Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 111
Temps de recherche: 0.0541s

technologie

Comment Internet modifie le cerveau
L'écran aspire-t-il notre cerveau ?
À force de passer des milliers d'heures à naviguer sur Internet, Nicholas Carr en est arrivé à une conclusion : Internet modifie l'esprit. Dans son dernier livre, Internet rend-il bête ?*, le journaliste et écrivain américain constate, comme de nombreux " travailleurs de l'écran ", qu'il a de plus en plus de mal à se concentrer sur une tâche complexe, ou même à ne faire qu'une seule chose à la fois. La vie en mode zapping fait des dégâts. " J'ai le sentiment désagréable que quelqu'un, ou quelque chose, bricole avec mon cerveau ", explique-t-il. Amoureux du Net, l'auteur a d'autant plus de difficultés à en dire du mal : Internet " est un si bon serviteur qu'il serait déplacé de remarquer qu'il est aussi notre maître ", s'amuse-t-il.
Ce qui importe, selon Nicholas Carr, ce n'est pas tant le contenu diffusé par les médias que la façon de les diffuser. " Les médias opèrent leur magie, ou leurs méfaits, sur le système nerveux lui-même ", explique-t-il. Notre cerveau est enfermé dans la boîte crânienne, ce qui nous laisse penser - à tort - qu'il serait insensible aux événements extérieurs ; qu'il les capterait et les analyserait sans en subir les influences. Mais " le cerveau est et sera toujours un chantier en cours ", rappelle l'auteur.
L'esprit devient affamé
Reprenant la thèse selon laquelle l'activité du cerveau le modèle et le façonne en permanence, comme l'eau qui coule dans le sable crée des chemins qu'elle empruntera toujours par la suite, Nicholas Carr tire la sonnette d'alarme. Les " médias électriques " ont changé notre façon de percevoir le monde. Radio, télévision, Internet : tous nous crient l'urgence de les consulter, au contraire des journaux papier et des " livres poussiéreux " d'antan, qui nous chuchotaient qu'on avait tout le temps pour les consulter au calme.
Résultat : "Le plongeur qui, naguère, explorait l'océan des mots, en rase maintenant la surface à la vitesse de l'éclair." Dans un clin d'oeil à Descartes, Nicholas Carr affirme même que " nous devenons ce que nous pensons ". L'effet est pire sur les jeunes, qui sont nés avec Internet. Selon une étude citée dans l'ouvrage, certains enfants trop habitués aux pages web ne sauraient plus vraiment lire une page de haut en bas et de gauche à droite. L'addiction est aussi présente : " Mon esprit n'était pas seulement à la dérive, il avait faim. Il demandait à être alimenté comme le Net le nourrit - et plus il était nourri, plus il avait faim. " La " surcharge cognitive " est telle que la capacité à réfléchir est menacée.
Nouvelle ère
Un constat alarmant ? Pas forcément. Nicholas Carr entrevoit une nouvelle ère pour la pensée, qui nous sortirait définitivement des Lumières et du rationalisme. En jeu, de nouveaux mécanismes cognitifs, dont on ne sait pas encore s'ils sont meilleurs ou moins bons que ceux que nous avions tous il y a encore vingt ans.
L'habitude du zapping, par exemple, permet de traiter plusieurs tâches à la fois de façon plus efficace, mais réduit la capacité à résoudre des problèmes complexes, et à mémoriser des souvenirs. Autre exemple : la généralisation du guidage GPS atrophie la partie du cerveau chargée de l'orientation dans l'espace, mais libère du temps et des neurones pour d'autres activités. Pour le moment, nous savons simplement que nous avons " sacrifié des parties de notre cerveau " au profit d'autres apports, que nous commençons tout juste à entrevoir. Reste à savoir si nous serons perdants. Le bilan semble négatif aujourd'hui, mais Carr veut être optimiste : peut-être l'homme apprendra-t-il bientôt a tirer profit de sa nouvelle capacité à ne jamais se concentrer...
Commentaire : Euh... pardon? Sa "nouvelle capacité"?
Demain, tous transformés
Ceux qui passent des heures sur leur écran et qui, le soir venu, se demandent ce qu'ils ont fait de leur journée, se reconnaîtront bien dans le livre de Nicholas Carr. Certains passages les feront sourire, notamment le récit de sa tentative de désintoxication durant la rédaction du livre. " Le démantèlement de ma vie en ligne ne s'est pas fait sans douleur [...] De temps en temps, je m'offrais une journée entière d'orgie sur le Net ", raconte-t-il.
Seul regret, la traduction depuis l'anglais du vocabulaire technique n'est pas toujours parfaite. Par exemple, le sigle ISP, qui signifie " Internet Service Provider ", c'est-à-dire fournisseur d'accès à Internet, n'est ni expliqué ni traduit. L'abonnement (account) qui va avec est traduit par " compte ". Quelques lignes plus loin, c'est la connexion broadband (haut-débit) qui est traduite par " large bande ". Mais ces petits détails ne sont pas gênants pour la compréhension. Internet rend-il bête ? n'en est pas moins un ouvrage ambitieux, qui essaie de cerner les évolutions du cerveau et de la pensée à l'ère numérique, et de nous préparer à ce qui nous attend dans le monde encore plus connecté de demain. Un livre à recommander à tous les forçats du Web !

Auteur: Internet

Info: Science de l'Esprit, Le Point 10 novembre 2011

[ sociologie ] [ lecture ]

 

Commentaires: 0

FLP défini 3

Les Fils de La Pensée est un site-application dédié à l'encouragement de la lecture. Et, plus encore, de la lecture analytique.  

Mais pas que.

Initié à l'orée du 3e millénaire, alors que le numérique rétrécit une planète terre où la domination américano-occidentale post ww2 se termine, FLP veut se positionner "à partir du langage" c'est à dire en contemplant le monde pratiquement sur le mode peircéen du quasi-esprit.

Ainsi notre site-agrégateur-moteur de recherche collectif tente d'aller un peu plus loin que ce que les idiomes, unificateurs grégaires, font déjà. Ceci en proposant des pistes susceptibles d'amener le développement d'une lexicologie humaine (ici francophone) élargie, en mouvement, souple... et charpentée différemment comme explicité plus loin. 

FLP est aussi un espace de réflexion communautaire trans-partisan HOMME - machine, à l'heure où on veut nous faire croire que les chatbots générateurs de texte sont une intelligence artificielle (A.I. - I.A.) susceptible d'être comparée à celle des hommes - voire supérieure à cette dernière.  Alors que ce ne sont que de fantastiques outils, dangereux pour deux raisons au moins selon nous.  a) L'utilisation que tout pouvoir cherchera à en faire b) La dépendance, voire l'abrutissement, qu'elles pourront générer. 

FLP s'essaye donc à semer les graines d'une refondation des structures de la classification sémantique - sans bien sûr abandonner les savoirs partagés antérieurs. C'est à dire sans remettre en cause notre évolution ni ce qu'il y a "au dessous du langage",  ce dernier ne représentant que l'hyperstructure évolutive du monde-miroir-anthropique consensuel, miroir qui grandit au fur et à mesure de la progression et de l'affinement de notre science, c'est à dire de représentations qui recherchent une forme de vérité/exactitude sur base, entre autres, d'analogies et de hiérarchisations. Hiérarchisations souvent ridicules, probablement à l'instar du faible niveau de notre jeune espèce dans le grand et mystérieux concert cosmique.  

Structuration sémantique à venir potentiellement plus fiable et durable parce que simultanément partie d'une meilleure compréhension-intégration humaine avec la matrice Gaïa et le reste du vivant.

Mais restons bien humbles et revenons à FLP. Sachant que chacun d'entre nous est par essence limité par son imprégnation propre : milieu, époque, pays, langue, famille, genre, conformation physique, épisodes de vie, etc. et étant assumés et assurés certains prérequis quant à un minimum d'"existence physique" et d'éducation au verbe du participant, FLP essaye ce dépassement classificateur en s'appuyant sur deux idées perpendiculaires syntonisées.  

Primo : développement et l'approfondissement de l'idiosyncrasie de chacun, principalement par lecture réflexive et compréhension/analyse. 

Secundo :  meilleure intégration/compréhension de chaque subjectivité personnelle au sein des idées ; humaines dans un premier temps et, pourquoi pas, de la nature dans un sens plus large, avec cette idée parallèle d'une réintégration dans le concert du vivant après tous ces épisodes capitalo-anthropocentrés des singes trop malins que nous sommes. 

En bref :   approfondissement personnel      versus       élargissement collectif incorporateur.

Nous retrouvons ici le concept de tétravalence cher à nos yeux où se combinent l'horizontalité de l'intégration aux rouages du présent (principe féminin, empathique ?), avec une verticalité qui tend à vouloir incorporer le MOI dans la continuité de l'évolution (principe masculin, égoïste ?). 

