l'enchevêtrement générant des ME à basse fréquence et induisant une auto-organisation à l'extrémité réceptrice.

LS : La télédétection d'une cible physique distante (par opposition à l'information collective) est-elle possible dans votre modèle ? Et sur quelle base ?

MP : Dans le monde TGD, tout est conscient. Et la conscience ne peut qu'être perdue. Il y a aussi des raisons de croire que pratiquement tous les systèmes servent d'"écrans d'ordinateur" donnant lieu à des représentations sensorielles. Par conséquent, des cibles physiques "non vivantes" pourraient également définir des représentations sensorielles au niveau de la magnétosphère.

Il y a une découverte étrange à propos des sons de météorites soutenant cette vision. Des sons de météores ont été à la fois entendus et détectés par des instruments. Le spectre de fréquences se situait dans l'intervalle des fréquences de résonance thalamo-corticale autour de 40 Hz alors que l'on s'attendait à ce que le spectre couvre toute la gamme 20-20 000 Hz. L'intensité des sons était également beaucoup plus forte que prévu si le rayonnement électromagnétique (induisant des sons à la surface de la Terre) généré par le météore avait des distributions à symétrie sphérique.

Cela suggère que les ME ELF correspondant à des fréquences autour de 40 Hz connectent non seulement des cerveaux mais aussi des objets "morts" à la magnétosphère, et que le rayonnement a été amplifié sélectivement dans ces guides d'ondes. Ainsi, même des objets "morts" pourraient être représentés sensoriellement dans la magnétosphère. Si le téléspectateur peut être considéré comme un client d'un multi-cerveau magnétosphérique auto-fournissant des services de télévisualisation, il est tout à fait possible que le téléspectateur puisse télédétecter la cible en utilisant les sens du moi magnétosphérique.

LS : Comment interprétez-vous la fragmentation massive des données et la pluralité des modalités sensorielles caractérisant le signal RV typique ? Qu'en est-il du phénomène de bi-localisation ?

MP : Le cerveau traite l'information en la décomposant en "caractéristiques" simples comme les bords, les coins, les mouvements simples, etc. Ces caractéristiques sont dispersées dans le cerveau presque comme dans une mémoire à accès aléatoire. Seules les représentations sensorielles au niveau du corps magnétique lient les caractéristiques appropriées à un point donné de la toile magnétique de sorte que la soupe de caractéristiques s'organise en un champ perceptif.

Dans le cas où la cible est une autre personne, la fragmentation des données pourrait signifier que le moi magnétosphérique s'emmêle avec diverses images mentales dans le cerveau, de sorte que des "caractéristiques" individuelles plutôt que la représentation sensorielle bien organisée du corps magnétique soient vues. Dans le cas d'une cible non vivante, l'organisation en champ perceptif est probablement absente de toute façon. Si le partage d'images mentales se produit de manière très intense, il peut conduire à une bilocalisation. Même un masquage presque total de la contribution ordinaire à l'expérience sensorielle est possible. Les hallucinogènes (par exemple, ceux rapportés par Terence MacKenna) impliquent en effet un remplacement soudain de la réalité sensorielle quotidienne par une nouvelle.

LS : Les travaux de Gariaev sur l'irradiation laser modulée de l'ADN ont donné des aperçus fascinants sur la possibilité d'une régulation génétique non locale, non canonique (basée sur les codons) - peut-être via des grilles d'interférence de biophotons et d'ondes radio à grande échelle menant à l'idée de un modèle holographique électromagnétique pour les organismes vivants. Quelle est la signification de ses résultats pour votre modèle ? Et comment envisagez-vous la hiérarchie des systèmes de contrôle morphogénétiques et régulateurs dans les organismes vivants ?

MP : Le travail de Gariaev fournit une information importante (beaucoup en fait !) pour tenter de concrétiser le point de vue sur le biocontrôle quantique à plusieurs feuilles. Et cela pourrait s'avérer être une preuve convaincante du concept d'espace-temps à plusieurs feuilles. Une contribution décisive pour le modèle de l'homéostasie quantique est venue des conférences de Cyril Smith sur la mémoire de l'eau et l'homéopathie lors de la conférence CASYS 2001. Le constat de base est que certaines fréquences semblent coder les effets du remède homéopathique, et que ces fréquences apparaissent par paires de fréquences basses et hautes qui apparaissent en proportion constante.

Cela peut être compris dans le cadre TGD comme suit. Lorsque les ions "chutent" de (disons) feuilles d'espace-temps atomiques vers des feuilles d'espace-temps plus grandes (disons des tubes à flux magnétique), la différence d'énergie est émise sous forme de rayonnement. L'énergie cinétique Zer-Point de petites feuilles d'espace-temps est la contribution dominante et signifie que le rayonnement a une énergie et donc une fréquence relativement élevées (par exemple, 0,5 eV pour un proton tombant d'une feuille d'espace-temps atomique). Dans les tubes à flux magnétique, les ions abandonnés sont dans des états de cyclotron magnétique excités qui se désintègrent en émettant un rayonnement cyclotron à basses fréquences. La partie "sensorielle" de l'EEG résulte de cette manière. Le rapport des hautes et basses fréquences dépend de la force du champ magnétique et de l'échelle de longueur p-adique de la feuille d'espace-temps à partir de laquelle l'ion est tombé et a tendance à avoir des valeurs discrètes.

En particulier, la lumière visible (comme dans l'expérience de Gariaev) peut "envoyer" des particules chargées des tubes de flux magnétique vers des feuilles d'espace-temps plus petites, à partir desquelles elles peuvent rebondir. Dans ce processus, d'autres ions au niveau du tube de flux magnétique peuvent tomber dans des tubes de flux magnétique plus grands et émettre un rayonnement basse fréquence dans ce processus.

Les tubes de flux magnétique forment dans la matière vivante une hiérarchie avec des intensités de champ magnétique variant comme 1 sur l'échelle de longueur p-adique au carré. Ainsi, il en résulte un rayonnement basse fréquence avec des fréquences qui sont des différences d'harmoniques des fréquences cyclotron au niveau des 2 tubes de flux magnétique impliqués. Cette prédiction est quantitative et testable et - sur la base d'une inspection grossière des spectres de fréquence rapportés dans l'article de Gariaev [1] - l'explication pourrait fonctionner.

La structure de bande de l'EEG reflète dans TGD les périodes du tableau périodique et le spectre des ondes radio devrait également présenter une version agrandie de la structure de bande. De plus, l'action laser à plusieurs feuilles devient possible si la fréquence de la lumière visible est réglée de sorte qu'elle soit juste suffisante pour envoyer une particule chargée sur la plus petite feuille d'espace-temps. La fréquence de la lumière cohérente utilisée dans l'expérience de Gariaev correspond à ce type de fréquence. La chute de la particule chargée génère un rayonnement à la même fréquence, et il en résulte une action laser à plusieurs feuilles puisque les photons cohérents déjà existants augmentent la probabilité de chute et les résultats de "chute stimulée". En outre, un laser à ondes radio à plusieurs feuilles est possible et les biosystèmes devraient contenir une hiérarchie fractale de lasers à plusieurs feuilles.

La notion d'hologramme conscient pourrait permettre d'obtenir une vision unifiée du fonctionnement de l'homéostasie en tant qu'équilibre de flux ionique à plusieurs feuilles. Le mécanisme laser à plusieurs feuilles n'est qu'un élément important de l'image. Fuite d'ions vers les feuilles d'espace-temps atomiques et auto-organisation dissipative qui en résulte ; inversion temporelle de ce processus ayant une interprétation comme un processus de guérison fondamental et impliquant une rupture de la deuxième loi de la thermodynamique en dessous de l'échelle de temps p-adique pertinente ; Les ME agissant comme des jonctions Josephson et contrôlant la génération d'impulsions nerveuses et l'EEG (l'EEG devrait avoir une généralisation fractale) - ce sont quelques facettes du biocontrôle quantique.

De plus, la notion d'ADN à plusieurs feuilles est importante et signifie que l'ADN contrôle le développement de l'organisme dans une large gamme d'échelles de longueur et de temps p-adiques en générant des modèles de rayonnement cohérents représentant le modèle pour le développement du système vivant en tant que hiérarchie fractale. d'hologrammes en 4 dimensions. La notion de "corps de champ" implique que cette structure semblable à un hologramme est de taille astrophysique avec une durée de vie lumineuse fournissant une échelle de temps naturelle.

LS : C'est probablement la question la plus redoutée pour un théoricien. Mais votre modèle est-il falsifiable ? Existe-t-il des tests physiques concevables qui pourraient définitivement valider (ou réfuter) votre théorie ? Qu'en est-il des prédictions quantitatives ? Des données corroborantes pour l'instant ?

MP : Au cours des 24 dernières années, j'ai pratiquement parcouru toute la physique afin de relier la TGD à la réalité théorique et expérimentale existante.  Le succès le plus impressionnant de TGD est le modèle pour les masses des particules élémentaires basé sur la physique p-adique.  Les échelles de masse des particules élémentaires se réduisent à la théorie des nombres et correspondent aux échelles de longueur p-adiques associées à certains nombres premiers préférés p = 2k, k premier ou puissance du nombre premier.  Les prédictions sont exponentiellement sensibles à la valeur de k, de sorte que le succès du modèle relève soit d'un miracle probabiliste, soit de l'exactitude des hypothèses de base.

Les échelles de longueur p-adiques les plus importantes de la physique des particules élémentaires correspondent aux nombres premiers de Mersenne et aux Mersennes dites gaussiennes.  Il est remarquable que toutes les échelles de longueur p-adiques entre l'épaisseur de la membrane cellulaire de 10 nm et la taille de la cellule de 2,5 micromètres (échelles de longueur associées à la hiérarchie d'enroulement de l'ADN !) correspondent à des Mersennes gaussiennes.  C'est un miracle de la théorie des nombres.  Il semblerait que le miracle de la Vie soit étroitement lié à un miracle de la théorie des nombres.

Les prédictions permettant de falsifier la théorie de la manière la plus convaincante apparaissent au niveau de la physique fondamentale.  Les symétries fixent d'une manière tout à fait unique le spectre des particules élémentaires dans toutes les théories unifiées.  La TGD prédit que les symétries de la physique des particules élémentaires sont essentiellement celles du modèle standard.  La découverte de particules élémentaires dont les nombres quantiques ne sont pas conformes à ceux prédits par le modèle standard peut tuer la TGD.  Il existe également d'importantes déviations par rapport au modèle standard, et le fait de ne pas les observer pourrait également signifier la fin du TGD.  Heureusement, la liste des anomalies expliquées par la TGD ne cesse de s'allonger.

Les prédictions de la dégénérescence du verre de spin (cohérence quantique macrotemporelle) et de la quantification du champ topologique (supraconductivité à des échelles de longueur astrophysiques) signifieront tôt ou tard une percée ou la fin de la TGD, car elles permettent des modèles quantiques quantitatifs concrets non seulement pour le biocontrôle mais aussi pour les interactions mentales à distance.

Les derniers résultats de l'approche théorique des nombres sont de véritables mesures de l'information.  Les entropies de la théorie des nombres définies pour les systèmes pour lesquels les coefficients d'intrication sont des nombres algébriques peuvent avoir des valeurs négatives et donc être interprétées comme une information positive.  On pourrait caractériser les systèmes vivants, en théorie des nombres, comme des systèmes pour lesquels les coefficients d'intrication sont des nombres algébriques.  Les opérations de type calcul quantique sont rendues possibles par la cohérence quantique macrotemporelle : les états quantiques ne sont plus fragiles puisque l'espace-temps enveloppé prédit la possibilité de partager et de fusionner des images mentales.  Toutes ces prédictions sont des prédictions tueuses testables.

LS : Quels sont certains des domaines auxquels vous pensez que votre modèle pourrait apporter des contributions majeures (c'est-à-dire la neurophysiologie, l'informatique quantique, la parapsychologie, etc.)

MP : Le réductionnisme est pratiquement toujours considéré comme un axiome de la physique.  L'implication fondamentale de la TGD est que le réductionnisme est brisé à toutes les échelles de longueur et de temps.  De nouveaux phénomènes sont prédits dans toutes les branches de la physique, de la biologie, des neurosciences, de la parapsychologie, etc. L'espace-temps à couches multiples fournit des modèles détaillés pour plusieurs anomalies associées aux phénomènes d'énergie libre.  Ces modèles devraient contribuer au développement de nouvelles technologies énergétiques.  Les processus conscients de type calcul quantique ("résolution de problèmes quantiques" pourrait être un terme plus approprié) avec des mesures d'information théoriques remplaçant l'information de Shannon constituent une deuxième implication technologique.

Les notions d'hologramme conscient et d'équilibre du flux ionique à plusieurs couches promettent une description unifiée d'une grande classe de phénomènes apparemment sans rapport entre eux, comme l'homéostasie, l'homéopathie, les représentations sensorielles et les interactions mentales à distance.

En neurosciences, le modèle basé sur la TGD pour le contrôle quantique de l'EEG et de l'impulsion nerveuse est une application importante.

LS : Quelles sont, à votre avis, les directions expérimentales et théoriques les plus prometteuses à suivre vers une théorie unifiée de l'esprit et de la matière ?

MP : Ma réponse est, nécessairement, très centrée sur la TGD.  Je pense qu'il serait intéressant de voir si les concepts inspirés de l'approche TGD pourraient nous permettre de comprendre qualitativement la conscience, les systèmes vivants et les interactions mentales à distance.  Sur le plan expérimental, la stratégie serait de tester les notions de base :

(a) Tests expérimentaux de la notion d'espace-temps à feuilles multiples, de la quantification des champs topologiques et de la prédiction selon laquelle les feuilles d'espace-temps non atomiques agissent comme des supraconducteurs, même à des échelles de longueur astrophysiques.

(b) Démonstration expérimentale de la présence de diverses signatures physiques pour le transfert d'ions entre les feuilles d'espace-temps et pour la rupture de la deuxième loi en dessous de l'échelle de temps p-adique caractérisant le système.

(c) Tests expérimentaux pour les notions de corps magnétique, de conscience magnétosphérique et de moi collectif multicérébré.  Les travaux de Mark Germine sont très encourageants à cet égard.

Auteur: Pitkanen Matti

Info: Entretien avec Matti Pitkänen et Alex Kaivarainen, interviewés par Lian Sidorov. References :  1.  Germine, Mark.  Scientific Validation of Planetary Consciousness. JNLRMI I (3). URL: www.emergentmind.org/germineI3.htm. 2.  Germine, M.  Experimental Evidence for Collapse of the Wavefunction in  the Whole Human Brain. URL: www.goertzel.org/dynapsyc. [Note: Lian Sidorov's interview with Alex Kaivarainen was more mathematically technical and can be seen at http://www.emergentmind.org/PDF_files.htm/Kaivarainen.pdf .]

[ spéculation ] [ dépassement ] [ épigénétique ] [ paranormal ] [ hyper-abstraction ] [ placebo ] [ niveaux vibratoires ] [ monades ] [ panpsychisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

septénaire partout

Rubrique pour les maniaques de ce chiffre symbole (en développement)

Sciences physiques -  du micro au macro,  de l'abiotique au biotique (non organique/organique) via cette hiérarchie septénaire orthogonale* : atomes - molécules - organites/cellules - tissus - organes/systèmes - individus -  organismes/population/socio    

- Dans le domaine de la physique des particules on dénombre sept types de particules élémentaires, à savoir les six quarks et l'électron (ou deux fois 7 - ce qui est encore plus transcendant). Plus précisément, il s'agit de "saveurs" de quarks. Les quarks up, down, charm, strange, top et bottom, plus un septième quark théorique appelé "top-bottom". Les quarks sont les éléments constitutifs des protons et des neutrons, qui sont les particules composant le noyau d'un atome. Ces particules sont considérées comme élémentaires car elles ne peuvent pas être divisées en sous-particules plus petites.