Il y a ici une parenté évidente - que FLP voudrait développer - avec les quatre liaisons de covalence du carbone (et en lien avec les 4 bases dont sont formées les chaines de la double hélice de l'ADN ?). Nous croyons encore une fois que s'en inspirer aidera à  une meilleure représentation humaine au sein du mystérieux processus de la vie émergé de notre matrice Gaïa ; à l'heure où la science  à  déjà bien montré combien nos représentations du réel sont à revoir de fond en comble.

Nous préconisons-anticipons donc le développement d'une classification à partir d'une double base duale, extension des 2 axes conceptuels habituels : ying-yang, mâle-femelle, vie-mort, ouranien-chtonien, doute-certitude, noir blanc, etc... ici sémantiques, qui sont à appréhender comme deux vecteurs doubles, orthogonaux , qui copulent, modélisent, conjuguent et fusionnent sans cesse les formulations, c'est à dire comment nous nous représentons le réel sous forme de consensus humain verbaux.

Voilà donc défini un cadre et quatre vecteurs-directions, sans autre forme méthodologique que la présentation de ce "chassis conceptuel".  Chassis sous-jacent qui, avec l'aide de l'outil FLP, ses règles simples, et les possibilités de précision sémantique qu'Internet permet, aidera le participant-inserteur à aller  un cran plus loin, c'est à dire à réfléchir, en extrapolant et dédoublant parfois la double dualité foncière qui nous anime. 

On pourra partir par exemple de idée simple d'un "dictionnaire intriqué  à deux termes". Termes définis et mis ensemble dans une recherche, dont les combinaisons vont générer diverses variations, en partant de la plus courte. Recherche-exploration "à deux mots" dont on pourra comparer les résultats tels qu'exprimés par une femme, ou par un homme, ou autre... Les paramétrages de lieu, époque, pays, etc. venant ensuite pour qui voudra aller plus loin.

Ainsi, via les bidouillages de chacun et des échanges multiples, principalement portés sur une "exactitude sémantique consensuelle", le dictionnaire FLP devrait s'auto-construire - sans jamais vouloir conclure - par la pratique et le partage communautaire. 

C'est donc une entreprise collective qui combine deux orientations orthogonales : occupation du temps et développement personnel, ces derniers participants à la construction et au développement d'un dictionnaire linguistique communautaire, base de données  multidimensionnelle  enchevêtrée  - en espérant de continuels élagages-mises à jour-corrections des extraits insérés. Tout ceci idéalement en développant et mettant en pratique un ordonnancement sémantico-taxinomique qui s'inspire de ce que nous savons de l'esprit qui est dans la matière.

Mais ne nous emballons pas. Voyons d'abord FLP comme un instrument de recherche, transversal et sérendipitaire, sur fond de délassement.  

Nous croyons au plaisir du lire, de la pensée, de la rêverie... de la curiosité qui avance par crans....  Pas assouvie, mais nourrie... souvent parce que le langage - c'est à dire tous les hommes rassemblés -, formule et matérialise pour un temps nos sentiments-sensations-idées, avant que chaque représentation personnelle (pas de représentations sans verbe) ne diverge et se développe plus avant à sa manière dans un corpus idiomatique jamais fixé. 

Nous pensons que l'esprit a soif de nouveau et répondons à cette appétence en proposant le double plaisir conjugué de la lecture et de la quête. Bon dieu quel bonheur de découvrir des choses parce que formulées jusqu'à nous paraitre intelligibles !

Auteur: Mg

Info: mars, avril 2023

[ prospective ] [ alcènes et alcynes  ] [ gnose ]

 

Commentaires: 0

Ajouté à la BD par miguel

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

On m’a dit que je gaspillais mon temps 

Malgré son emploi du temps surchargé du à son prix Nobel de physique 2022 partagé avec l’Américain John F. Clauser et ­l’Autrichien Anton Zeilinger, le physicien nous a reçus et livré un entretien inédit sur ses recherches, avec la passion qui l’anime.

AM - Vous venez de recevoir le prix Nobel de physique 2022 pour vos travaux sur l’intrication qui ont permis d’appréhender le cœur de la théorie quantique. Avant de nous expliquer vos recherches, pouvez-vous nous donner un aperçu de la "physique quantique" ?

AA - La physique quantique a été développée au début du XXe siècle pour rendre compte des propriétés du monde microscopique : les atomes, les électrons… Ce que la physique classique n’arrivait pas à faire. À la fin du XIXe siècle, on savait, par exemple, que la matière était formée de charges positives et négatives qui s’attirent. Mais pourquoi, alors, cette matière ne s’effondrait-elle pas sur elle-même ? La physique classique ne pouvait apporter aucune explication.

Pour le comprendre, il a fallu recourir à la physique quantique, notamment à l’un de ses premiers concepts : la dualité onde/particuleAinsi, un objet, par exemple la lumière, que nous décrivons comme une onde, doit aussi être considérée comme formée de grains, à savoir les photons. Réciproquement, des objets dont nous pensons que ce sont des particules – un électron, un atome, un neutron – doivent aussi, dans certaines circonstances, être considérés comme des ondes. C’est la base de ce qu’on appelle "la première révolution quantique". Cela a permis de comprendre la stabilité de la matière, la conduction du courant électrique ou la façon dont la matière émet ou absorbe la lumière.

Et puis dans les années 1940-1960, ce fut l’invention du transistor et du laser qui s’appuyaient sur cette théorie quantique. Ces deux technologies n’ont pas été élaborées par un bricoleur dans un garage en Californie, mais par les plus grands physiciens de l’époque qui ont eu des prix Nobel. Une fois qu’on a le transistor, on a les circuits intégrés à la base des ordinateurs.

AA - Et qu’appelle-t-on deuxième révolution quantique ?

AA - Elle a été lancée par un article d’Albert Einstein, de Boris Podolsky et de Nathan Rosen en 1935. Ils découvrent dans les équations mathématiques de la physique quantique des états où deux particules qui ont interagi, mais qui n’interagissent plus, semblent continuer à former un tout inséparable. C’est ce que l’on appellera l’"intrication". Dès le début, le physicien Niels Bohr s’était opposé aux conclusions d’Einstein. Son homologue John Bell a alors proposé, en 1964, de faire des expérimentations pour trancher la discussion.

Il a ensuite fallu plusieurs décennies pour que les autres physiciens réalisent la portée des travaux de Bell. Quand j’ai commencé ma thèse en 1974, nombre d’entre eux pensaient que l’intrication n’était pas différente de la dualité onde/particule. Puis, on a pris conscience de sa nouveauté. C’est pourquoi je parle d’une "deuxième révolution quantique", d’abord sur le plan de la recherche fondamentale, mais également sur les nouvelles applications que cela a suscitées, comme la cryptographie ou les ordinateurs quantiques.

AM - Comment a-t-on validé ce phénomène "d’intrication" ?

AA - Il fallait créer une paire de photons et une méthode pour montrer que, même éloignés, les deux photons demeuraient corrélés. Le photon, c’est de la lumière et la lumière a une polarisation. Un polariseur est un instrument d’optique qui a deux sorties associées à l’orientation de son axe : tout l’objet du test est de regarder comment les résultats dépendent de cette orientation. Si les polariseurs sont parallèles, vous avez une corrélation parfaite, vous trouvez les mêmes résultats des deux côtés. Imaginez que je lance deux pièces à 10 mètres de distance l’une de l’autre, ça a l’air aléatoire, mais si j’ai pile d’un côté, j’ai pile de l’autre, et si j’ai face d’un côté, j’ai face de l’autre. C’est la corrélation prévue pour les photons intriqués. Et cette corrélation est si forte qu’on ne peut en rendre compte que par la physique quantique.

AM - Quelles expériences ont été réalisées pour établir cette intrication ?

AA - La première expérience a été faite par John Clauser et Stuart Freedman en 1964. Celles que j’ai faites dix ans plus tard et celles qu’Anton Zeilinger a effectuées seize ans après moi ont des niveaux de raffinement différents, mais portent sur des objets identiques : il s’agit de deux photons émis par la même source et qui s’éloignent l’un de l’autre dans des directions opposées. J’ai mis cinq ans à fabriquer ma source. J’ai commencé en 1974 et les premières paires de photons intriqués ont été obtenues vers 1979-1980. Pour ce faire, je prends des atomes, je tape dessus avec des lasers, je les "excite" de façon contrôlée, et ils n’ont pas d’autre choix que d’émettre les deux photons dont j’ai besoin.