- On observe que certaines particules élémentaires, telles que le boson de Higgs, ont une masse qui est d'environ 126 fois celle du proton, qui est un multiple de sept.

- Le tableau périodique des éléments compte sept lignes ou groupes, chacun correspondant à un niveau d'énergie spécifique pour les électrons dans l'atome, chaque période contient un nombre précis d'éléments, la première période comptant deux éléments (hydrogène et hélium), la deuxième période huit éléments, et ainsi de suite. Tableau périodique, inspiré par un songe à son découvreur, Dmitri Mendeleïev. Cette structure correspond au sept éléments de l'échelle d'électronégativité de Pauling.

- Le chiffre 7 est le numéro atomique de l'azote, dont le noyau contient sept protons et sept neutrons. Il s'agit d'un élément très réactif, essentiel à la vie, constituant majoritaire de l'atmosphère terrestre. Ainsi la masse d'un seul atome d'azote est de 14, nombre de nucléons (protons et neutrons) que l'on retrouve dans un des deux isotopes les plus courants du nitrogène, l'azote 14. Il constitue environ 78 % de l'air terrestre et dont les atomes spécifiques  azote (14N) - composent la haute atmosphère et interceptent une partie du rayonnement cosmique.

Science - chimie

- L'atome de silicium, élément chimique avec le symbole Si, abrite 2 X sept protons dans son noyau. Ce métalloïde  tétravalent appartient au groupe 14 du tableau périodique (quatorzième colonne, comprenant le carbone (C), le silicium (Si), le germanium (Ge), l’étain (Sn) et le plomb (Pb). C'est l'élément le plus abondant dans la croûte terrestre après l'oxygène, soit 25,7 % de sa masse, mais il n'est comparativement présent qu'en relativement faible quantité dans la matière constituant le vivant.

- Classes d'universalité : Les modèles avec contraintes cinétiques critiques ont 7 classes d'universalité

- Groupes fonctionnels : Les groupes fonctionnels sont des atomes ou des groupes d'atomes spécifiques responsables des réactions chimiques caractéristiques d'une molécule. Il existe sept types de groupes fonctionnels : hydroxyle, méthyle, carbonyle, carboxyle, amino, phosphate et sulfhydryle

-  Il y a  7 angles de torsion clés par nucléotide qui définissent la conformation du squelette sucre-phosphate dans les acides nucléiques comme l'ADN et l'ARN.

- La bactériorhodopsine, petite protéine qu'on trouve chez les halobactéries, fonctionne comme une pompe à protons utilisant l'énergie lumineuse pour générer un gradient de protons à travers la membrane cellulaire. Constituée de 248 acides aminés elle se présente sous forme d'un homotrimère à symétrie cylindrique. Chacune des trois unités identiques a une structure en sept hélices α transmembranaires — structure dite opsine — emprisonnant un chromophore

- Les enzymes sont des protéines qui catalysent les réactions biochimiques dans les organismes vivants. Elle peuvent être classées en sept catégories selon le type de réaction qu'elles catalysent. Ces catégories sont les oxydoréductases, les transférases, les hydrolases, les lyases, les isomérases, les ligases et les translocases. Parmi ces catégories, les oxydoréductases, les transférases et les hydrolases sont les formes d'enzymes les plus abondantes.

-  La traduction des protéines, également appelée la synthèse des protéines à partir de l'ARN, est un processus biologique essentiel. Il se produit dans les ribosomes des cellules. Il implique plusieurs étapes enzymatiques qui se déroulent de manière séquentielle en sept étapes. Etapes qui peuvent être résumées comme suit :

A) Initiation : Le processus commence par la liaison de la petite sous-unité ribosomale à la molécule d'ARN messager (ARNm). Cela est suivi par le recrutement de l'ARN de transfert initiateur et l'assemblage de la grande sous-unité ribosomale.


B) Élongation (3 étapes) : Pendant l'élongation, le ribosome se déplace le long de la molécule d'ARNm et facilite l'ajout d'acides aminés à la chaîne polypeptidique en cours de croissance. L'élongation comprend trois étapes : la liaison de l'ARN de transfert aminoacylé, la formation de la liaison peptidique et la translocation.

C) Terminaison (3 étapes) : La terminaison se produit lorsqu'un codon stop est atteint sur la molécule d'ARNm. Elle implique la reconnaissance du codon stop par des facteurs de libération, ce qui entraîne la libération de la chaîne polypeptidique complète du ribosome.

Après la terminaison, le ribosome se désassemble et ses sous-unités sont libérées pour être utilisées dans de nouvelles étapes de la synthèse des protéines. Le recyclage du ribosome garantit l'utilisation efficace des ressources cellulaires.

Ces 7 étapes enzymatiques d'initiation, d'élongation, de terminaison et de recyclage du ribosome constituent le processus de traduction des protéines. Elles sont étroitement régulées et orchestrées de manière précise pour assurer une synthèse des protéines précise et efficace dans les cellules.

- Biomolécules : Les biomolécules sont les molécules qui composent les organismes vivants. Il existe quatre classes de biomolécules : les glucides, les lipides, les protéines et les acides nucléiques. Au sein de ces classes existe sept niveaux d'organisation : monomères, oligomères, polymères, domaines, motifs, plis et structure quaternaire. (à consolider vérifier). Ici perplexity.ai me propose ceci :  1  Atomes, briques élémentaires de base, principalement le carbone, l'hydrogène, l'oxygène et l'azote pour les biomolécules.  2 Molécules : Les atomes sont liés entre eux par des liaisons covalentes pour former des molécules organiques comme le glucose, les acides aminés, les acides gras, etc.  3  Monomères -  Ce sont les plus petites unités constitutives des biomolécules, comme les acides aminés pour les protéines, les nucléotides pour les acides nucléiques, etc.  4  Oligomères.  Petits polymères formés par quelques monomères liés, comme les dipeptides, les trinucléotides.  5 Polymères :  Grandes molécules formées par la répétition de nombreux monomères, comme les protéines, les acides nucléiques, les polysaccharides. 6  Domaines/Motifs structuraux : Régions compactes au sein des polymères ayant une structure et une fonction particulières, comme les feuillets β ou les hélices α dans les protéines.  7 : Structure quaternaire, Organisation de plusieurs chaînes polymériques en complexes macromoléculaires, comme les ribosomes formés de plusieurs ARN et protéines.

-  Sous le nom de cycle de Calvin-Benson le processue de photosynthèse se déroule généralement en sept étapes  divisées en deux séries de réactions qui ont lieu dans différentes régions des chloroplastes végétaux : la réaction dépendante de la lumière et les réactions indépendantes de la lumière ou “ sombres ”. La réaction dépendante de la lumière a lieu dans la membrane thylakoïdienne du chloroplaste. Elle convertit l’énergie lumineuse en énergie chimique, stockée sous forme d’ATP et de NADPH**. Cette énergie est ensuite utilisée dans la région du stroma du chloroplaste, pour réduire le dioxyde de carbone atmosphérique en glucides complexes grâce aux réactions indépendantes de la lumière du cycle de Calvin-Benson, essentiel pour la fixation du carbone et la production d'oxygène dans l'atmosphère qui permettent la vie sur Terre. Ces 7 étapes sont : (1ère série, phase claire, dépendant de la lumière) L'énergie du soleil est absorbée.  L'eau est décomposée.  Les ions hydrogène sont transportés à travers la membrane du thylakoïde.  (2e série, phase sombre, indépendante de la lumière)  Capture du dioxyde de carbone atmosphérique (CO2), Le NADPH est produit à partir du NADP+.  Les ions hydrogène diffusent à travers le canal protéique.  L'ADP devient de l'ATP.

- Le processus de division cellulaire chez les bactéries est régulé par une variété de protéines, y compris FtsZ, qui forme une structure en forme d'anneau connue sous le nom d'anneau Z sur le site de la division cellulaire. L'anneau Z est composé de sept sous-unités FtsZ.

-  En médecine les bactéries peuvent former des structures complexes appelées biofilms, (la plaque dentaire par exemple) qui consistent en une communauté de micro-organismes entourés d'une matrice de substances polymériques extracellulaires. La formation d'un biofilm comporte sept étapes distinctes (cinq selon d'autres sources). Ces biofilms bactériens sont prédominants dans les écosystèmes naturels et constituent une menace pour la santé publique en raison de leur résistance exceptionnelle aux traitements antibactériens et en particulier aux antibiotiques.

-  il existe sept plis protéiques différents parmi les dix vraies familles de cellulases qui sont les enzymes aptes à décomposer la cellulose. Elles sont produites typiquement par des bactéries, champignons et des protozoaires, qui jouent un rôle majeur dans la digestion par les animaux, et dans la transformation de la matière organique végétale en humus dans le sol. Elles ont aussi des applications biotechnologiques et industrielles. Sept plis protéiques qui correspondent à sept types de cellulases : Endo-cellulases: qui cassent la structure cristalline de la cellulose en chaînes polysaccharidiques. Exo-cellulases (cellobiohydrolases, 'CBH'): qui coupent 2-4 unités aux terminaisons des chaînes polysaccharides, libérant par exemple le cellobiose. Elles travaillent progressivement soit depuis la terminaison réductrice, soit depuis l'autre. β-glucosidases (Cellobiase): elles hydrolysent les chaînes polysaccharidiques en monosaccharides. Oxidative cellulases: elles depolymérisent la cellulose. Cellulose phosphorylases: elles depolymérisent la cellulose en utilisant des phosphates. pectinases: elles hydrolysent la pectine. hémicellulases: qui hydrolysent l'hémicellulose

- Une cellule recense septs organites autour de son noyau, centre de contrôle de la cellule qui contient son génome, c'est à dire l'ensemble de son ADN.

Réticulum endoplasmique : Le réticulum endoplasmique est un réseau de membranes qui transporte des protéines et des lipides dans la cellule. Il existe deux types de réticulum endoplasmique : le réticulum endoplasmique rugueux, qui est recouvert de ribosomes, et le réticulum endoplasmique lisse, qui n'est pas recouvert de ribosomes.

Appareil de Golgi : L'appareil de Golgi est un ensemble de saccules qui modifie et trie les protéines et les lipides avant de les transporter hors de la cellule.

Lysosomes : Les lysosomes sont des sacs remplis d'enzymes qui décomposent les déchets et les cellules endommagées.

Mitochondries : Les mitochondries sont les centrales énergétiques de la cellule. Elles produisent de l'ATP, qui est la forme d'énergie que la cellule utilise pour fonctionner.

Chloroplastes : Les chloroplastes sont des organites trouvés dans les cellules végétales. Ils contiennent de la chlorophylle, qui permet aux plantes de produire de la nourriture par photosynthèse.

Centrioles : Les centrioles sont des structures cylindriques qui jouent un rôle dans la division cellulaire.

Cytosquelette : Le cytosquelette est un réseau de filaments qui donne à la cellule sa forme et sa structure. Il permet également à la cellule de se déplacer et de se déplacer.

- Conception de médicaments : Le processus de conception de nouveaux médicaments implique l'étude de l'interaction entre les molécules et les cibles biologiques. La conception d'un médicament comporte sept étapes : l'identification de la cible, la génération de pistes, l'optimisation des pistes, le développement préclinique, le développement clinique, l'approbation réglementaire et la surveillance post-commercialisation.

- L'échelle de PH, système de mesure utilisé pour quantifier l'acidité ou l'alcalinité (basicité) d'une solution, s'étend de 0 à 14 (zéro plus 2 fois sept), la valeur 7 étant considérée comme neutre. L'échelle de pH suit un système de classification structuré en sept parties ou stades :

- Les sept systèmes minéraux cristallins: - Cubique ou isométrique, - Quadratique ou tétragonal, - Orthorhombique, - Monoclinique, - Triclinique, - Hexagonal, - Rhomboédrique.

- Pour ce qui concerne la séparation taxonomique "végétal - animal" une équipe a trouvé 14 groupes de gènes qui apparaissaient sur des chromosomes distincts chez les méduses à peigne et leurs parents unicellulaires "non animaux". Il est intéressant de noter que chez les éponges et tous les autres animaux, ces gènes ont été réarrangés en sept groupes.

- Les sept caractéristiques biologique du vivant  : mouvement respiration excitabilité croissance reproduction nutrition excrétion.

- Tous les groupes d'organismes vivants partagent sept caractéristiques ou fonctions clés : ordre, sensibilité aux stimuli, reproduction, adaptation, croissance et développement, régulation homéostasique et traitement de l'énergie.

- Rythmes biologiques : En chronobiologie, l'étude des rythmes biologiques, certains cycles présentent une période proche de sept jours. Par exemple, le cycle menstruel chez l'humain est en moyenne de 28 jours, qui peuvent être divisés en quatre intervalles d'environ sept jours.

- Les sept couleurs de l'arc en ciel (violet, indigo, bleu, vert, jaune, orange, rouge). Que l'on peut appréhender comme un système double :

Les sept couleurs verticales en synthèse additive (lumière) 3 primaires (bleu, vert, rouge) 3 secondaires (cyan, magenta, jaune) 1 finale (blanche) avec les sept superposées

Les sept couleurs verticales en synthèse soustractive (matière, impression graphique) 3 primaires (jaune, cyan, magenta) 3 secondaires (rouge, vert,bleu) 1 finale (noir) avec les sept superposées. Ces deux rubriques additive et soustractive sont peut-être à rapprocher avec les 6 quarks et l'electron. Ce dernier représentant alternativement blanc et/ou noir... Toutes données bien entendu en rapport direct avec la cognition humaine.


- Selon Paul Jorion les populations Xwéda (Région de l'ex Dahomey) ont opéré le regroupement des phénomènes naturels en vastes catégories reproduisant les sept modèles élémentaires de la théorie géométrique des catastrophes de René Thom.

- Ce dernier, s'appuyant sur les travaux de Hassler Withney, réussit à démontrer dans ses "Modèles mathématiques de la morphogenèse" qu'il y a sept potentiels organisateurs, ni plus ni moins, c'est à dire sept types de catastrophes qui sont, par ordre de complexité croissante : pli, fronce, queue d'aronde, papillon, ombilic hyperbolique, ombilic elliptique et ombilic parabolique.

- Les afficheurs électroniques à sept segments

-  Les 7 composants de l'écosystème de l'infrastructure des système informatques, à savoir ; Plateformes Internet  (apache   microsoft   apache  cisco), Plateformes matérielles  (IBM  Dell   Machines linux), Plateformes de systèmes d'exploitation (windows, apple, linux), Applications logicielles d'entreprise (erp entreprise ressource planning), Réseaux et téécommunications (window server, ATT,  northel), Consultant et intgrateurs de systèmes  (services ). Traitement et stockage de données   (sql  oracle, etc)  

- Les sept couches du modèle OSI : Le modèle OSI (Open Systems Interconnection) est un modèle conceptuel qui décrit les fonctions de communication d'un système informatique. Le modèle se compose de sept couches, chacune d'entre elles correspondant à un type spécifique de fonction réseau.