Après l’émission des photons et avant leur détection, il faut que les deux polariseurs soient éloignés l’un de l’autre et que leur orientation soit déterminée au dernier moment afin qu’ils ne s’influencent pas. Ainsi, mes deux polariseurs sont distants de 6 mètres de la source et je change leur orientation pendant le temps de vol des photons qui est de 20 nanosecondes… Comment tourner un appareil en 20 milliardièmes de seconde ? C’est impossible, mais j’ai eu l’idée de construire une espèce d’aiguillage capable de le faire et l’expérience a réussi.

AM - D’où vient votre passion pour la physique ?

Je suis originaire du village d’Astaffort (Lot-et-Garonne) à une époque où les champs étaient labourés avec le cheval ou les bœufs, mais j’étais fasciné par le moindre objet technique, par exemple les outils des artisans. Je me souviens de la visite, à Fumel, d’un haut-fourneau qui fournissait de la fonte transformée en tuyaux comme ceux que j’avais vu poser dans mon village pour installer l’eau courante. À l’école primaire, les instituteurs et institutrices faisaient ce que l’on appelait des "leçons de choses". J’étais aussi un grand lecteur de Jules Verne.

Arrivé au lycée d’Agen, je me réjouissais à l’idée de faire de la physique-chimie, mais on ne commençait qu’en seconde. J’ai eu alors un professeur formidable, Maurice Hirsch, qui nous faisait des expériences extraordinaires. Il a décuplé mon intérêt pour la physique et m’a enseigné des méthodes que j’ai conservées toute ma vie.

AM - Quels conseils donneriez-vous aux jeunes qui souhaiteraient se lancer dans votre discipline ?

AA - Il est clair qu’il y a un problème de moyens financiers. La loi de programmation de la recherche fait des propositions intéressantes, mais quand on regarde les budgets associés, ils sont inférieurs à ce que l’Académie des sciences avait estimé être le minimum pour que la recherche française puisse rester au niveau des concurrents étrangers. Les crédits de base, y compris ceux de l’Agence nationale de la recherche, sont décevants, même s’ils ne sont pas négligeables. Heureusement, on peut obtenir des crédits européens pour des projets innovants jugés au meilleur niveau, mais seul un petit nombre de chercheurs peut en bénéficier.

On me demande souvent si, aujourd’hui, on pourrait faire la même chose que ce que j’ai fait dans les années 1970-1980. Certainement pas de la même façon, mais un chercheur titulaire peut se lancer dans un projet de recherche original. Au pire, sa carrière sera freinée mais, moi aussi, je courais ce risque. Comme j’avais un poste permanent, je pouvais me lancer dans une recherche à long terme sans craindre de perdre mon emploi d’enseignant-chercheur.

On m’a dit que je gaspillais mon temps, que mon sujet n’avait aucun intérêt, mais je gardais mon emploi. Il en est toujours de même. Si un scientifique du CNRS ou de l’université se lance dans une recherche ­désapprouvée par les comités, il peut persévérer s’il accepte un certain retard de carrière. Bien sûr, si au bout de dix ans son travail n’a débouché sur rien, il doit se remettre en cause, les comités n’avaient peut-être pas tort.



 

Auteur: Aspect Alain

Info: Interviewé par Anna Musso pour https://www.humanite.fr, 8 Novembre 2022

[ nano-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

dépravation

La Fistinière
Cette chambre d'hôtes gays accueille des amateurs de fist, qui consiste à pénétrer le vagin ou l'anus avec la main. Rencontre.
(Du Cher) Ce n'est pas une maison bleue accrochée à une colline. C'est une maison d'hôtes pour passionnés du "fist", cette pratique qui consiste à introduire une main, voire un bras dans un vagin ou un anus. C'est aussi un mythe, une maison qui étonne ou fait rire par son concept. Nous avons voulu rencontrer François, Juan Carlos et Nelly, les penseurs de ce lieu original.
Au téléphone, François prévient tout de suite :
"Bon, il y a déjà des journalistes qui sont venus, mais c'était des hommes. Vous, vous êtes des femmes... Ça va donc être compliqué d'assister à une soirée, nous n'avons pas envie de mettre nos clients mal à l'aise."
Avec Audrey, la photographe de Rue89, nous nous sommes donc rendues dans cette maison d'hôtes gays du Cher en pleine journée. Il faisait très beau. Les champs de colza coloraient d'un jaune magnifique le pays. Et puis il y avait des vaches et des moutons.
On arrive à Assigny, village de 174 habitants, où est située la Fistinière. Ici, pas de problème. La maison d'hôtes est très bien acceptée. François nous accueille. Il est imposant, souriant, porte un pantalon en cuir noir et vous regarde de ses yeux bleus aussi limpides que ceux d'un chat. Il explique : " Le site internet est connu par beaucoup de gens aux alentours, il y a pleins de gens que ça amuse, mais tout le monde se rend compte qu'on est pas des vieux monstres pervers, qu'on est des gens comme tout le monde. "
La maison, qui date du XVIIe siècle, est tout à fait charmante.
"Je vous présente Juan Carlos, mon mari", nous dit François avant de nous inviter à nous installer dans le grand salon de la maison. Nelly, sa soeur, s'installe également à leurs côtés. Ils ont ouvert la Fistinière en 2007, et la tiennent depuis tous les trois. On boit du thé, avec quelques meringues à la noix de coco. Commence alors le récit de leur aventure.
Leurs parcours sont improbables. De ceux qui troubleraient une conseillère en orientation. Avant de créer la Fistinière, François tenait une boutique de robes de mariées, Juan Carlos faisait des prothèses orthopédiques et Nelly avait une brasserie.
D'origine colombienne, Juan Carlos arrive à Paris en 1984. Il y découvre la pratique du fist : "J'aime bien faire la comparaison avec l'éducation grecque où il y avait l'expérimenté, pour ne pas dire le vieux, qui apprenait au jeune. Dans le fist, c'est souvent ça. On apprend avec quelqu'un qui le pratique déjà."
A la fin des années 90, il rencontre François. Les deux hommes tombent amoureux et très vite cette pratique occupe une place de choix dans leur vie sexuelle. Une vie sexuelle complètement affranchie de la gêne et des tabous qui y sont liés. François et Juan Carlos racontent tous les deux avoir un autre mari et ne jamais être jaloux.
A l'époque, ils rêvent d'un endroit convivial et hygiénique, dédié à leur activité manuelle favorite avec à disposition tout le matériel nécessaire. Des préservatifs aux gants en latex. Cette idée ne va bientôt plus les lâcher. Enthousiaste, Nelly rejoint vite son fère et Juan Carlos dans le projet. "Sa vie n'était alors pas très rose" raconte François. "Elle avait un mari avec qui ça n'allait pas très bien." L'alliance familiale ne pose problème à aucun d'eux trois. Juan Carlos explique : "Dans leur famille, la sexualité n'est pas du tout taboue, je pense que ça leur a permis d'être ouvert à beaucoup de choses.
L'organisation du gite est bien rodée. Les garçons s'occupent de l'accueil des clients et de s'assurer que les soirées se passent bien. :
Si quelqu'un a un peu trop bu, on le surveille car ça peut vite devenir dangereux.
A Nelly revient la grande responsabilité de la faire la cuisine :
Avant de faire un fist, on fait un lavement, donc il faut des aliments faciles à évacuer. Avec les tomates, il faut enlever la peau et les pépins. Il faut toujours des féculents.
Pendant les soirées du samedi soir, à l'origine, Nelly n'était pas censée pénétrer la "chapelle fistine", située à l'étage, dans le grenier de la maison. Mais un jour, un client le lui a demandé. Après s'être assurés que cela ne posait pas de problème aux autres clients, François et Juan Carlos ont accepté que Nelly vienne assister à leur "jeux" : "J'aime beaucoup fister des garçons. La première fois que je suis montée, François et Juan Carlos étaient un peu gênés, moi pas du tout. " Juan Carlos réagit : "Je l'ai toujours dit : Nelly c'est un pédé dans un corps de femme. Sexuellement, nos pratiques ne lui ont jamais posé de problèmes. Elle a cette mentalité très ouverte et accepte que la sexualité soit un jeu."
François, pour sa part, explique que beaucoup de leurs clients sont bisexuels : "Le fait de prendre du plaisir par le cul avec une femme, ça les excite."
"Autour de cet anus, il y a un individu tout de même"
Le plaisir. Dans l'imaginaire collectif, mettre une main dans un anus, c'est plutôt une pratique violente. François et Juan Carlos pensent tout le contraire. Il faut être très doux, justement pour éviter un accident : "Les intestins c'est très fragile. A l'entrée de l'anus, si on force, il peut y avoir une déchirure, donc une infection. Pour éviter ça, il faut dilater."
Il raconte le rituel du fist : "Il faut que les ongles soient bien coupés, limés, même si on porte des gants. Il faut utiliser un bon lubrifiant, attendre que les anneaux et le sphincter s'ouvrent successivement. Et puis autour de cet anus, il y a un individu tout de même, il faut être à l'écoute, savoir si ce qu'on lui fait lui plaît et surtout ne jamais forcer."
François enchérit : On peut y aller doigt par doigt ou assurer la dilatation par massage. Il faut toucher, caresser, voir comment ça s'ouvre et ne jamais brusquer...
Certains candidats au fist préfèrent une fois sur place ne s'en tenir qu'à un doigt, tandis que d'autres acceptent qu'on les pénètre jusqu'à l'épaule.
"Qu'il s'agisse d'une pénétration de la main ou d'un bras, pour se faire fister, il faut vraiment le désirer fort, sinon ce n'est tout simplement pas possible."
François et Juan Carlos ne sont pas lassés de cette pratique. Ils parlent d'une jouissance folle. "C'est LA jouissance" dit Juan Carlos en insistant sur le LA : - En tant qu'hommes, on peut avoir un plaisir fou par son cul en faisant appel à certaines glandes. C'est comme si on jouissait de la bite mais multiplié par mille.'
Au-delà de ce plaisir charnel, ils parlent d'une philosophie de vie, d'un art de vivre :
Ce qui m'a plu dans cette pratique du fist, c'est le respect absolu qu'il y a entre les deux personnes. Le fait d'introduire la main dans les intestins de quelqu'un, c'est une pratique très intime. Plus intime ça n'existe pas. Tout est dans la confiance et le respect...
Surprise. A la fin de l'entretien Juan Carlos confesse qu'avant de faire des prothèses orthopédiques et de tenir la Fistinière, il a failli devenir prêtre. Il a été séminariste et se dit encore croyant. :
Il y a une grande recherche spirituelle dans cette sexualité. Je trouve de toutes manières que la spiritualité est partout, dans tout ce qu'on fait, on a pas besoin d'être entre les quatre murs d'un séminaire ou d'un couvent pour la vivre. Le message christique c'est l'amour. Aujourd'hui, j'ai l'impression de vivre ma vocation ici.'
Même si Nelly, François et Juan Carlos racontent avoir accueilli des gens du monde entier, la Fistinière ne fait pour l'instant pas de bénéfices. En hiver, ils ont une vingtaine de clients par mois, en été le chiffre s'élève à une centaine de personnes. Les garçons disent tout juste réussir à payer les factures. Ils n'en ont pas l'air moins heureux. Epanouis.