- Les sphères d’action de Vladimir Propp dans son ouvrage fondateur, "Morphology of the Folktale", où il identifie différents rôles de personnages et fonctions narratives dans les contes de fées russes. Ces sept sphères d'action de l'analyse de Propp sont  :

1) Sphère de la méchanceté ou du manque du méchant : Cette sphère comprend les actions liées au méchant ou à l'antagoniste, telles que ses mauvaises intentions ou son manque initial de quelque chose d'important.

2) Sphère du donateur : Cette sphère comprend les actions impliquant un personnage qui fournit de l'aide ou des objets magiques au héros.

3) Sphère du départ du héros : Les actions liées au départ du héros de son lieu initial ou à la mise en route de son voyage relèvent de cette sphère.

4) Sphère du voyage du héros : Cette sphère englobe les actions et les événements qui se produisent au cours de la quête ou du voyage du héros, y compris les rencontres avec des aides, le franchissement d'obstacles et l'acquisition de connaissances ou de capacités.

5) Sphère de la lutte du héros : Les actions liées au conflit principal du héros ou à sa lutte contre le méchant font partie de cette sphère.

6) Sphère de la reconnaissance du héros : Cette sphère comprend les actions au cours desquelles le héros est reconnu ou identifié d'une manière significative.

7) Sphère du retour du héros : Les actions liées au retour du héros à son lieu initial ou à son domicile après avoir achevé son voyage entrent dans cette sphère.

- Les sept points de convergence entre pragmatisme et logique mathématique identifiés par Vailat i (Giovanni Vailati, "Pragmatism and Mathematical Logic", The Monist, 16.4, 1906, p. 481-491)

En mathématique 

Le chiffre sept présente quelques relations intéressantes avec les nombres premiers  dont il fait lui-même partie. Sept fait  en outre partie d'une paire de nombres premiers jumeaux, qui sont des nombres premiers qui diffèrent par deux. La paire de nombres premiers jumeaux contenant sept est (5, 7), les deux nombres étant premiers. Il y a aussi le tamis d'Ératosthène : Lorsque l'on utilise le crible d'Ératosthène, une méthode pour trouver les nombres premiers, le sept est le premier nombre à être rayé après les nombres premiers initiaux (2, 3, 5). Il marque le début du cycle suivant dans le tamis.

- Les septs éléments de la formule mathématique de l'identité d'Euler    e^(iπ) = -1   c'est à dire les trois constantes mathématiques les plus remarquables  à savoir :

  e   base du logarythme naturel    π  constante mystérieuse des maths    i   l'unité imaginaire à la base des nombres complexes, etc

combiné avec ces 4 symboles

   0, l'élément neutre de l'addition

   1, l'élément neutre de la multiplication

   + , qui représente l'addition, la multiplication et la puissance

   = , qui représente l'égalité

- Constante de Kaprekar est une propriété mathématique unique à laquelle il faut au maximum 7 étapes pour obtenir ce qu'on appelle également la constante 6174 qui est obtenue à partir de n'importe quel nombre à quatre chiffres non tous égaux. 

- Les sept tuples de la machine de Turing.   Q : l'ensemble fini des états. ∑ : l'ensemble fini des symboles d'entrée. T : le symbole de la bande. q0 : l'état initial. F : un ensemble d'états finaux. B : un symbole vide utilisé comme marqueur de fin d'entrée. δ : une fonction de transition ou de mise en correspondance.  On la résume donc sous le 7-tupels suivant :  (Q,∑Γ,δ,q0,B,F) 

- Nombre parfait : Bien que le 7 ne soit pas un nombre parfait, il est étroitement lié aux nombres parfaits. Un nombre parfait est un nombre entier positif égal à la somme de ses diviseurs propres (diviseurs positifs autres que lui-même). Les premiers nombres parfaits sont 6, 28, 496, 8128, etc. Il est intéressant de noter que la somme des réciproques des diviseurs propres de 7 est égale à 8, soit deux fois 7, ce qui en fait un "nombre presque parfait".

- Tuiles planes : Il existe exactement trois tuiles planes régulières qui n'utilisent qu'un seul polygone régulier, et l'une d'entre elles utilise sept hexagones réguliers disposés autour d'un seul point.

- Nombre magique : Un nombre magique est un nombre qui peut être exprimé comme la somme des cubes de ses chiffres. Le seul nombre magique à deux chiffres est 27, qui est égal à 2^3 + 7^3. Le seul nombre magique à un chiffre est 1.

- Heptagone : Un heptagone est un polygone à sept côtés. C'est le seul polygone régulier avec un nombre premier de côtés qui peut être construit à l'aide d'un compas et d'une règle.

- Le nombre premier de Belphégor : 100000000000006660000000001 est un nombre premier qui contient 13 chiffres de 6 suivis du chiffre 7, suivis de 13 autres chiffres de 0, suivis de 1. Ce nombre est parfois appelé le nombre premier de Belphégor, du nom d'un démon du même nom.

- Les sept ponts de Königsberg : Le célèbre problème des sept ponts de Königsberg, issu de la théorie des graphes, concerne un réseau de sept ponts reliant deux îles et deux rives, et pose la question de savoir s'il est possible de traverser chaque pont exactement une fois et de revenir au point de départ. Ce problème a jeté les bases du domaine de la topologie en mathématiques.

- Nombre catalan : Les nombres catalans sont une séquence de nombres qui apparaissent dans de nombreux contextes mathématiques, notamment pour compter le nombre de façons d'arranger divers objets et dans l'analyse des algorithmes. Le septième nombre catalan est 429, qui représente le nombre de façons d'insérer des parenthèses dans une séquence de six éléments.

- Victoire pythagoricienne : Selon la légende, le mathématicien grec Pythagore aurait découvert la relation entre les côtés d'un triangle rectangle (a^2 + b^2 = c^2) en étudiant les propriétés du chiffre 7. Cette découverte, connue sous le nom de théorème de Pythagore, est devenue l'un des théorèmes les plus fondamentaux de la géométrie et des mathématiques.

- En géométrie algébrique existe un théorème célèbre appelé classification des surfaces d'Enriques-Kodaira, qui classe toutes les surfaces algébriques projectives lisses jusqu'à la déformation. L'une des étapes clés de la preuve de ce théorème implique l'étude d'un objet particulier appelé surface K3, qui est une surface projective lisse de dimension 2 qui possède un faisceau canonique trivial et est holomorphiquement symplectique. Il est intéressant de noter que les surfaces K3 possèdent toujours exactement 22 points doubles rationnels isolés, qui sont des points singuliers pouvant être modélisés localement sur l'ensemble zéro de l'équation x^2 + y^2 + z^2 + w^2 + t^2 + ut + vt = 0, où (x,y,z,w,t,u,v) sont des coordonnées dans l'espace complexe à 7 dimensions.

- La conjecture de Poincaré a notoirement été prouvée par le mathématicien Grigori Perelman en 2002-2003. Ce théorème stipule que tout 3-manifold fermé et simplement connecté est homéomorphe à la 3-sphère. On notera que la preuve de ce théorème repose sur l'étude de structures géométriques avec des groupes d'isométrie à 7 dimensions, connues sous le nom de manifolds G2. Dit autrement une 3-sphère (ou glome ou hypersphère, qui est un analogue de dimension supérieure de la sphère) est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions. Une 3-sphère est un exemple de variété (différentielle) de dimension 3. 

Religions, spiritualités et traditions mondiales

Voici quelques exemples de l'importance du chiffre sept dans les cultures africaines : (à vérifier)

- Sept puissances africaines : Dans les religions afro-caribéennes et afro-latines telles que la Santeria et le Candomble, il existe un concept connu sous le nom des "Sept Puissances Africaines" ou "Sept Orishas Africains". Il s'agit de sept divinités ou esprits représentant différents aspects de la vie et de la nature, tels que l'amour, la sagesse et la protection.