Auteur: Internet

Info: Rue 89

[ homo ] [ sexe ] [ perversion ] [ pornographie ]

 

Commentaires: 0

parapsychologie

Utopie : le retour de la mémoire de l'eau me rappelle des trucs
De par leurs idées et autres extrapolations des scientifiques comme Ruppert Sheldrake, Michel Bounias, Jacques Benveniste, Jean-Pierre Petit, Luc Montagnier... sont ou furent les cibles privilégiées du sectarisme des gens comme il faut. Sir John Maddox, rédacteur en chef honoraire de la revue Nature, bible des intégristes scientifiques, rédigea en 1981 un éditorial sur l'ouvrage de Ruppert Sheldrake, "A New Science of Life", dans lequel il écrivit : "Ce pamphlet exaspérant (...) est le meilleur candidat depuis de nombreuses années pour être brulé." Puis, lors d'une émission télévisée sur la BBC en 1994, il déclara : - Sheldrake met en avant la magie plutôt que la science et cela mérite d'être condamné dans les mêmes termes que ceux utilisés par le Pape pour condamner Galilée et pour les mêmes raisons. C'est de l'hérésie !...
Bref, on se croirait parfois revenu aux heures les plus sombres du moyen-âge. Mais ce n'est plus un sorcier que l'on veut brûler mais bien un docteur en biochimie diplômé.
Pour un prix Nobel (Montagnier) on fait un peu plus attention, on souligne donc perfidement que Nobel en question devient vieux. Ainsi, preuve est malheureusement donnée que ceux qui ont pour charge d'aider et de diffuser auprès des scientifiques du monde entier des avancées ou des prospectives qui élargissent nos connaissances sont trop souvent des censeurs dogmatiques.
Cette censure est de nos jours heureusement mise à mal grâce à Internet, espace de liberté par lequel tous les hérétiques peuvent s'exprimer, communiquer, et grâce auquel leurs idées deviennent accessibles au plus grand nombre. Ces chercheurs/spéculateurs scientifiques doivent fermement être défendus. Aidés même.
1) Au nom du droit à l'erreur:
2) Sans des gens qui pensent "autrement" pas de découverte scientifique majeure
3) Sans erreurs pas d'évolution.
Pensons à la sérendipité et rappelons-nous des créateurs anciens stigmatisés, Wegener et sa théorie de la tectonique des plaques par exemple, méchamment torpillé par la communauté scientifique de l'époque.
Ces scientifiques "maudits" sont plus que jamais les metteurs en cause nécessaires de nos sociétés capitalos démocratiques. Sociétés où les hiérarchisations sont devenue parfois si complexes que vouloir "monter" dans les appareils peut devenir quasiment un métier. Les hiérarchies se défendent, ici hélas bien au-delà du "Laisser toutes les portes ouvertes - mais en défendre férocement l'accès" de Jean Rostand. Elles sont de moins en moins des filtres à intelligences mais toujours plus des organismes d'orientation et de conservation du pouvoir.
Comme d'autre part l'attribution des budgets est de plus en plus décidée et pilotée par des mandants extérieurs dont le but n'est en général QUE mercantile, il y à la une problématique plus grave qu'il n'y parait.
Ainsi, pour l'affaire de "la mémoire de l'eau". Dans une société ou les multinationales pharmaceutiques sont dans le top mondial de la finance et où elles passent leur temps a terroriser la planète en agitant la peur de la maladie pour vendre leurs vaccins tueurs - avec la complicité des assurances -, la compromission des communautés scientifiques, économiques et politiques se voit désormais comme le nez au-milieu de la figure. Au mieux l'Etat laisse faire.
La science est en principe un champ ouvert, perpétuellement apte à se remettre en cause. La question qu'il faut poser aujourd'hui est au niveau de ses deux moteurs principaux : l'Etat-pouvoir et les Multinationales-finances. Deux logiques, gouvernements conservateurs et transnationales prédatrices, qui se conjuguent. Un Etat qui se couvre en émettant des lois qui cooptent le système en place (pour avoir le diplôme il faut "correspondre") couplé avec une économie qui recherche le profit mais pas le bien commun. Bref le système se nécrose et perd sa créativité exactement là où il devrait la conserver.
Pour revenir à cette histoire de la "mémoire de l'eau" et au sempiternel combat contre l'homéopathie. Il est souvent annoncé que l'effet placébo a été démontré chez les animaux.
D'abord il n'a jamais été démontré, mais constaté. Et cette simple constatation devrait suffire à allumer l'intérêt et débloquer des budgets. Niet dit alors le système : pas rentable, trop aléatoire... hors des clous. Ce hors des clous qui pourrait ouvrir de nouvelles perspectives étonnantes.
Car les scientifiques sont semble t'il toujours plus rationalistes, j'avance même que nous avons là une forme de fermeture intellectuelle que j'ai presque envie de formuler en "bêtise militaire", celle qui veut avoir une prise totale sur son sujet, pour, au final, vous en faire des armes ou des outils de pouvoir. Bravo !
Du coup pourquoi voulez-vous qu'ils s'intéressent au programme de recherche d'anomalies de technologie de Princeton (Pegg) qui a constaté les effets de la conscience humaine sur les machines. Effets minimes mais statistiquement constatés (et différents selon les sexes !). Et pourquoi voudriez-vous débloquer de gros budgets - et créer des emplois - pour développer des études destinées à explorer le champ de la biophysique. Champ dans lequel je mets aléatoirement et imprudemment les phénomènes acausals et la synchronicité de Jung, la mémoire de l'eau, cette aveugle allemande Gabriele Simon qui a développé la capacité de voir les couleurs avec ses bouts de doigts, ou le panpsychisme cher à Thomas Nage (dans la continuité de James William) qui imagine une âme dans les pierres, le minéral. Un Panpsychisme bien évidemment brocardé, ce qui me ramène à cette interminable histoire de mémoire de l'eau, étude qui laisse entrevoir qu'on pourra éventuellement démontrer (pardon : constater) qu'il y a échange d'informations ou d'ondes dans l'infiniment petit.
Mais il faudra tenter d'autres approches, étudier d'autres limitations potentielles dans la démarche scientifique. Vous pouvez être sûr qu'il y en a. Faut-il avoir le coeur pur pour celà ? Ou maitriser trois langues comme Cheick Diarra, qui use de l'anglais pour être efficace, du français pour la créativité... ou du Malien quand il s'agit de résoudre les rapports humains ? Parce que nous savons bien que les langues peuvent déterminer la nature et la teneur de la pensée. Et cette pensée est ici aussi le sujet de l'étude, sous l'éclairage de cette citation de David Chalmers : "L'expérience est information de l'intérieur; la physique est information de l'extérieur."
Ainsi ce papier... N'est autre que le désir de son auteur de produire un texte destiné à "résonner" chez ses lecteurs. Pour ce faire il use de cohérence mais s'efforce aussi, par son style, de faciliter cette résonnance. Eventuellement de la déclencher. Il y a une harmonie.
Les chercheurs font tous à des degrés divers de la science artistique. Tout est art finalement, quête d'harmonie (Aah Piaget). Approche soigneuse, plaisir du travail bien fait, résultats reproductibles, fond-forme... esprit-matière... Un homme vraiment absorbé représente une forme d'unicité.
On aimerait bien voir la tronche du décideur financier (pléonasme) à qui on proposerait la création d'un laboratoire de sciences artistiques, ou d'art scientifique. Lol, Mdr... C'est qui cet abrutelligent ?
Le problème, c'est peut-être d'oublier que nous avons modélisé le monde selon nos sens. Nous au centre, comme des gamins gâtés. Anthropomorphisme, solipsisme ?... Appelez ça comme vous voulez mais il semble qu'avec ce modèle nous nous dirigeons vers du "pas joli".
Donc toi esprit/moteur, piégé dans ce corps de bipède dépoilé, censé représenter l'espèce dominante (ou qui croit l'être) de la troisième planète d'un petit système solaire, tu perçois (ou croit percevoir) via tes sens, un petit nombre parmi les 800 octaves du cosmos (du noyau de l'atome jusqu'à la taille de l'univers), principalement par tes oreilles et tes yeux.
Ainsi as-tu calibré et "nommé" ton environnement. Ensuite, grâce aux outils que tu as su concevoir : téléscopes, rayons X, microscopes, ondes infra-rouges... tu as légèrement agrandi cette fenêtre de perception.
Pour ce qui est de l'étude et de la compréhension des interactions entre les forces qui sous-tendent ta réalité physique, limités par ce qui précède, tu sembles quelque peu borné par une nature-pensée peut-être trop bipolaire.
Tu es néanmoins parvenu à concevoir, entre autres, la bombe atomique, tout en restant incapable de limiter tes pulsions de reproduction galopante. D'où une surpopulation qui conduit fréquemment à des drames chez les gens de ta race. Et tu le sais très bien.
Zoom arrière.
Cadre des libertés, l'Etat n'est plus capable d'offrir ces dernières aux chercheurs. Au niveau des multinationales quasi plus non plus puisque ces équivalentes actuelles du mécénat d'antan offrent des financements subordonnés à des manoeuvres, des calculs. Et quand l'humain calcule en ce domaine ça craint : Gilette pour économiser sur la couche de platine de ses lames, Gates pour payer moins d'impôts, Soros pour favoriser le capitalisme... Ca craint vraiment.
Pensez : il existe encore quelques grandes boites qui financent des "nurseries pour créateurs indisciplinés", précisément pour récupérer la moindre trouvaille et en faire un profit sonnant et trébuchant !
Les sociétés humaines sont mortes de guerres subordonnées à l'inertie de leurs propres conformismes.
Grand zoom arrière.
Tentons de mieux distinguer Utopia.
Si on parvenait dans nos sociétés à consommer moins et plus intelligemment, via une meilleure éducation et une organisation plus simple et efficace, avec développement des activités de loisir et de méditation en parallèle, ce serait un début.
Nous sommes au sortir d'un siècle qui fut autant atroce qu'extrêmement créatif, tant par son développement technologique que pour sa science-fiction. Il y a maintenant comme un sentiment de retour en arrière, au mieux d'un plafonnement, d'un affinement inutile des idées. Idées bridées par l'inertie des acquis. Certitudes d'avant : matérialisme, "croassance", pseudo économie sous la coupe de pouvoirs qui tendent à une chose : se conserver.
C'est agaçant.

Auteur: Mg

Info: 1 oct 2014

[ ouverture ] [ sciences ]

 

Commentaires: 0

théorie du tout

De l'observateur à l'acteur

Les découvertes de la physique quantique ont initié une réflexion importante sur la place de l'observateur et son lien avec la conscience. Jusqu'alors, ce que nous savions de la physique n'avait jamais conduit à ce questionnement. En effet, à notre échelle, les objets classiques se comportent de manière régulière et prédictive, nous donnant par exemple le droit de penser que si nous quittons une pièce, les objets qu'elle contient seront toujours là à notre retour. C'est comme si les choses continuaient, que nous les observions ou non. L'influence de l'observation est donc susceptible du nous échapper.

Par contre, au niveau quantique, on ne peut rien dire de tel. Quand on n'observe pas, il y a méconnaissance ; alors, plusieurs réalités sont possibles. C'est ce qu'on appelle la superposition quantique. À partir du moment où l'on observe, la superposition s'effondre, ne laissant qu'une seule réalité.

Quel est le point commun entre les deux échelles ? La conscience.

L'observateur, au sens métaphysique du terme - le seul qui soit ici valide puisque la conscience est première - a une influence sur l'avancement de la complexité et de la conscience dans l'univers. En retour, l'univers a une influence sur lui.  Dès que la conscience de l'observateur change, il n'observe plus son environnement de la même manière, ce qui influence la conscience avec laquelle il perçoit. Ainsi, son interprétation est directement liée à sa conscience au moment où il observe.

Chaque observateur étant ainsi complètement impliqué dans la construction de la réalité, il serait sans doute plus juste de parler d'acteurs. Les joueurs sont finalement la condition même d'existence de l'aire de jeu, grâce à leur conscience.

Le joueur et ce qui se passe dans l'univers ne font qu'un

Selon la théorie des champs unifiés, la conscience est une rétroaction entre notre monde intérieur et notre monde extérieur.

C'est à partir de la structure du double tore que j'ai commencé à comprendre pourquoi et comment la conscience émerge par rétroaction.

"Pour être conscient de soi, il faut savoir que l'on existe. Cela nécessite une rétroaction. La structure du double tore permet cette rétroaction entre ce qui vient de l'extérieur et ce qui retourne à l'intérieur, informant le vide, puis retournant à l'extérieur. Et lorsqu'il retourne à l'extérieur, le vide nous informe du résultat de l'information qui y est présente. Il s'agit d'un échange entre notre compréhension interne et l'expérience de l'univers, et la relation entre toutes les compréhensions rassemblées dans le vide affecte la nôtre. Nous ne créons donc pas notre réalité, nous la co-créons avec tous les autres." 

L'univers utilise une boucle de rétroaction pour s'observer à toutes les échelles. Il s'observe en fait à travers tous les êtres conscients qui évoluent en son sein. Plus précisément, c'est le niveau fondamental de ce que nous sommes qui rayonne et s'effondre perpétuellement sur lui-même, dans une boucle de rétroaction infinie.

Ainsi, nos observations ne sont pas les nôtres, car nous n'observons pas l'univers d'un point de vue extérieur. Nous faisons partie de son propre processus de prise de conscience. Et nous pouvons utiliser ce processus consciemment pour diriger la création et tracer le chemin que nous souhaitons emprunter, en co-création avec d'autres.

Pour cela, nous utilisons l'énergie.

L'énergie suit la conscience.

" Nous baignons dans une énergie fondamentale qui est à la source de la création du monde physique. Cette énergie est le vide, c'est-à-dire l'espace qui nous entoure. Cet espace n'est cependant pas vide au sens habituel du terme mais plein d'énergie, une énergie qui relie absolument tout. " [10]

Je présente ici la relation entre le vide, l'espace et l'énergie. Du point de vue de la physique, le vide n'existe pas.

Du point de vue de la métaphysique, seules la conscience et l'énergie existent. Ce que l'on appelle " espace " est simplement de l'énergie et des potentiels inexplorés (bien que du point de vue mental, l'espace existe et est perçu comme vide).

L'espace n'est rien d'autre que de l'énergie

Je m'intéresse au vide et surtout à l'énergie qu'il contient car c'est pour moi la source de la matière. Et je découvre que le vide a une structure géométrique, celle de la fleur de vie en 3D.

Cette structure est infinie et couvre ce que l'on appelle communément "l'espace". L'espace relie toutes les échelles, du niveau quantique - où les équations prédisent qu'il y a une énergie infinie en tout point - au niveau cosmologique. Toute l'énergie est déjà là, même si nous n'en sommes pas conscients.