- Sept directions : Certaines cultures africaines reconnaissent sept directions cardinales, dont les quatre directions principales (nord, sud, est, ouest) et trois directions supplémentaires : le haut (le ciel), le bas (la terre) et le centre (qui représente l'équilibre et l'harmonie).

- Rites d'initiation : Dans certains rites d'initiation africains, il y a souvent sept étapes ou rituels auxquels les individus doivent se soumettre pour passer d'un statut social ou spirituel à un autre. Ces étapes peuvent comprendre des tests, des enseignements et des cérémonies.

- Systèmes de divination : Certains systèmes de divination africains, comme la divination Yoruba Ifa, utilisent des ensembles d'outils de divination composés de 16 ou 256 éléments. Ces ensembles sont ensuite divisés en quatre groupes de sept, représentant différents modèles symboliques et interprétations.

- Dans l'Égypte ancienne, il y avait 7 étapes vers le jugement final dans l'au-delà.

- Dans la culture chinoiseLe chiffre sept revêt aussi une grande importance culturelle et historique, au-delà de la culture occidentale on y trouve ces exemples notables :

Les sept corps célestes : Dans la cosmologie chinoise ancienne, sept corps célestes étaient considérés comme importants : le Soleil, la Lune, Mars, Mercure, Jupiter, Vénus et Saturne. Ces corps étaient censés avoir une influence sur les affaires humaines et étaient associés à divers éléments, directions et couleurs.

Les sept étoiles de la Grande Ourse : La Grande Ourse, appelée "Ourse du Nord" dans la mythologie chinoise, est un astérisme important. On pense qu'elle est composée de sept étoiles, qui ont une signification dans divers contextes culturels et spirituels. La Grande Ourse est associée à l'orientation, à la protection et à la navigation.

Les sept trésors : Dans l'art et le symbolisme chinois, il existe sept trésors appelés les "sept trésors du bouddhisme". Ces trésors comprennent l'or, l'argent, le lapis-lazuli, le cristal, l'agate, le corail et une conque blanche. Ils représentent la richesse, la prospérité, les qualités spirituelles et le bon augure.

Les sept vertus : Le confucianisme, philosophie influente de la culture chinoise, met l'accent sur les valeurs éthiques et les vertus. L'un des enseignements fondamentaux du confucianisme est la culture des "sept vertus" ou "sept constantes", qui comprennent la bienveillance, la droiture, la bienséance, la sagesse, la fiabilité, la loyauté et la piété filiale.

Il y a aussi, dans la culture chinoise, le septième mois du calendrier lunaire est connu sous le nom de mois des fantômes et est rempli de superstitions et de tabous.

- La Torah mentionne 7 bénédictions et 7 malédictions.

- Ménorah à sept branches : La ménorah à sept branches est un chandelier symbolique utilisé lors des cérémonies religieuses juives. La ménorah a sept branches qui représentent les sept jours de la création dans le livre de la Genèse.

- Les sept anges qui se tiennent devant Dieu: Zadkiel, Gabriel, Japhiel, Michel, Saltiel et Uriel. Dans l'apocalypse, il y a aussi sept sceaux, sept trompettes, sept candélabres d'or, sept lettres adressées aux sept églises, sept tonnerres, etc... - Les sept patriarches bibliques : Aaron, Abraham, Isaac, Jacob, Joseph, Moïse et David

- Les 7 princes des Enfers sont Mammon, Azazel, Belzébuth, Asmodée, Belphégor, Dispater et Méphistophélès.

- Dans le christianisme le 7 représente l'achèvement ou la perfection, comme dans les jours de la création du monde du livre de la Genèse où Dieu est décrit comme ayant achevé son œuvre et se reposant le septième jour.

- Sept vertus cardinales : Dans la tradition chrétienne, les sept vertus cardinales sont un ensemble de vertus considérées comme essentielles à une vie vertueuse. Ces vertus sont la prudence, la justice, la tempérance, la force d'âme, la foi, l'espérance et la charité.

- L'Apocalypse, dans le Nouveau Testament, mentionne les sept sceaux, les sept trompettes et les sept coupes de la colère.

- L'Église catholique compte sept sacrements : le baptême, la confirmation, l'eucharistie, la réconciliation, l'onction des malades, l'ordre sacré et le mariage.

- Les 14 ( 2 x 7) stations du chemin de croix :  1ère station : Jésus est condamné à mort.  2e station :  Jésus est chargé de sa croix. 3e station : Jésus tombe sous le bois de la croix.  4e station : Jésus rencontre sa Mère. 5e station : Simon de Cyrène aide Jésus à porter sa croix.  6e station : Véronique essuie la face de Jésus. 7e station : Jésus tombe pour la seconde fois. 8e station : Jésus console les filles de Jérusalem. 9e station : Jésus tombe pour la 3e fois. 10e station : Jésus est dépouillé de ses vêtements. 11e station : Jésus est attaché à la croix. 12e station : Jésus meurt sur la croix. 13e station : Jésus est descendu de la croix et remis à sa mère. 14e station : Jésus est mis dans le sépulcre.   (15e station : avec Marie, dans l’espérance de la résurrection)- Les sept dernières paroles du Christ.

- les 7 étapes des "dialogues avec l'ange" : minéral, végétal, animal, humain, ange, archange, dieu. Le tout constituant un miroir réversible (minéral miroir de dieu, ange miroir de l'animal, etc.) l'humain étant le pivot, au centre.

- Dans l'islam, il y a sept cieux et sept enfers.

- Dans l'islam, le chiffre 7 représente les sept cieux, qui sont décrits dans le Coran

- Les septs archanges : Michel, Gabriel, Raphaël, Uriel, Jérémiel, Zadkiel, Raguel...  (Sandalphon, Phanuel, Saratiel, Egoudiel, Barachiel, etc... ne sont pas admis par la tradition et seul les 3 premiers sont cités dans la bible)

- Dans l'hindouisme, il y a sept chakras ou centres d'énergie dans le corps. 

- Les sept chakras : sahasrara, agnya, vishuddhi, anahat, nabhi, swadhistana et mooladhara.

- Les sept parties des Kamâ Sutrâ de Mallanâga Vâtsyâyana: Plan de l'ouvrage et questions générales, de l'union sexuelle, de l'acquisition d'une épouse, de l'épouse, des épouses d'autrui, des courtisanes, des moyens de s'attacher les autres.

Divers, mythologie, beaux-arts, etc

- Les sept notes de la gamme diatonique occidentale révèlent le septénaire comme un régulateurs des vibrations.

- Le septième sens, au-delà du 6e sens, qui est celui de l'intuition, existe en chacun de nous une perception spécifique qui est celle du rapport au divin.

- Les sept sœurs : Les Pléiades, également connues sous le nom de Sept Sœurs, sont un groupe d'étoiles de la constellation du Taureau connu depuis l'Antiquité. Elles étaient considérées comme sept des étoiles les plus proéminentes du ciel et représentaient les sept filles d'Atlas et de Pléione dans la mythologie grecque.

- Les sept sages de Grèce : Les sept sages de Grèce étaient un groupe de sept hommes sages réputés pour leur sagesse et considérés comme ayant jeté les bases de la philosophie grecque antique. Les noms des sept sages sont Thalès de Milet, Solon d'Athènes, Chilon de Sparte, Bias de Priène, Cléobulus de Lindos, Périandre de Corinthe et Pittacus de Mytilène.

- Les sept émotions pulsions de base : Joie, Tristesse, Dégoût, Peur, Colère, Surprise, Mépris. (Paul Ekman)

- Les sept orifices du visage : yeux, narines, bouche, oreilles.

- Le syndrome du 7 chanceux : Le syndrome du "7 chanceux" est un phénomène psychologique qui implique une tendance à attribuer des qualités positives au chiffre 7. Ce phénomène peut être observé dans divers contextes, tels que la stratégie de marque et le marketing, où le chiffre 7 est souvent utilisé pour évoquer la chance ou le succès.