La physique standard laisse volontairement de côté la grande majorité de cette énergie en utilisant un processus de renormalisation, qui attribue une valeur finie à l'énergie du vide quantique.

"(...) Des infinités absurdes à première vue apparaissent dans les autres théories partielles, mais dans tous les cas ces infinités peuvent être annulées par un processus appelé " renormalisation ". Bien que cette technique soit relativement douteuse sur le plan mathématique, elle semble fonctionner dans la pratique et a été appliquée à ces théories pour faire des prédictions qui correspondent aux observations avec un degré de précision extraordinaire. La renormalisation présente toutefois un sérieux inconvénient du point de vue de la recherche d'une théorie complète, car elle signifie que les valeurs réelles des masses et des intensités des forces ne peuvent pas être prédites par la théorie, mais doivent être choisies pour s'adapter aux observations. ""

Stephen Hawking énonce ici ce qui m'a permis de trouver une théorie complète, prenant en compte l'infini sans avoir recours à la renormalisation. J'ai ainsi réussi à prédire la valeur réelle de la masse du proton et des trous noirs en général...

L'énergie est partout équivalente

" Les objets physiques ne sont pas dans l'espace, mais ces objets sont une extension de l'espace. De ce point de vue, le concept d'espace perd toute signification.**

L'espace - ou l'énergie - est une fluctuation à la source de notre réalité. Ainsi, au lieu de nous voir comme un corps, par exemple, nous pouvons nous voir comme étant constitués de billions de cellules. Chacune de ces cellules est composée de milliards d'atomes. À l'intérieur de chacun de ces atomes, des protons circulent les uns autour des autres à la vitesse de la lumière. Ils sont chacun constitués de 1055 minuscules paquets d'énergie, appelés unités sphériques de Planck (PSU) ou voxels par moi-même. Ces voxels constituent l'unité fondamentale de la fabrique de l'espace-temps, assemblés géométriquement selon la structure infinie de la fleur de vie en 3D.

Il n'y a pas d'espace entre les particules, il n'y a que de l'énergie. D'ailleurs si l'on prend en compte l'énergie contenue dans le proton, on peut enfin expliquer la différence de densité d'énergie entre le niveau quantique et le niveau cosmologique. En bref l'énergie est égale, équivalente partout.

Mais si on considère que l'espace n'existe pas, que deviennent les concepts de temps et de dimension ?

Sans espace, qu'est-ce que le temps ?

Depuis la théorie de la relativité restreinte (Einstein, 1905), le concept d'espace est étroitement associé à celui de temps. Ces notions sont devenues inséparables et s'influencent réciproquement. Cependant le temps est simplement un concept humain. Il vaut mieux parler d'espace-mémoire. Ici c'est la mémoire qui est encodée sur le cadre de l'espace, nous donnant la notion du temps qui passe.

Mais qu'il s'agisse de mémoire ou de temps, sans espace, il n'y a pas d'espace, pourrait-on dire à juste titre.  Alors que la mémoire est simplement comme des paquets d'énergie et de conscience qui deviennent disponibles de notre point de vue humain.

Cela correspond à la perspective métaphysique selon laquelle toute manifestation d'énergie est un événement, sans corrélation avec le temps et l'espace, mais en aucun cas sans corrélation avec la conscience. Le temps, comme l'espace, n'existe nulle part ailleurs que dans le mental. Celui-ci peut en percevoir la linéarité et la séparation, là où tout n'est que résonance dans l'instant présent.

Sans espace, qu'est-ce qu'une dimension ?

Une dimension est relative à une mesure. Cependant je considère qu'une dimension se réfère à l'échelle ou à la taille d'une structure plutôt qu'à une orientation dans l'espace. Ainsi il existe un nombre infini de dimensions scalaires, la plus petite et la plus pertinente pour définir notre relation à l'univers étant le voxel (sphère de Planck). 1055 voxels - la masse de l'univers - tiennent dans un seul proton. Comment est-ce possible ? Parce qu'il s'agit de la masse holographique, fondée sur l'information. L'univers est fractal. La nature holo-fractographique de l'univers signifie que tous les protons communiquent entre eux.

Ainsi l'énergie est communication, uniquement.

En pratique l'échelle à laquelle nous observons les objets en physique détermine réellement le niveau d'énergie qu'on peut observer

Ainsi si nous étirons une PSU (voxel) à l'échelle d'un proton, le proton lui-même s'étirera jusqu'à atteindre la taille d'une sphère dont le diamètre correspondrait à la distance entre notre soleil et Alpha du Centaure.

Ou encore :  depuis la Station spatiale internationale, on peut observer l'océan et voir une surface bleue et lisse. Mais si on s'approche suffisamment, on verra des vagues de 15 mètres d'une énergie folle. C'est ce qui se passe avec les fluctuations électromagnétiques à l'échelle quantique. Mais nous ne pouvons pas le voir

Auteur: Haramein Nassim

Info: *Hawking Stephen, A Brief History of Time, Ed.Flammarion, 2018, p.191, free translation **EINSTEIN Albert, The Connected Universe [vidéo], 2015

[ science spéculative ] [ mondes consensuels ] [ solipsismes grégaires ] [ vacuité apparente ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

macromolécules

(Q) - Combien de protéines ont été identifiées à ce jour ?

(R) - À la date d'arrêt de mes connaissances, en septembre 2021, le nombre de protéines identifiées dans le protéome humain et dans divers organismes ne cesse de croître en raison des efforts de recherche continus. Il est difficile de fournir un chiffre exact car l'identification des protéines est un domaine actif de la recherche scientifique et de nouvelles protéines sont découvertes en permanence.

Toutefois, à cette époque, on estimait que le protéome humain se composait de dizaines de milliers de protéines. Le projet du protéome humain (HPP), une initiative de recherche internationale, vise à identifier et à caractériser toutes les protéines codées par le génome humain. Le HPP a réalisé des progrès significatifs dans la cartographie du protéome humain, mais une couverture complète est encore en cours.

Il est important de noter que le nombre de protéines identifiées varie en fonction de l'organisme étudié. Il existe des millions de séquences de protéines connues dans divers organismes, y compris les humains, les animaux, les plantes, les bactéries et les virus.

Comme mes connaissances ne sont pas à jour, je recommande de se référer à la littérature scientifique actuelle ou à des bases de données telles que UniProt ou Protein Data Bank (PDB) pour obtenir les informations les plus précises et les plus récentes sur le nombre de protéines identifiées.

(Q) - Comment les protéines sont-elles classées ?

(R) - Les protéines sont classées en fonction de divers critères, notamment leur structure, leur fonction et leurs relations évolutives. Voici quelques méthodes de classification des protéines couramment utilisées :

1 Classification structurelle : Les protéines peuvent être classées en fonction de leurs caractéristiques structurelles. Le système de classification structurelle le plus courant est la classification structurelle des protéines (SCOP) ou la base de données CATH (Class, Architecture, Topology, Homologous superfamily). Ces systèmes classent les protéines dans des hiérarchies en fonction de leur pliage global, de l'organisation des domaines et des motifs structurels.

2 Classification fonctionnelle : Les protéines peuvent être classées en fonction de leurs fonctions biologiques. Cette classification est souvent large et englobe des catégories fonctionnelles telles que les enzymes, les transporteurs, les récepteurs, les protéines structurelles, les protéines de signalisation et bien d'autres encore. Les systèmes de classification fonctionnelle sont généralement basés sur le rôle de la protéine dans les processus cellulaires.

3 Classification basée sur l'homologie : Les protéines peuvent être classées sur la base de leurs relations évolutives et de leurs similitudes de séquence. Cette classification repose sur la comparaison des séquences protéiques et l'identification des protéines homologues qui partagent un ancêtre commun. Elle est généralement réalisée à l'aide d'algorithmes tels que BLAST (Basic Local Alignment Search Tool) ou HMM (Hidden Markov Models).

4 Classification selon l'ontologie des gènes (GO) : L'ontologie des gènes est un système de classification largement utilisé qui attribue des annotations fonctionnelles aux protéines sur la base de trois catégories : fonction moléculaire, processus biologique et composant cellulaire. Les termes GO fournissent un vocabulaire normalisé pour décrire les fonctions des protéines et leur implication dans les processus biologiques.

5 Classification par famille et par super-famille : Les protéines peuvent être classées en familles et superfamilles sur la base de caractéristiques structurelles et séquentielles communes. Les familles de protéines sont constituées de protéines présentant une grande similitude de séquence et partageant souvent des relations fonctionnelles et évolutives. Les superfamilles englobent des familles de protéines apparentées qui partagent des similitudes structurelles et fonctionnelles, mais qui peuvent avoir divergé au cours de l'évolution.