- Le nombre 7 est la somme des deux faces opposées d'un dé standard à six faces.

- Il existe sept types de catastrophes mondiales : l'impact d'un astéroïde, la guerre nucléaire, la pandémie, l'emballement du changement climatique, l'éruption supervolcanique, l'effondrement écologique et l'intelligence artificielle.

- La langue - organe linguale - humaine perçoit sept goûts primaires : le sucré, l'acide, l'amer, le salé, l'umami, le piquant et l'astringent.

- Les sept lois de l'identité numérique de Kim Cameron

- Les 7 industries clefs de la transformation numérique : télécoms et l’IT, santé, distribution, énergies,  média et divertissement, finance, voyages et loisirs.

- Les 7 valeurs dominantes de la société en réseau et de l'éthique protestante qui sont : l'argent, le travail, l'optimalité, la flexibilité, la stabilité, la détermination et le contrôle du résultat. (Pekka Himanen, l'éthique hacker, Exils 2002)

- Les 7 valeurs dominantes du hacker (pirate informatique) : la passion, la liberté, la valeur sociale, l'ouverture, l'activisme, la bienveillance, et la créativité. (Pekka Himanen, l'éthique hacker, Exils 2002

- Les sept péchés infernaux : colère, luxure, gourmandise, envie, paresse, avarice et orgueil.

- Les sept péchés sociaux de Frederick Lewis Donaldson. Qui sont: Richesse sans travail. Plaisir sans conscience. Connaissance sans caractère. Commerce sans moralité. Science sans humanité. Culte sans sacrifice. Politique sans principe. 

- Les sept voyages de Sinbad le marin

- Les sept jours de la semaine.

- Les sept planètes autour du soleil.

- Les sept collines de Rome.

- Les sept terminaisons pointues de l'homme (les deux mains, les deux pieds, le nez, la langue et le sexe)

- Les sept listes d'Ecolalie qui sont aussi des questionnaires.

- Les sept directions (Nord, Est, Sud, Ouest, Zenith, Nadir, Centre).

- Les sept niveaux de la jouissance féminine.

- Les sept ponts de Budapest (Árpád, Margit, Szechenyi, Erzsebet, Szabadság, Petofi, Lágymánosi).

- Les sept provinces basques: Labourd, Basse Navarre, Soule, Guipuzcoa, Alava, Navarre et Biscaye).

- Sept ans de malheur.

- Les bottes de sept lieues.

- Les sept merveilles du monde : le temple d'Artémis à Ephèse, le mausolée d'Halicarnasse, le colosse de Rhodes, les jardins suspendus de Babylone, Ornella Muti jeune, les pyramides d'Egypte, la statue de Zeus à Olympie & le phare d'Alexandrie.

- Les 7 disciplines des Arts libéraux du Moyen Âge, classification fixée par Rome au Premier siècle, divisée en deux cycles. Trivium : grammaire, rhétorique, dialectique et Quadrivium : arithmétique, musique, géométrie, astronomie.  

- Tintin et les sept boules de cristal. (chacune pour un des sept savants de l'expédition Sanders-Hardmuth : Clairmont, Marc Charlet, Paul Cantonneau, Homet, Marcel Brougnard, Hippolyte Bergamotte, Sanders-Hardmuth & Laubépin).

- Les sept mercenaires : Yul Brynner, Steve McQueen, James Coburn, Charles Bronson, Horst Bucholz, Robert Vaughn & Brad Dexter.

- Les sept samouraïs : Toshiro Mifune + six autres.

- Les sept vertus, dont les trois premières sont théologales : La charité, l'espérance, la foi, le courage, la justice, la prudence, la sagesse. A ne pas confondre avec

- Les sept vertus humaines selon Confucius : longévité, chance, popularité, candeur, magnanimité, divinité & gentillesse.

- Les sept femmes de Barbe-Bleue.

- Les sept vérités.

- Les sept nains de Blanche-Neige : Joyeux, Prof, Dormeur, Atchoum, Simplet, Grincheux & Timide.

- Les sept fois qu'il faut tourner sa langue dans sa bouche.

- Les Sept Rayons du monastère de la confraternité des oblates

- Le petit Poucet, ses six frères et les sept filles de l'Ogre

- Les sept voyages de Sinbad le marin

- La légende des sept dormants

- Les sept étapes de l'homme (montage spéculatif maison que l'on trouvera sur FLP)

- Les sept points clefs de la double causalité de Philippe Guillemant (que l'on trouvera sur FLP)

- Les sept métaux fondamentaux de la science alchimique : l'or, l'argent, le cuivre, l'étain, le mercure, le fer et le plomb.

- Les sept arts : l'architecture, la sculpture, la peinture, la musique, la danse, la poésie et le cinéma.

- Les sept conjonctions de coordination : mais où et donc or ni car

- Les sept mots finissant par "ou" qui prennent un x au pluriel : bijou, caillou, chou, genou, hibou, joujou, pou.

- Les sept têtes du naga des temples d'Angkor

- Les sept portes de Thèbes

- Les sept termes des grecs antique pour l'amour : porneia, pathos, eros, philea, storge (familial celui-ci) charis, agapé.

- Les sept vies du chat

- Les sept trompettes de Jéricho

- Les sept entrées de l'Enfer

- Les sept mondes interdits.

- Dans un ouvrage paru en 1956 George Armitage Miller établit que le nombre 7 correspondrait approximativement au nombre maximal d'éléments que serait capable de "traiter" l'esprit humain.

- Federico Navarro, continuant les travaux de Reich, s'est intéressé aux sept niveaux des stases énergétiques.

- Les 7 niveaux de classification pour l'Homme (Taxinomie) Règne : ANIMAL Embranchement: VERTÉBRÉ Classe: MAMMIFÈRE Placentaire Ordre: PRIMATES Famille: HOMINIDÉ Genre: HOMO Espèce: SAPIENS.

- Les sept conseillers fédéraux Suisse ainsi que les sept membres des exécutifs des cantons et des grandes villes.

- Sept couches d'atmosphère : L'atmosphère terrestre peut être divisée en sept couches en fonction de la température et d'autres caractéristiques. Ces couches sont la troposphère, la stratosphère, la mésosphère, la thermosphère, l'exosphère, l'ionosphère et la magnétosphère.

- Les sept aptitudes-outils-facultés holistiques selon Clélia Félix (le son, le verbe, le signe, la nature, l'intuition, le nombre et le rituel.)

- Les sept matchs de tennis qu'il faut gagner pour remporter un titre de grand chelem

- Les sept façons de savoir comment est une personne : Posez-lui une question difficile, et observez sa faculté d'analyse. Prononcez une parole provocante, et voyez sa réaction. Demandez-lui comment elle s'y prend pour résoudre des problèmes épineux, et jugez de son intelligence. Laissez-la se débrouiller d'une situation délicate, et observez son courage. Faites-la boire, et observez son naturel. Tentez-la avec de l'or, et observez son intégrité. Indiquez-lui comment s'acquitter d'une tâche, et assurez-vous de sa fiabilité. (Sun Tzu - L'art de la guerre) 

Linguistique et sémantique

- Les sept partie du corps à la source du langage des iles Adaman 

- Les sept modes verbaux de la grammaire en langue française : - quatre modes personnels, qui se conjuguent : indicatif, conditionnel, subjonctif et impératif. - trois modes impersonnels, qui ne se conjuguent pas : infinitif, participes et gérondif. Binaire et ternaire linguistiques

- Dans certaines langues, comme le latin et le russe, il existe sept cas grammaticaux utilisés pour indiquer la fonction des noms et des pronoms dans une phrase : le nominatif, le génitif, le datif, l'accusatif, l'instrumental, le prépositionnel et le locatif.

- En linguistique, il existe sept structures de phrases de base : les phrases simples, les phrases composées, les phrases complexes, les phrases composées-complexes, les phrases déclaratives, les phrases interrogatives et les phrases impératives. (4 + 3)

En anglais et dans de nombreuses autres langues, il existe sept temps de base : le présent, le passé, le futur, le présent parfait, le passé parfait, le futur parfait et le présent continu.

- Parties du discours : Dans la grammaire traditionnelle, il y a sept parties du discours : les noms, les verbes, les adjectifs, les adverbes, les pronoms, les prépositions et les conjonctions.

- Les sept conférences de Harvard de Charles Sanders Peirce, prononcées en 1903.

-  Les sept agents de la cosmogonie révélés à Jacob Böhme par des visions. Ils sont les sept agents d’une création continue du monde. Ce sont  la dureté, l’attraction, la crainte, le feu, l’amour-lumière, les pouvoirs de la parole et la parole elle-même.

- Les sept parties de l'idéalité royale (Castille, XIIIe siècle) donnés à imprimer par Antonio Díaz de Montalvo, jurisconsulte des Rois Catholiques, comme Le Septénaire : Las Siete Partidas de Alfonso X el Sabio, 2 vol., Séville : Meynardo Ungut et Lançalao Polono, 25 octobre 1491.

- Les sept collines de Rome : Rome, la capitale de l'Italie, est célèbre pour être la "ville aux sept collines". Les sept collines sont la colline de l'Aventin, la colline du Caelius, la colline du Capitole, la colline de l'Esquilin, la colline du Palatin, la colline du Quirinal et la colline du Viminal.

- Sept lois incas : L'empire inca, qui a existé en Amérique du Sud du 13e au 16e siècle, avait un système de lois connu sous le nom de Tawantinsuyu, qui comprenait sept lois principales. Ces lois étaient les suivantes : Ama Sua (ne pas voler), Ama Llulla (ne pas mentir), Ama Quella (ne pas être paresseux), Ama Kella (ne pas être infidèle), Yapaq Ñan (respect), Kawsay Ñan (mener une vie honorable) et Iwka Ñan (ne pas massacrer sans raison).

- Le labyrinthe à sept circuits : Le labyrinthe à sept circuits est un type de labyrinthe utilisé pour la méditation et à des fins spirituelles. Le labyrinthe consiste en un chemin unique qui serpente jusqu'au centre, avec sept cercles concentriques qui divisent le chemin en sept segments.

- Les sept âges de l'homme : Les sept âges de l'homme sont un concept décrit par William Shakespeare dans sa pièce "As You Like It". Les sept âges sont le nourrisson, l'écolier, l'amoureux, le soldat, le juge, le vieillard et, enfin, la seconde enfance.

- Sept continents : Les sept continents sont l'Afrique, l'Antarctique, l'Asie, l'Australie, l'Europe, l'Amérique du Nord et l'Amérique du Sud. Ces continents sont généralement définis en fonction de leurs plaques continentales.

- Septième fils d'un septième fils : Dans le folklore, le septième fils d'un septième fils est censé avoir des pouvoirs spéciaux, notamment la capacité de guérir les maladies et de voir les esprits. Cette légende a été popularisée dans divers médias, notamment dans la musique, la littérature et le cinéma.

- Guerre de Sept Ans : La guerre de Sept Ans est un conflit mondial qui s'est déroulé de 1756 à 1763 et qui a impliqué la plupart des grandes puissances européennes de l'époque. La guerre s'est déroulée principalement en Europe, mais aussi en Amérique du Nord, en Inde et dans d'autres parties du monde.

- Sept couleurs de l'aura : selon certaines traditions ésotériques, l'aura humaine est composée de sept couleurs, chacune correspondant à un aspect spécifique de l'état spirituel, émotionnel et physique de l'individu.

- Les États-Unis d'Amérique comptent 7 pères fondateurs qui ont signé la Déclaration d'indépendance le 4 juillet 1776.

- Les planètes classiques, connues dans l'Antiquité, sont au nombre de 7 : Soleil, Lune, Mercure, Vénus, Mars, Jupiter et Saturne. Dans l'astrologie traditionnelle, on croyait que sept planètes avaient une influence sur les affaires humaines. Ces planètes étaient le Soleil, la Lune, Mercure, Vénus, Mars, Jupiter et Saturne.

- La septième lettre de l'alphabet grec est zêta, souvent utilisée en mathématiques pour représenter une variable ou un coefficient.

- L'étirement de la septième manche est une tradition du baseball selon laquelle les supporters se lèvent et s'étirent pendant la septième manche du match.

- Le temps nécessaire à la lune pour passer par toutes ses phases est d'environ 29,5 jours, ce qui est proche d'un multiple de sept (4 x 7 = 28).

- Nous terminons cette liste avec les 14 diagonales de l'heptagone qui, une fois tracés, dessinent au sein de celui-ci un heptagone interne, puis un deuxième... qui laissent imaginer une suite infinie de la même forme.

(Pour info : Avec FLP nous nous amusons parfois à une organisation qui tente de classifier les extraits via 7 paramètres verticaux et 7 paramètres horizontaux... )

NB : Le nombre 49 n'a pas de signification inhérente ou spécifique en dehors de ses propriétés mathématiques. En mathématiques, 49 est un nombre carré, car il est le produit de 7 multiplié par lui-même (7 x 7 = 49). Il s'agit également d'un nombre composite, car il possède des facteurs autres que 1 et lui-même (à savoir 7 et 1).

Dans diverses cultures et contextes, le nombre 49 peut avoir une signification culturelle ou symbolique. Par exemple, dans la tradition islamique, le nombre 49 représente le nombre de jours qu'il a fallu au prophète Mahomet pour faire l'aller-retour entre La Mecque et Jérusalem au cours de son voyage nocturne. Dans certaines cultures indigènes d'Amérique du Nord, le nombre 49 est significatif dans certains rituels ou cérémonies. Toutefois, ces significations ne sont pas inhérentes au nombre lui-même, mais sont plutôt socialement construites et culturellement spécifiques.

Dans le bouddhisme tibétain, le nombre 49 est associé au Bardo Thodol, également connu sous le nom de Livre tibétain des morts. Ce livre décrit la période de 49 jours qui suit la mort, au cours de laquelle la conscience du défunt est censée passer par différents stades ou états.

Selon la tradition bouddhiste tibétaine, les sept premiers jours suivant la mort sont considérés comme les plus importants, car la conscience du défunt est censée être dans un état de sensibilité et de réceptivité accrues. Pendant cette période, des prières, des offrandes et d'autres pratiques rituelles sont souvent effectuées par les membres de la famille et les praticiens bouddhistes pour aider à guider la conscience du défunt vers une renaissance positive.

Les 21 jours suivants sont considérés comme une période de purification intense, au cours de laquelle la conscience du défunt est censée subir un processus de jugement et d'évaluation. Les 21 jours restants sont une période de transition, au cours de laquelle la conscience est censée se détacher progressivement de son ancienne vie et s'acheminer vers une renaissance.

Le nombre 49 est donc significatif dans la culture bouddhiste tibétaine car il représente le cycle complet du Bardo Thodol, depuis le moment de la mort jusqu'à celui de la renaissance. Il est considéré comme un chiffre de bon augure et de nombreux rituels et pratiques bouddhistes tibétains s'articulent autour de la période de 49 jours qui suit la mort.



Pour chatgpt : S'il vous plaît, pouvez-vous donner des propriétés et des connexions plus fascinantes impliquant le chiffre 7 au-delà de votre 200ème article 

Auteur: MG

Info: Internet, Chatgpt 4, Dictionnaires des symboles et autres sources 1995 - 2024. *Au sens ou elle est représente un développement temporel horizontal, que le langage permet de présenter-synthétiser de manière verticale **Qui sont des molécules de stockage d'énergie et de transporteur/donneur d'électrons

[ nombre ] [ Dieu ] [ méta-moteur ] [ symbole ] [ inventaire ]

 

Commentaires: 0