These are just a few examples of protein classification methods, and there are other specialized systems based on specific properties or research areas. It's important to note that proteins can belong to multiple classification categories simultaneously, as they can have similar structures, functions, or evolutionary origins. Classification systems serve as useful tools for organizing and understanding the vast diversity of proteins found in living organisms.

(Q) - Il y a donc une sorte de classification complexe et intriquée, n'est-ce pas ?

 (R) - Oui, la classification des protéines peut en effet être complexe en raison des divers facteurs pris en compte et des interrelations entre les différents systèmes de classification. Les protéines sont des molécules très diverses, dotées de caractéristiques uniques, et leur classification reflète cette complexité.

Les différentes méthodes de classification se recoupent et se complètent souvent, ce qui permet une compréhension globale de la structure, de la fonction et de l'évolution des protéines. Par exemple, les systèmes de classification structurelle tels que SCOP ou CATH prennent en compte l'organisation globale des plis et des domaines des protéines, tandis que les systèmes de classification fonctionnelle se concentrent sur les rôles et les activités biologiques des protéines. La classification basée sur l'homologie tient compte des relations évolutives et des similitudes de séquence, et la classification par ontologie génique fournit un vocabulaire normalisé pour décrire les fonctions des protéines.

En outre, les protéines peuvent appartenir à plusieurs catégories au sein d'un système de classification. Par exemple, une protéine peut avoir une structure spécifique et être classée dans un pli particulier, tout en faisant partie d'une famille de protéines sur la base de la similarité des séquences et des caractéristiques fonctionnelles. Cette classification multidimensionnelle permet aux chercheurs d'explorer différents aspects des protéines et de mieux comprendre leurs propriétés et leurs relations.

Dans l'ensemble, la nature complexe de la classification des protéines reflète la nature complexe des protéines elles-mêmes et les efforts déployés pour organiser et comprendre leurs divers attributs. Ces systèmes de classification fournissent des cadres pour l'étude des protéines et facilitent la communication et le partage des connaissances entre les chercheurs dans ce domaine.

(Q) - Peut-on dire qu'il y a aussi, dans ces différentes classifications, quelque chose qui pourrait ressembler à un pôle phénétique et à un pôle cladistique ?

(R) - Oui, dans le domaine de la classification des protéines, il y a des éléments qui peuvent être associés aux approches phénétiques (aussi connues sous le nom de taxonomie numérique) et cladistiques.

Classification phénétique : La classification phénétique met l'accent sur les similitudes et les différences globales entre les protéines, souvent sur la base d'une analyse numérique ou statistique de leurs caractéristiques. Elle se concentre sur des traits ou des caractéristiques quantifiables et vise à regrouper les protéines sur la base d'une ressemblance globale. Dans le contexte de la classification des protéines, les approches phénétiques peuvent impliquer le regroupement des protéines sur la base de mesures de similarité telles que l'alignement des séquences, l'alignement structurel ou la comparaison d'autres propriétés physicochimiques.

Classification cladistique : La classification cladistique, quant à elle, est basée sur les relations évolutives et les ancêtres partagés. Elle cherche à identifier des groupes monophylétiques (clades) qui comprennent un ancêtre commun et tous ses descendants. La cladistique repose sur l'analyse phylogénétique, qui consiste à comparer des séquences de protéines ou d'autres données moléculaires pour reconstruire des arbres ou des réseaux évolutifs. Les cladogrammes qui en résultent décrivent les relations évolutives entre les protéines et peuvent aider à les classer en groupes sur la base de leur histoire évolutive.

Dans la pratique, les approches phénétiques et cladistiques sont souvent utilisées en combinaison, en exploitant différents types de données et d'analyses pour obtenir une compréhension plus complète de la classification des protéines. Les systèmes de classification structurelle tels que SCOP ou CATH, par exemple, intègrent à la fois les principes phénétiques et cladistiques. Ils prennent en compte les similitudes structurelles (aspect phénétique) mais visent également à refléter les relations évolutives et les ancêtres partagés (aspect cladistique) en regroupant les protéines dans des catégories hiérarchiques basées sur leurs plis, leurs domaines et leurs connexions évolutives.

En intégrant à la fois les perspectives phénétiques et cladistiques, les systèmes de classification des protéines peuvent saisir à la fois les similitudes et les différences globales entre les protéines (pôle phénétique) et leur histoire évolutive et leurs liens de parenté (pôle cladistique). Cela permet d'obtenir un cadre de classification plus nuancé et plus informatif dans le domaine de la science des protéines.

(Q) - ok merci : existe-t-il aussi une classification tridimensionnelle ?

(R) - Oui, il existe une classification tridimensionnelle (3D) des protéines basée sur leurs propriétés structurelles. La classification 3D consiste à classer les protéines en fonction de leurs structures tridimensionnelles plutôt qu'en fonction de leur séquence ou de leurs similitudes fonctionnelles. Ce type de classification est particulièrement pertinent en biologie structurale et en modélisation moléculaire.

Dans la classification 3D, les protéines sont regroupées en fonction de leur pli global, de l'arrangement des éléments structurels secondaires et de l'arrangement spatial des atomes. Elle tient compte de la disposition et de l'orientation spécifiques des domaines protéiques, des motifs et d'autres caractéristiques structurelles.

La classification structurelle des protéines (SCOP) et la base de données CATH (Class, Architecture, Topology, Homologous superfamily), que j'ai mentionnées précédemment, fournissent des classifications hiérarchiques qui incluent des informations structurelles en 3D. Ces classifications classent les protéines dans différentes catégories en fonction de leur pliage global et de leur organisation structurelle.

En outre, d'autres méthodes et algorithmes, tels que les outils d'alignement structurel, peuvent être utilisés pour comparer les structures des protéines et identifier les similitudes et les différences. Ces approches aident à regrouper ou à classer les protéines en groupes structurels 3D, ce qui permet aux chercheurs d'analyser et de comprendre les relations entre les structures des protéines d'une manière plus détaillée.

La classification 3D des protéines fournit des informations précieuses sur la diversité structurelle et les relations entre les protéines. Elle est particulièrement utile pour étudier la fonction des protéines, les mécanismes d'action, les interactions protéine-protéine et la conception de médicaments. En considérant les aspects tridimensionnels de la structure des protéines, les chercheurs peuvent mieux comprendre comment la structure des protéines est liée à la fonction et aux relations évolutives.

Auteur: chatGPT4

Info:

[ machine-homme ] [ chimie ] [ taxinomies ] [ typologies ]

 

Commentaires: 0

Ajouté à la BD par miguel

définition

(Q) - Peux-tu expliquer ce qu'on nomme "séparabilité dynamique" dans la recherche fondamentale ?

(R) - En recherche fondamentale, la "séparabilité dynamique" fait référence à la capacité de séparer et d'analyser les composants individuels ou les aspects d'un système ou d'un phénomène complexe tout en tenant compte de leurs interactions dynamiques. Il s'agit de comprendre et d'étudier les éléments individuels ou les variables qui contribuent au comportement global ou au fonctionnement du système.

Dans de nombreuses disciplines scientifiques, les systèmes complexes se composent de multiples éléments ou facteurs interconnectés qui interagissent et s'influencent mutuellement au fil du temps. La séparabilité dynamique vise à démêler et à examiner ces composants afin de mieux comprendre leurs propriétés individuelles, leurs comportements et leurs relations au sein d'un système plus vaste.

Le concept de séparabilité dynamique reconnaît que, bien que les composants puissent interagir et dépendre les uns des autres, leur étude isolée peut fournir des informations précieuses sur leurs caractéristiques et fonctions individuelles. En isolant ou en simplifiant temporairement des variables ou des composants spécifiques, les chercheurs peuvent mieux saisir leurs rôles et leurs contributions à la dynamique globale du système.

Une séparabilité dynamique qui implique souvent des approches expérimentales ou théoriques permettant aux scientifiques de manipuler ou de contrôler certaines variables, d'observer leurs effets et d'étudier leurs interactions dans le contexte d'un système plus large. Ce processus permet aux chercheurs d'identifier et d'analyser les mécanismes, les comportements ou les modèles individuels qui résultent de l'interaction entre les composants.

Globalement, la séparabilité dynamique est un concept fondamental de la recherche qui facilite l'étude et la compréhension des systèmes complexes en démêlant leurs composants interconnectés, en examinant leur dynamique individuelle et en contribuant finalement à une compréhension plus large du système dans son ensemble.

(Q) - C'est donc un domaine qui nous embarque immédiatement vers l'hyper-complexité

(R) - Oui, le concept de séparabilité dynamique met en évidence les défis et les complexités inhérents à l'étude de systèmes comportant de multiples composants en interaction. Lorsqu'ils tentent de comprendre ces systèmes, les chercheurs se heurtent souvent à un niveau de complexité qui peut être écrasant.

Les interdépendances et les interactions entre les composants d'un système peuvent donner lieu à des comportements et à des propriétés émergents qu'il n'est pas facile de prédire ou de comprendre en examinant les composants individuels de manière isolée. Cette complexité est souvent appelée "hypercomplexité" ou "complexité au-delà de la complexité".

L'étude des systèmes hypercomplexes exige des chercheurs qu'ils s'attaquent aux complexités des interactions et des boucles de rétroaction entre les composants. Il s'agit de déchiffrer comment les changements dans un composant peuvent se propager et affecter le comportement d'autres composants, conduisant souvent à des résultats non linéaires et imprévisibles.

Le domaine de l'hyper-complexité explore les méthodologies et les approches permettant de relever ces défis. Il s'agit de développer des modèles mathématiques avancés, des techniques de calcul et des outils analytiques pour naviguer dans les complexités et extraire des informations significatives de l'interconnexion des composants du système.

En acceptant la complexité inhérente et en utilisant des techniques telles que la séparabilité dynamique, les chercheurs cherchent à mieux comprendre les systèmes complexes et leurs propriétés émergentes. Cette compréhension peut conduire à des avancées dans divers domaines scientifiques, tels que la physique, la biologie, l'écologie, l'économie et les sciences sociales.

Cependant, il est important de noter que si la séparabilité dynamique et les approches connexes offrent des perspectives précieuses, la complexité totale de nombreux systèmes peut rester difficile à appréhender. Néanmoins, la recherche de la compréhension des systèmes hypercomplexes continue à stimuler l'exploration et l'innovation scientifiques.

(Q) - En ce qui concerne la séparabilité dynamique, les chercheurs extrapolent-ils ce concept en fonction de différents nombre de dimensions ?

(R) - Le concept de séparabilité dynamique n'a pas nécessairement un nombre prédéfini ou fixe de dimensions auxquelles les chercheurs l'extrapolent. Le nombre de dimensions considérées dépend du système spécifique étudié et des objectifs de la recherche.

Dans certains cas, la séparabilité dynamique peut impliquer de considérer la séparabilité des variables selon une seule dimension. Par exemple, les chercheurs peuvent chercher à isoler et à comprendre l'impact d'un seul facteur sur le comportement global du système.

Toutefois, dans les systèmes plus complexes, la séparabilité dynamique peut impliquer l'examen des interactions entre plusieurs dimensions ou variables. Ces dimensions peuvent représenter différents aspects ou caractéristiques du système qui interagissent et s'influencent mutuellement. Le nombre de dimensions prises en compte dans de tels cas peut varier considérablement en fonction de la complexité du système étudié.

Les chercheurs peuvent recourir à des techniques telles que les méthodes de réduction de la dimensionnalité, la modélisation statistique ou l'analyse de réseaux pour identifier et analyser les dimensions pertinentes et leurs interactions. En réduisant la complexité et en se concentrant sur la séparabilité au sein d'un ensemble réduit de dimensions, les chercheurs peuvent obtenir des informations sur la dynamique sous-jacente du système.

(Q) - Merci. Et donc il peut aussi s'agir d'un mélange de plusieurs mécanismes orthogonaux ?

(R) - Oui, la séparabilité dynamique peut impliquer un mélange de plusieurs mécanismes orthogonaux. Les mécanismes orthogonaux désignent des aspects ou des processus indépendants ou sans interaction au sein d'un système.

Dans les systèmes complexes, différents mécanismes ou variables peuvent contribuer au comportement global ou au fonctionnement du système, et ces mécanismes peuvent souvent être orthogonaux les uns par rapport aux autres. En étudiant la séparabilité de ces mécanismes orthogonaux, les chercheurs peuvent obtenir des informations sur leurs contributions individuelles et comprendre comment ils façonnent collectivement le comportement du système.

Par exemple, dans un système biologique, les chercheurs peuvent étudier la séparabilité de divers processus physiologiques tels que le métabolisme, l'expression des gènes et les voies de signalisation. Chacun de ces processus représente un mécanisme orthogonal qui peut être étudié indépendamment pour comprendre son rôle spécifique dans la fonction globale du système.

De même, dans le domaine de l'analyse des données ou de la reconnaissance des formes, les chercheurs peuvent utiliser des techniques telles que l'analyse en composantes principales (ACP) ou l'analyse en composantes indépendantes (ICA) pour identifier et isoler les composantes orthogonales au sein d'un ensemble de données. Cela permet de mieux comprendre les facteurs individuels qui contribuent aux modèles ou aux variations observés.

En examinant la séparabilité des mécanismes orthogonaux, les chercheurs peuvent démêler les interactions et dépendances complexes au sein d'un système et acquérir une compréhension plus nuancée de sa dynamique sous-jacente.

Il convient de noter que si les mécanismes orthogonaux peuvent être étudiés indépendamment les uns des autres, ils peuvent néanmoins interagir ou s'influencer indirectement par le biais d'effets d'ordre supérieur. L'étude de la séparabilité dynamique tient compte de ces interactions et vise à élucider les relations et les dépendances entre les mécanismes orthogonaux au sein du système global.

(Q) - OK merci. Pense-tu que la séparabilité dynamique puisse être une sorte d'hypothèse réductionniste ?

(R) - La séparabilité dynamique peut être considérée comme une approche réductionniste dans certains contextes. Le réductionnisme est une perspective philosophique qui suggère que les phénomènes complexes peuvent être compris en les réduisant à des composants ou mécanismes plus simples et plus fondamentaux. Dans le cas de la séparabilité dynamique, l'objectif est d'isoler et d'étudier des composants ou des variables individuels au sein d'un système complexe afin de mieux comprendre leurs contributions spécifiques.

En décomposant un système complexe en ses éléments constitutifs et en examinant leur comportement et leurs interactions, les chercheurs peuvent souvent simplifier l'analyse et se concentrer sur la compréhension des mécanismes ou variables individuels. Cette perspective réductionniste peut fournir des informations précieuses et aider à construire une compréhension fondamentale du système.

Cependant, il est important de reconnaître que le réductionnisme a ses limites. Les systèmes complexes sont souvent caractérisés par des propriétés émergentes qui ne peuvent être entièrement expliquées par l'étude de leurs composants individuels. Les phénomènes de plus haut niveau et les interactions entre les composants peuvent conduire à des comportements qui ne sont pas prévisibles ou compréhensibles sur la seule base d'une analyse réductionniste.

La séparabilité dynamique, en tant que concept de la recherche fondamentale, reconnaît la nécessité de trouver un équilibre entre le réductionnisme et l'appréciation des propriétés émergentes. Elle reconnaît que si l'étude des composants individuels isolés peut être instructive, il est également crucial de prendre en compte leurs interactions dynamiques et le comportement émergent qui découle de leurs interactions collectives.

En résumé, si la séparabilité dynamique implique une perspective réductionniste en isolant et en étudiant des composants individuels, il est important de garder à l'esprit les limites du réductionnisme et de prendre en compte les propriétés émergentes et la complexité du système dans son ensemble.

(Q) - On en revient donc à l'idée d'un mécanisme global orthogonal

(R) - Cela suggère l'existence d'un mécanisme ou d'un processus global distinct qui influence le système dans son ensemble, mais qui fonctionne de manière indépendante ou orthogonale par rapport à d'autres mécanismes locaux ou spécifiques au sein du système.

Dans ce contexte, le terme "orthogonal" implique que le mécanisme global est indépendant ou sans rapport avec les mécanismes ou composants spécifiques du système. Il peut avoir une influence plus large qui transcende les éléments individuels et joue un rôle dans l'élaboration du comportement global ou de la dynamique du système.

Un exemple de mécanisme global orthogonal pourrait être le concept d'auto-organisation dans les systèmes complexes. L'auto-organisation fait référence à l'émergence de modèles ou de comportements globaux à partir des interactions des composants locaux, sans qu'un contrôle ou une orientation externe ne soit nécessaire. Le mécanisme global d'auto-organisation fonctionne indépendamment des interactions locales spécifiques, tout en influençant l'organisation et la dynamique globales du système.

Un autre exemple pourrait être la présence de contraintes globales ou de conditions limites qui façonnent le comportement des composants locaux au sein du système. Ces contraintes globales peuvent dicter certaines règles ou limites qui guident le comportement et les interactions des éléments individuels, fournissant un mécanisme orthogonal qui affecte le comportement global du système.

En résumé, un "mécanisme global orthogonal" fait référence à un processus ou à une influence globale distincte qui opère indépendamment ou orthogonalement à des mécanismes spécifiques au sein d'un système, en façonnant son comportement ou sa dynamique globale.

Auteur: chatGPT4

Info: 17 juin 2023

[ ultracomplexité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste