Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 286
Temps de recherche: 0.0477s

monde subatomique

Des physiciens ont découvert une force inattendue agissant sur les nanoparticules dans le vide

Ils ont découvert une nouvelle force inattendue qui agit sur les nanoparticules dans le vide, leur permettant d’être poussées par le " néant ".

Bien entendu, la physique quantique commence à préciser que ce " néant ", n’existe pas réellement : même le vide est rempli de petites fluctuations électromagnétiques. Cette nouvelle recherche est une preuve supplémentaire que nous commençons à peine à comprendre les forces étranges qui agissent au plus petit niveau du monde matériel, nous montrant comment le néant peut entraîner un mouvement latéral.

Alors comment est-ce que le vide peut porter une force ? L’une des premières choses que nous apprenons en physique classique est que dans un vide parfait (un lieu donc entièrement dépourvu de matière), la friction ne peut pas exister car l’espace vide ne peut pas exercer une force sur les objets qui le traversent.

Mais ces dernières années, les physiciens spécialisés dans le domaine quantique ont montré que le vide est en réalité rempli par de petites fluctuations électromagnétiques qui peuvent interférer avec l’activité des photons (les particules de lumière), et produire une force considérable sur les objets.

Il s’agit de l’effet Casimir, qui a été prédit en 1948 par le physicien néerlandais Hendrick Casimir*. À présent, la nouvelle étude a démontré que cet effet est encore plus puissant que ce que l’on imaginait auparavant. En effet, ce dernier ne peut être mesuré qu’à l’échelle quantique. Mais comme nous commençons à élaborer des technologies de plus en plus petites, il devient évident que ces effets quantiques pourraient fortement influencer certaines de nos technologies de manière globale.

Ces études sont importantes car nous développons des nanotechnologies qui travaillent avec des distances et des tailles si petites, que ce type de force peut dominer tout le reste ", explique le chercheur principal Alejandro Manjavacas de l’Université du Nouveau-Mexique, aux États-Unis. " Nous savons que ces forces de Casimir existent, alors ce que nous essayons de faire, c’est de trouver l’impact général qu’elles ont sur de très petites particules ", ajoute-t-il.

Afin de découvrir de quelle manière l’effet Casimir pourrait avoir un impact sur les nanoparticules, l’équipe a analysé ce qui s’est passé avec des nanoparticules tournant près d’une surface plane, dans le vide. Ils ont ensuite découvert que l’effet Casimir pouvait effectivement pousser ces nanoparticules latéralement, même si elles ne touchent pas la surface.

Pour imager la chose, imaginez une minuscule sphère tournant sur une surface qui est constamment bombardée de photons. Alors que les photons ralentissent la rotation de la sphère, ils provoquent également un déplacement de cette dernière dans une direction latérale :

(Photo : En rouge, la rotation de la sphère. En noir, la distance de la sphère par rapport à la surface plane et en bleu, l’effet de Casimir latéral.)

Dans le domaine de la physique classique, il faudrait un frottement entre la sphère et la surface pour atteindre ce type de mouvement latéral, mais le monde quantique ne suit pas les mêmes règles : la sphère peut être poussée sur une surface, même si elle ne la touche pas. " La nanoparticule subit une force latérale comme si elle était en contact avec la surface, bien qu’elle soit en réalité séparée de celle-ci ", explique Manjavacas. " C’est une réaction étrange, mais qui peut avoir un impact considérable pour les ingénieurs ", ajoute-t-il.

Cette nouvelle découverte pourrait bien jouer un rôle important dans la manière dont nous développerons des technologies de plus en plus miniaturisées à l’avenir, y compris des dispositifs tels que les ordinateurs quantiques.

Les chercheurs affirment qu’ils pourraient contrôler la direction de la force en changeant la distance entre la particule et la surface, ce qui pourrait s’avérer utile pour les ingénieurs et les scientifiques travaillant sur des méthodes de manipulation de la matière, à l’échelle nanoscopique. 

L’étude a déjà été publiée dans le Physical Review Letters et les résultats doivent à présent être reproduits et vérifiés par d’autres équipes. Mais le fait que nous ayons maintenant la preuve qu’une nouvelle force intrigante pourrait être utilisée pour diriger des nanoparticules dans le vide est très intéressant et met en lumière un tout nouvel élément du monde quantique et ses forces encore largement incomprises. 



*( L'effet Casimir, prédit en 1948 par le physicien néerlandais Hendrick Casimir, est un phénomène quantique où deux plaques métalliques parfaitement conductrices placées dans le vide s'attirent l'une vers l'autre avec une force inversement proportionnelle au carré de leur distance.12 Cet effet résulte de la pression exercée par les fluctuations quantiques du vide sur les plaques.

Explication de l'effet

Selon la théorie quantique des champs, le vide n'est pas complètement vide mais contient des fluctuations d'énergie sous forme de particules virtuelles qui apparaissent et disparaissent constamment. Entre deux plaques rapprochées, ces fluctuations sont restreintes par les conditions aux limites imposées par les plaques conductrices. Cela crée une différence de pression de radiation entre l'intérieur et l'extérieur des plaques, générant une force attractive entre elles.

Observation expérimentale

Bien que prédit théoriquement en 1948, l'effet Casimir n'a été observé expérimentalement pour la première fois qu'en 1997, confirmant ainsi l'existence de cette force quantique dans le vide. Cette découverte a renforcé la compréhension de la nature quantique du vide et de ses effets mesurables. (Source : anthropic) 

Auteur: Internet

Info: https://trustmyscience.com/ - Stéphanie Schmidt, 12 avril 2017

[ éther ] [ vacuité source ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier évolutif

L’explosion cambrienne déclenchée par plusieurs transgressions marines ?

Il y a 542 millions d'années apparaissaient, durant une période de quelques dizaines de millions d'années seulement, les grandes lignées d'animaux multicellulaires, comme les vertébrés et les arthropodes. Les lignées végétales et bactériennes se sont elles aussi diversifiées. 

Quel fut le déclencheur de cet événement planétaire ? 

La libération massive d'ions dans les océans, due à une érosion devenue intense, affirme une équipe américaine. Les organismes marins auraient utilisé ces polluants pour fabriquer des squelettes et des coquilles, une invention qui leur fut très profitable.

Les premières formes de vie seraient apparues sur Terre il y a 3,5 milliards d'années. Curieusement, ces êtres restèrent en grande majorité unicellulaires (vivant parfois en colonies) jusqu'à l'explosion cambrienne survenue il y a seulement 542 millions d'années. Cet événement vit alors naître de nombreux organismes pluricellulaires et des structures biominérales (par exemple des coquillages) en seulement quelques millions d'années, preuve d'une accélération soudaine de l'évolution (comme en témoignent par exemple les schistes de Burgess). Mais quel fut le facteur déclenchant ? Cette question taraude de nombreux scientifiques depuis longtemps car peu d'hypothèses convaincantes ont été apportées.

Il existe pour la même époque une autre grande curiosité, mais cette fois d'ordre géologique, clairement observable dans le Grand Canyon. L'analyse des couches stratigraphiques de cette région révèle l'histoire de la Terre sur près de 2 milliards d'années, ou presque, car il reste plusieurs discordances chronologiques. Ainsi, il n'y a pas de trace de roches datant de l'époque de l'explosion cambrienne. Des sédiments âgés de 525 millions d'années reposent directement sur des roches métamorphiques de 1.740 millions d'années et des couches sédimentaires inclinées âgées de 1.200 à 740 millions d'années. Des roches sédimentaires "jeunes" provenant de mers peu profondes recouvrent donc de "vieilles" roches sans aucune continuité logique. Mais une question se pose : a-t-on vraiment perdu des informations sur l'évolution de la Terre pendant 215 millions d'années à cause de cette inconformité géologique ?

Il semble bien que non. Selon Shanan Peters de l'université de Wisconsin-Madison, cette absence de données géologiques permettrait d'expliquer le mécanisme déclencheur de l'explosion cambrienne. Les résultats obtenus par l'équipe de ce chercheur sont présentés dans la revue Nature. L'inconformité résulterait d'une succession d'événements géologiques ayant causé la libération massive d'ions dans les océans. Les animaux se seraient adaptés en synthétisant des cristaux pour se débarrasser de ces éléments potentiellement néfastes, donnant ainsi naissance à la biominéralisation. Cette dernière changea alors radicalement le cours de l’évolution, tant les avantages qu'elle apporte sont nombreux.

(Illustration - Le Grand Canyon s'étend sur 450 km de long et possède une profondeur moyenne de 1.300 mètres. Les strates visibles permettent littéralement de lire l'histoire géologique du continent nord-américain - L’explosion cambrienne serait liée à un trop plein d'ions)

Ces explications font suite à l'analyse des propriétés géochimiques de plus de 20.000 échantillons de roches prélevés en Amérique du Nord.

Au début du Cambrien, les mers seraient montées et descendues à plusieurs reprises, en érodant à chaque fois les substrats rencontrés et mettant ainsi à nu d'anciennes roches provenant directement des profondeurs de la croûte terrestre. Cette succession de transgressions marines explique donc la disparition de plusieurs couches stratigraphiques. Exposées à l'air et à l'eau, les roches crustales auraient réagi chimiquement, libérant dans les océans de grandes quantités d'ions calcium, potassium, fer et silice. La chimie de l'eau fut alors profondément modifiée.

Un dernier retour des mers il y a 525 millions d'années provoqua le dépôt de sédiments plus jeunes. De nombreuses traces géologiques confirment ces événements - couches de glauconite et d'autres roches particulièrement riches en potassium, fer et silice.

(ici un schéma montre la brutale accélération de l'évolution au Cambrien avec apparition de beaucoup de genres d'espèces vivantes - diversité.

Des minerais pour évacuer le trop plein d’ions

Chaque organisme vivant maintient un équilibre ionique avec le milieu. L'arrivée massive d'ions dans l'environnement marin a dû profondément perturber cette balance. Plusieurs espèces se seraient mises à stocker leurs excédents en ions calcium, potassium, fer et silice sous forme de minerais afin de rétablir l'équilibre. Cette stratégie a deux avantages : les effets des particules chargées sont limités et elles ne sont pas rejetées dans le milieu où elles pourraient à nouveau jouer un rôle néfaste.  

Voilà pourquoi les trois biominéraux majoritairement présents au sein des organismes vivants seraient apparus lors de l'explosion cambrienne. Le phosphate de calcium est le constituant principal de nos os et dents. Le carbonate de calcium entre quant à lui dans la biosynthèse des coquilles d'invertébrés. Et le dioxyde de silicium est utilisé par les radiolaires, du zooplancton, pour synthétiser leur "squelette" siliceux.

Les avantages évolutifs procurés par ces minéraux sont conséquents puisqu'ils sont utilisés pour la conception de coquilles et d'épines (rôle de protection), de squelettes (rôle de soutien) et de griffes ou dents (rôle dans la prédation). Leur apparition permet de mieux comprendre le changement soudain du cours de l'évolution. 

Ce que certains qualifiaient de "trou" dans les enregistrements de l'histoire de la Terre se révèle en réalité être une source d'information d'une valeur inestimable. La "grande inconformité" (en anglais Great Unconformity) révèle ainsi un mécanisme probable du déclenchement de l'explosion radiative du Cambrien.

Auteur: Internet

Info: Quentin Mauguit, Futura-sciences.com, 24/04/2012

[ animal-minéral ] [ paléontologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

particules élémentaires

Les imprévisibles effets de l'interaction forte continuent de surprendre les physiciens

Après plus d'un siècle de collision de particules, les physiciens ont une assez bonne idée de ce qui se passe au cœur de l'atome. Les électrons bourdonnent dans des nuages probabilistes autour d'un noyau de protons et de neutrons, chacun contenant un trio de particules bizarres appelées quarks. La force qui maintient tous les quarks ensemble pour former le noyau est la force forte, la bien nommée. C'est cette interaction forte qui doit être surmontée pour diviser l'atome. Et cette puissante force lie les quarks ensemble si étroitement qu'aucun quark n'a jamais été repéré en solo.

Ces caractéristiques des quarks, dont beaucoup peuvent être expliquées dans un cours de sciences au lycée, ont été établies comme des faits expérimentaux. Et pourtant, d'un point de vue théorique, les physiciens ne peuvent pas vraiment les expliquer.

Il est vrai qu'il existe une théorie de la force forte, et c'est un joyau de la physique moderne. Elle se nomme chromodynamique quantique (QCD), " chromo " faisant référence à un aspect des quarks appelé poétiquement " couleur ". Entre autres choses, la QCD décrit comment la force forte s'intensifie lorsque les quarks se séparent et s'affaiblit lorsqu'ils se rassemblent, un peu comme une bande élastique. Cette propriété est exactement à l'opposé du comportement de forces plus familières comme le magnétisme, et sa découverte dans les années 1970 a valu des prix Nobel. D'un point de vue mathématique, les quarks ont été largement démystifiés.

Cependant, les mathématiques fonctionnent mieux lorsque la force entre les particules est relativement faible, ce qui laisse beaucoup à désirer d'un point de vue expérimental. Les prédictions de la CDQ furent confirmées de manière spectaculaire lors d'expériences menées dans des collisionneurs qui rapprochèrent suffisamment les quarks pour que la force forte entre eux se relâche. Mais lorsque les quarks sont libres d'être eux-mêmes, comme c'est le cas dans le noyau, ils s'éloignent les uns des autres et exercent des pressions sur leurs liens de confinement, et la force forte devient si puissante que les calculs stylo papier sont mis en échec. Dans ces conditions, les quarks forment des protons, des neutrons et une multitude d'autres particules à deux ou trois quarks, généralement appelées hadrons, mais personne ne peut calculer pourquoi cela se produit.

Pour comprendre les bizarreries dont les quarks sont capables, les physiciens ne peuvent que lancer des simulations numériques de force brute (qui ont fait des progrès remarquables ces dernières années) ou regarder les particules ricocher dans de bonnes expériences de collisionnement à l'ancienne. Ainsi, près de 60 ans après que les physiciens aient formalisé le quark, la particule continue de surprendre.

Quoi de neuf et digne de mention

Pas plus tard que l'été dernier, la collaboration du LHCb au Grand collisionneur de hadrons en Europe a repéré des signes de deux variétés jusqu'alors inédites de quarks, les tétraquarks, furtivement observés à travers les tunnels souterrains du collisionneur. Cataloguer la diversité des comportements des quarks aide les physiciens à affiner leurs modèles pour simplifier les complexités de la force forte en fournissant de nouveaux exemples de phénomènes que la théorie doit rendre compte.

Les tétraquarks ont été découverts pour la première fois au LHC à l'été 2014, après plus d'une décennie d'indices selon lesquels les quarks pourraient former ces quatuors, ainsi que des groupes de deux ou trois. Cette découverte a alimenté un débat qui s'est enflammé malgré une question apparemment ésotérique: faut-il considérer quatre quarks comme une "molécule" formée de deux hadrons doubles quarks faiblement attirés connus sous le nom de mésons, ou s'assemblent-ils en paires plus inhabituelles connues sous le nom de diquarks?

Au cours des années qui suivirent, les physiciens des particules accumulèrent des preuves de l'existence d'une petite ménagerie de tétraquarks exotiques et de " pentaquarks " à cinq quarks. Un groupe se détacha en 2021, un tétraquark " à double charme " qui vécut des milliers de fois plus longtemps que ses frères exotiques (à 12 sextillionièmes de seconde comme le Methuselah). Il a prouvé qu'une variété de quark — le quark charme — pouvait former des paires plus résistantes que la plupart des suppositions ou des calculs minutieux l'avaient prédit.

À peu près à la même époque, les chercheurs ont mis au point une nouvelle façon de tamiser le maelström qui suit une collision proton-proton à la recherche d'indices de rencontres fortuites entre des composites de quarks. Ces brefs rendez-vous permettent de déterminer si un couple donné de hadrons attire ou repousse, une prédiction hors de portée du QCD. En 2021, les physiciens ont utilisé cette technique de "femtoscopie" pour apprendre ce qui se passe lorsqu'un proton s'approche d'une paire de quarks " étranges ". Cette découverte pourrait améliorer les théories sur ce qui se passe à l'intérieur des étoiles à neutrons.

L'année dernière, les physiciens ont appris que même les quarks de l'atome d'hélium, très étudié, cachent des secrets. Les atomes d'hélium dénudés ont inauguré le domaine de la physique nucléaire en 1909, lorsque Ernest Rutherford (ou plutôt ses jeunes collaborateurs) les projeta sur une feuille d'or et découvrit le noyau. Aujourd'hui, les atomes d'hélium sont devenus la cible de projectiles encore plus petits. Au début de l'année 2023, une équipe a tiré un flux d'électrons sur des noyaux d'hélium (composés de deux protons et de deux neutrons) et a été déconcertée de constater que les cibles remplies de quarks gonflaient bien plus que ce que la CDQ leur avait laissé supposer.








Auteur: Internet

Info: https://www.quantamagazine.org/, Charlie Wood, 19 fev 2024

[ fermions ] [ bosons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

épigénétique

AP : Nous allons à présent entrer dans la réalité elle-même. Si j’ai bien compris votre démarche générale, vous partez d’une interrogation sur la physique quantique et sur les énigmes qu’elle suggère, notamment quant au sens à attribuer à la matière. Puis, vous appliquerez à l’esprit ce que vous avez découvert à l’aide de la physique quantique.

ER : Oui, on peut résumer ainsi. Je m’appuie au départ sur deux mystères. Le premier, c’est celui de la conscience ; le second est celui de la physique quantique. Quand vous grattez un peu, vous voyez rapidement que l’interprétation officielle du "quantique" est bancale, it doesn’t fit. Il y a quelque chose qui ne va pas, et c’est la raison pour laquelle il y a eu de nombreuses interprétations de la théorie. J’aperçois sur votre bureau Le réel voilé de Bernard d’Espagnat, qui propose une interprétation. L’Ecole de Copenhague en propose une autre, et ainsi de suite : il existe de nombreuses interprétations, plus ou moins sérieuses. Je crois en tout cas que toutes souffrent d’une béance quelque part. Aucune n’est pleinement satisfaisante. Aucune, d’ailleurs, n’emporte le consensus franc et massif de la communauté scientifique. On n’a, au mieux, qu’un consensus mou ; qui peut varier au fil du temps. Pendant longtemps ce fut l’interprétation de Bohr (dite l’Ecole de Copenhague) qui régna. Une interprétation due à Hugh Everett, dite "des mondes multiples", a rallié les suffrages des cosmologistes et des astrophysiciens. Il semble qu’aujourd’hui une théorie, dite "de la décohérence", gagne du terrain ; jusqu’à ce qu’elle soit à sont tour supplantée par une autre. Nous avons des phénomènes de mode. C’est l’indice qu’il y a un malaise persistant. Ce dernier est loin d’avoir disparu.

Mon point de départ a été de me dire : si la réalité est psychophysique, s’il y a une strate de la réalité qu’on peut appeler le psychisme, qui serait le ferment qui conduit dans certaines conditions à la conscience, la fonction biologique sensori-motrice me montre alors qu’il y a une interface, un dialogue possible entre ces deux strates (que je suppose – c’est mon hypothèse fondamentale – non réductibles l’une à l’autre). Elle me montre qu’entre la dimension matérielle et la dimension psychique, il y a comme un double-crochet qui permet ce dialogue. Réfléchissons à ce que cela implique : ça veut dire que dans la matière, il y a un petit crochet qui dépasse. Ce crochet lui permet de dialoguer avec une altérité qui, puisqu’elle est psychique, n’est plus matérielle. Alors, de deux choses l’une : soit la physique n’a pas trouvé cette interface, elle nous ne pourrons pas aller plus loin tant que ce sera le cas. Soit elle l’a trouvée. Dans ce cas, cette interface se distingue par ses propriétés singulières. Singulières car… pas tout-à-fait matérielles ! Ces propriétés seront qualitativement différentes des propriétés usuelles de la matière, qui sont purement physico-physiques. A mon humble avis, nous sommes dans ce deuxième cas depuis que la physique est devenue quantique. Et c’est justement cela qui pose problème, parce que les physiciens n’ont pas compris. Ils sont prisonniers de leur paradigme matérialiste. Ils ne reconnaissent que le physico-physique, alors qu’il existe aussi le psycho-physique. S’ils ont trouvé cette interface, ils sont comme la poule qui a trouvé un couteau, ils sont face à de l’ininterprétable. Face à de l’inintelligible. Faute du référentiel conceptuel adéquat. Le référentiel matérialiste, trop étroit, crée des problèmes conceptuels quand on veut l’appliquer au psycho-physique. C’est inévitable.

Ensuite, il me fallait donner un contenu au psychisme et le caractériser dans sa singularité. C’est pourquoi je l’ai décrit comme "endo-causal". Contrairement au déterminisme, qui est objectif (et qui est exo-causal dans ma terminologie), l’endo-causalité est de l’ordre de la subjectivité. C’est un contenu privé, comme la privacy of mind des anglo-saxons. Elle est inaccessible à un observateur extérieur.

AP : Inaccessible à une description à la troisième personne.

ER : Exactement. Le contenu privé s’éprouve, il est exclusif à la première personne, au sujet lui-même. La seule traduction phénoménologique de l’endo-causalité – qui est une capacité de choix – est une rupture du déterminisme ; ça s’appelle aussi l’aléatoire. Je cherchais donc l’interface dans les phénomènes inintelligibles (ininterprétables) pour la physique quantique, prisonnière qu’elle est de son paradigme matérialiste. Et, simultanément, là où il y a de l’aléatoire vrai (non lié à notre ingorance). Cela m’amène à la réduction du paquet d’onde ainsi qu’aux sauts et transitions quantiques.

AP : D’accord ; pour être très clair, je me permets de vous citer à nouveau : il faut, dites-vous, "allouer à toute particule élémentaire un certain degré de psychisme." Cet énoncé est très fort, mais assez étonnant : ce que vous dites, en somme, c’est qu’une particule ne contient pas que de la matière, qu’elle contient une certaine forme de psychisme, de subjectivité, et l’ensemble de la matière et de la subjectivité, vous appelez cela "psychomatière". Cela permettrait d’expliquer le comportement des particules à l’aide d’une causalité de type subjectif, d’une "endo-causalité" immanente à chaque particule.

ER : Oui, et je comprend que cela puisse surprendre, voire choquer. Je prends la comparaison (ou la métaphore) de l’œuf dur sans sa coquille : vous ne voyez de lui que l’albumine coagulée. Mais à l’intérieur, il y a autre chose. Il a le jaune d’œuf ; mais il est indécelable. De même le ’psi’ est indécelable. Pourquoi ? Parce qu’il est latent la plupart du temps (dans l’état matière). Etre indécelable ne signifie pas être inexistant : prenez l’exemple du neutrino. Pas moins de 66 milliards d’entre eux traversent chaque seconde chaque cm² de notre peau. Heureusement pour nous, comme ils n’interagissent pas, ils sont sans effet – ils sont donc indécelables ! De la même manière, le ’psi’ en général n’interfère pas : tout se passe comme s’il n’existait pas.



 

Auteur: Ransford Emmanuel

Info: Sur actu-philosophia, interview de Thibaut Gress, 7.1 2010

[ résonance ] [ determinisme vs indeterminisme ] [ panpsychisme ] [ dualité sur-atomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

cosmologie

Vivons-nous dans un trou noir ?

Notre univers pourrait bien se trouver dans un vaste trou noir.
Remontons le temps : avant la venue de l’Homme, avant l’apparition de la Terre, avant la formation du soleil, avant la naissance des galaxies, avant toute lumière… il y a eu le Big Bang. C’était il y a 13,8 milliards d’années.

Mais avant cela ? De nombreux physiciens avancent qu’il n’y avait rien avant cela. Le temps a commencé à s’écouler, insistent-ils, au moment du Big Bang et méditer sur tout ce qui aurait pu se produire avant ne relève pas de la science. Nous ne comprendrons jamais à quoi pouvait ressembler le pré-Big Bang, ou bien ce dont il était constitué, ou encore qui a provoqué son explosion ayant mené à la formation de notre univers. Toutes ces notions vont au-delà de la compréhension dont l’Homme est capable.

Pourtant, quelques scientifiques non-conventionnels ne sont pas d’accord. D’après la théorie de ces physiciens, un peu avant le Big Bang, toute la masse et l’énergie de l’univers naissant étaient compactées dans une boule incroyablement dense – mais pas infinie. Appelons-la la graine d’un nouvel univers.

On imagine cette graine d’une taille incroyablement petite, peut-être des trillions de fois plus petite que n’importe quelle particule observable par l’Homme aujourd’hui. Et pourtant, il s’agit d’une particule capable de déclencher la particule de toutes les autres particules, sans oublier les galaxies, le système solaire, les planètes et les êtres vivants.

S’il n’y avait qu’une chose à appeler la particule de Dieu, cela y ressemble bien.

Mais comment une telle graine peut-elle se former ? Il y a bien une idée qui circule depuis quelques années, notamment soutenue par Nikodem Poplawski de l’Université de New Haven, selon laquelle la graine de notre univers a été forgée dans le four ultime, probablement l’environnement le plus extrême qui soit : dans un trou noir.

LA MULTIPLICITÉ DU MULTIVERS
Avant d’aller plus loin, il est essentiel d’avoir en tête qu’au cours des vingt dernières années, de nombreux physiciens théoriciens en sont venus à croire que notre univers n’est pas le seul. Au lieu de cela, nous faisons plus probablement partie du multivers, un immense tableau constitué d’univers distincts, chacun centré sur son étoile brillant dans le ciel de la nuit.

Comment, ou même si, un univers est lié à un autre fait l’objet de nombreuses discussions, toutes extrêmement spéculatives et impossibles à prouver à l’heure actuelle. Selon une théorie convaincante, la graine de l’univers ressemble à celle d’une plante : il s’agit d’un fragment de matériau essentiel, très compressé, caché dans une enveloppe protectrice.

C’est précisément ce qui se crée au sein d’un trou noir. Les trous noirs sont les restes d’étoiles géantes. Lorsqu’une telle étoile arrive à cours d’énergie, son noyau se détruit à l’intérieur et la gravité se charge de transformer le tout en un ensemble incroyablement puissant. Les températures atteignent 100 milliards de degrés ; les atomes sont écrasés ; les électrons sont broyés ; et tous ces éléments sont ballottés encore et encore.

À ce stade, l’étoile est devenue un trou noir dont l’attraction gravitationnelle est telle que pas même un faisceau de lumière ne peut s’en échapper. La frontière entre l’intérieur et l’extérieur d’un trou noir est nommée" l’horizon des événements". D’énormes trous noirs, certains des millions de fois plus massifs que le soleil, ont été découverts au centre de presque toutes les galaxies, dont notre propre Voie Lactée.

DES QUESTIONS À L'INFINI
Si vous vous basez sur les théories d’Einstein pour déterminer ce qui se produit au fond d’un trou noir, vos calculs vous mèneront à un endroit infiniment dense et petit : un concept hypothétique appelé singularité. Mais les infinités n’ont pas vraiment leur place dans la nature et le fossé se creuse avec les théories d’Einstein, qui permettent une incroyablement bonne compréhension du cosmos mais ont tendance à s’effondrer dès lors que d’énormes forces sont impliquées, comme celles en action dans un trou noir ou encore celles qui ont rythmé la naissance de notre univers.

Des physiciens comme le Dr. Poplawski avancent que la matière d’un trou noir atteint un point à partir duquel elle ne peut plus être écrasée. Aussi petite puisse-t-elle être, cette "graine" pèse le poids d’un milliard de soleils et est bien réelle, contrairement à une singularité.

Selon le Dr. Poplawski, le processus de compaction cesse car les trous noirs sont en rotation, ce qui dote la graine compactée d’une bonne torsion. Elle n’est alors pas seulement petite et lourde ; elle devient tordue et compressée, comme ces jouets montés sur ressorts, prêts à jaillir de leur boîte.

Jouets qui peuvent rapidement se rétracter lorsqu’on les y force. Appelez ça le Big Bang – ou le "big bounce" (le grand rebond) comme le Dr. Poplawski aime à le dire.

En d’autres termes, il est possible que le trou noir soit comme un conduit – une "porte à sens unique", explique le Dr. Poplawski – entre deux univers. Cela signifie que si vous tombez dans le trou noir au centre de la Voie Lactée, on peut imaginer que vous (ou du moins les particules complètement éclatées dont vous étiez auparavant composés) finirez dans un autre univers. Celui-ci ne se situe pas dans le nôtre, comme l’ajoute le scientifique : le trou fait tout bonnement office de lien, comme une racine partagée qui connecterait entre eux deux peupliers.

Qu’en est-il de nous autres, ici, dans notre propre univers ? Nous pourrions alors bien être le produit d’un autre univers, plus ancien. Appelons-le notre univers "mère". La graine que cette mère a forgée au sein d’un trou noir aurait peut-être connu son grand rebond il y a 13,8 milliards d’années. Et même si notre univers s’est étendu rapidement depuis, il se pourrait bien que nous soyons toujours cachés derrière l’horizon des événements d’un trou noir.

Auteur: Internet

Info: De Michael Finkel sur https://www.nationalgeographic.fr, avril 2019

[ spéculation ]

 

Commentaires: 0

Ajouté à la BD par miguel

recherche fondamentale

Personne ne prenait au sérieux les expériences quantiques de John F. Clauser. 50 ans plus tard, il reçoit un prix Nobel.

Le 4 octobre, John F. Clauser, 80 ans, s'est réveillé dans sa maison californienne pour apprendre qu'il avait reçu le prix Nobel de physique. Il le recevra lors d'une cérémonie à Stockholm, en Suède, le 10 décembre, avec Anton Zeilinger et Alain Aspect, pour leurs travaux sur l'intrication quantique. 

Un moment de fête pour Clauser, dont les expériences révolutionnaires sur les particules de lumière ont contribué à prouver des éléments clés de la mécanique quantique.

"Tout le monde veut gagner un prix Nobel", a déclaré M. Clauser. "Je suis très heureux."

Mais son parcours jusqu'à l'obtention du plus grand prix scientifique n'a pas toujours été simple. 

Dans les années 1960, Clauser était étudiant en physique à l'université Columbia. Par hasard, il découvrit à la bibliothèque de l'université un article qui allait façonner sa carrière et l'amener à poursuivre les travaux expérimentaux qui lui ont valu le prix Nobel.

L'article, écrit par le physicien irlandais John Stewart Bell et publié dans la revue Physics en 1964, se demandait si la mécanique quantique donnait ou non une description complète de la réalité. Le phénomène d'intrication quantique constituant le cœur de la question.

L'intrication quantique se produit lorsque deux ou plusieurs particules sont liées d'une certaine manière, et quelle que soit la distance qui les sépare dans l'espace, leurs états restent liés. 

Par exemple, imaginez une particule A qui s'envole dans une direction et une particule B dans l'autre. Si les deux particules sont intriquées - ce qui signifie qu'elles partagent un état quantique commun - une mesure de la particule A déterminera immédiatement le résultat de la mesure de la particule B. Peu importe que les particules soient distantes de quelques mètres ou de plusieurs années-lumière - leur liaison à longue distance est instantanée. 

Cette possibilité avait été rejetée par Albert Einstein et ses collègues dans les années 1930. Au lieu de cela, ils soutenaient qu'il existe un "élément de réalité" qui n'est pas pris en compte par la mécanique quantique. 

Dans son article de 1964, Bell soutenait qu'il était possible de tester expérimentalement si la mécanique quantique échouait à décrire de tels éléments de la réalité. Il appelait ces éléments non pris en compte des "variables cachées".

Bell pensait en particulier à des variables locales. Ce qui signifie qu'elles n'affectent la configuration physique que dans leur voisinage immédiat. Comme l'explique Clauser, "si vous placez des éléments localement dans une boîte et effectuez une mesure dans une autre boîte très éloignée, les choix de paramètres expérimentaux effectués dans une boîte ne peuvent pas affecter les résultats expérimentaux dans l'autre boîte, et vice versa."

Clauser décida de tester la proposition de Bell. Mais lorsqu'il voulut faire l'expérience, son superviseur l'exhorta à reconsidérer sa décision. 

"Le plus difficile au départ a été d'obtenir l'opportunité", se souvient Clauser. "Tout le monde me disait que ce n'était pas possible, donc à quoi bon !".

Le laboratoire quantique 

En 1972, Clauser a finalement eu l'occasion de tester la proposition de Bell alors qu'il occupait un poste postdoctoral au Lawrence Berkeley National Laboratory en Californie. Il s'associa à un étudiant en doctorat, Stuart Freedman. Ensemble, ils mirent sur pied un laboratoire rempli d'équipement optique. 

"Personne n'avait fait cela auparavant", a déclaré Clauser. "Nous n'avions pas d'argent pour faire quoi que ce soit. Nous avons dû tout construire à partir de rien. Je me suis sali les mains, ai été immergé dans l'huile, il y avait beaucoup de fils et j'ai construit beaucoup d'électronique."

Clauser et Freedman ont réussi à créer des photons intriqués en manipulant des atomes de calcium. Les particules de lumière, ou photons, s'envolaient dans des filtres polarisants que Clauser et Freedman pouvaient faire tourner les uns par rapport aux autres. 

La mécanique quantique prédit qu'une plus grande quantité de photons passerait simultanément les filtres que si la polarisation des photons était déterminée par des variables locales et cachées.

L'expérience de Clauser et Freedman mis en évidence que les prédictions de la mécanique quantique étaient correctes. "Nous considérons ces résultats comme des preuves solides contre les théories de variables cachées locales", ont-ils écrit en 1972 dans Physical Review Letters.

Des débuts difficiles

Les résultats de Clauser et Freedman furent confirmés par d'autres expériences menées par Alain Aspect et Anton Zeilinger. 

"Mes travaux ont eu lieu dans les années 70, ceux d'Aspect dans les années 80 et ceux de Zeilinger dans les années 90", a déclaré Clauser. "Nous avons travaillé de manière séquentielle pour améliorer le domaine".

Mais l'impact de l'expérience révolutionnaire de Clauser n'a pas été reconnu immédiatement.

"Les choses étaient difficiles", se souvient Clauser. "Tout le monde disait : "Belle expérience, mais vous devriez peut-être sortir et mesurer des chiffres et arrêter de perdre du temps et de l'argent et commencer à faire de la vraie physique"."

Il a fallu attendre 50 ans pour que Clauser reçoive le prix Nobel pour son travail expérimental. Son collègue, Stuart Freedman, est décédé en 2012. 

"Mes associés sont morts depuis longtemps. Mon seul titre de gloire est d'avoir vécu assez longtemps". a déclaré Clauser

Lorsqu'on lui a demandé s'il avait des conseils à donner aux jeunes chercheurs compte tenu de sa propre difficulté initiale, Clauser a répondu : "Si vous prouvez quelque chose que tout le monde pense vrai, et que vous êtes le premier à le faire, vous ne serez probablement pas reconnu avant 50 ans. C'est la mauvaise nouvelle. La bonne, c'est que j'ai eu beaucoup de plaisir à faire ce travail." 


Auteur: Internet

Info: https://www.livescience.com, Jonas Enande, 9 déc 2022

[ agrément moteur ] [ délectation ] [ observateur dualisant ]

 

Commentaires: 0

Ajouté à la BD par miguel

horizon anthropique

Qu'est-ce que le paradoxe cérébral de Boltzmann ? Le cerveau est-il l'univers ultime ?

Avez-vous déjà contemplé la nature de votre existence et vous êtes-vous demandé si vous étiez vraiment une personne ayant vécu une vie, ou simplement un cerveau récemment formé avec des souvenirs artificiels, développant momentanément une réalité qui n'est pas réelle ? Cette question, connue sous le nom de paradoxe du cerveau de Boltzmann, peut sembler absurde, mais elle trouble les cosmologistes depuis des générations.

Le paradoxe tire son nom de Ludwig Boltzmann, un éminent physicien du XIXe siècle qui a apporté des contributions significatives au domaine de la thermodynamique. À son époque, les scientifiques étaient engagés dans des débats passionnés sur la question de savoir si l'univers a une durée infinie ou finie. Boltzmann a révolutionné notre compréhension de l'entropie, qui mesure le désordre au sein d'un système. Par exemple, un verre est considéré comme ordonné, alors qu'un verre brisé est dans un état de désordre. La deuxième loi de la thermodynamique affirme que les systèmes fermés tendent à devenir plus désordonnés avec le temps ; un verre brisé ne se reconstitue pas spontanément dans son état originel.

Boltzmann a introduit une nouvelle interprétation de l'entropie en appliquant un raisonnement statistique pour expliquer le comportement des systèmes. Il a mis en évidence que les systèmes évoluent vers un état plus désordonné parce qu'une telle transformation est la plus probable. Cependant, si la direction opposée n'est pas impossible, elle est incroyablement improbable. Par exemple, nous ne verrons jamais des œufs brouillés redevenir des œufs crus. Néanmoins, dans un univers infiniment vieux, où le temps s'étend sans limites, des événements hautement improbables, tels que la formation spontanée de structures complexes à partir de combinaisons aléatoires de particules, finiraient par se produire.

Qu'est-ce que cela signifie dans le contexte d'un univers hypothétique qui existe depuis un temps infini ? Imaginez une étendue apparemment banale de quasi-néant, où environ huit octillions* d'atomes convergent fortuitement pour créer le "Le Penseur" de Rodin, sauf qu'elle est cette fois entièrement constituée de pâtes alimentaires. Cependant, cette sculpture de pâtes se dissout rapidement en ses particules constitutives. Ailleurs dans cette vaste toile cosmique, les particules s'alignent spontanément pour former une structure ressemblant à un cerveau. Ce cerveau est rempli de faux souvenirs, simulant une vie entière jusqu'au moment présent où il perçoit une vidéo véhiculant ces mêmes mots. Pourtant, aussi rapidement qu'il est apparu, le cerveau se décompose et se dissipe. Enfin, en raison de fluctuations aléatoires, toutes les particules de l'univers se concentrent en un seul point, déclenchant l'émergence spontanée d'un univers entièrement nouveau.

De ces deux derniers scénarios, lequel est le plus probable ? Étonnamment, la formation du cerveau est nettement plus probable que la création spontanée d'un univers entier. Malgré sa complexité, le cerveau est minuscule par rapport à l'immensité d'un univers entier. Par conséquent, si l'on suit ce raisonnement, il apparaît très probable que tout ce que nous croyons exister n'est rien d'autre qu'une illusion fugace, destinée à disparaître rapidement.

Bien que Boltzmann lui-même n'ait pas approfondi ces conclusions, les cosmologistes qui se sont inspirés de ses travaux ont introduit le concept des cerveaux de Boltzmann. Il est intéressant de noter que ces cosmologistes, comme la majorité des individus, étaient raisonnablement certains de ne pas être eux-mêmes des cerveaux éphémères. D'où le paradoxe suivant : comment pouvaient-ils avoir raison dans leur hypothèse tout en postulant l'existence d'un univers éternel ?

Le paradoxe a trouvé sa résolution dans un concept communément accepté aujourd'hui : notre univers n'existe pas de manière infinie mais a eu un commencement connu sous le nom de Big Bang. On pourrait donc penser que le paradoxe a été résolu une fois pour toutes. Or, ce n'est peut-être pas le cas. Au cours du siècle dernier, les scientifiques ont découvert des preuves substantielles à l'appui de la théorie du Big Bang, mais la question de savoir ce qui l'a précédé et causé reste sans réponse. Que l'univers soit apparu dans un état extrêmement ordonné et improbable ? Notre univers pourrait-il faire partie d'un cycle sans fin de création et d'effondrement, ou sommes-nous simplement l'un des innombrables univers en expansion dans un vaste multivers ?

Dans ce contexte intrigant, le paradoxe de Boltzmann a suscité un regain d'intérêt chez les cosmologistes contemporains. Certains affirment que les modèles dominants de l'univers suggèrent encore que les cerveaux de Boltzmann ont plus de chances d'exister que les cerveaux humains, ce qui soulève des inquiétudes quant à la validité de ces modèles. Cependant, d'autres réfutent ces arguments en proposant de légères modifications des modèles cosmologiques qui élimineraient le problème ou en affirmant que les cerveaux de Boltzmann ne peuvent pas se manifester physiquement.

Dans le but d'explorer les probabilités impliquées, certains chercheurs ont même tenté de calculer la probabilité qu'un cerveau émerge spontanément à partir de fluctuations quantiques aléatoires et survive suffisamment longtemps pour générer une seule pensée. Le résultat de leurs calculs a donné un nombre étonnamment grand, avec un dénominateur dépassant 10 élevé à une puissance environ un septillion de fois plus grande que le nombre d'étoiles dans l'univers.

Malgré sa nature apparemment absurde, le paradoxe du cerveau de Boltzmann est utile. Il place la barre très haut pour les modèles cosmologiques. Si l'état actuel de l'univers semble excessivement improbable par rapport à des nombres d'une telle ampleur, cela indique que quelque chose ne va pas dans le modèle. Ce paradoxe nous pousse à remettre en question notre compréhension de la réalité et nous incite à rechercher une représentation plus complète et plus précise de l'univers.

Alors que nous continuons à explorer les mystères du cosmos, la nature énigmatique de notre existence reste une source de fascination et un catalyseur pour la poursuite de la recherche scientifique. Dans notre quête de réponses, nous pourrons peut-être découvrir des vérités profondes qui nous éclaireront sur la nature de notre réalité et sur la tapisserie complexe de l'univers.

Auteur: Sourav Pan

Info: *un octillion = 10 puissance 48)

[ humain miroir ] [ monde consensuel ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

La photosynthèse des plantes utilise un tour de passe-passe quantique

Des chercheurs ont observé des similitudes étonnantes entre la photosynthèse des plantes vertes et le fameux "cinquième état de la matière" en mettant le doigt sur un curieux phénomène; ils ont trouvé des liens entre le processus de photosynthèse, qui permet aux végétaux d’exploiter la lumière du soleil, et les condensats de Bose-Einstein, des matériaux dans un état très particulier qui fait intervenir la physique quantique.

"Pour autant que je sache, ces deux disciplines n’ont jamais été connectées auparavant, donc ce résultat nous a semblé très intrigant et excitant", explique David Mazziotti, co-auteur de l’étude.

Son laboratoire est spécialisé dans la modélisation des interactions complexes de la matière. Ces derniers temps, son équipe s’est intéressée aux mécanismes de la photosynthèse à l’échelle des atomes et des molécules. Plus précisément, les chercheurs se sont penchés sur le siège de cette réaction : les chloroplastes, les petites structures chlorophylliennes qui donnent leur couleur aux plantes vertes.

Lorsqu’un photon vient frapper une structure bien précise à la surface de ces chloroplastes (le photosystème II, ou PSII), cela a pour effet d’arracher un électron — une particule élémentaire chargée négativement. Ce dernier devient alors l’acteur principal d’une réaction en chaîne complexe. Le mécanisme est déjà relativement bien connu. Il a été étudié en profondeur par des tas de spécialistes, et c’est aujourd’hui l’une des pierres angulaires de la biologie végétale.

Mais le départ de cet électron laisse aussi ce que les physiciens appellent un trou. Il ne s’agit pas d’une particule à proprement parler. Mais cette structure chargée positivement est aussi capable se déplacer au sein d’un système. Elle peut donc se comporter comme un vecteur d’énergie.

Ensemble, l’électron éjecté et le trou qu’il laisse derrière lui forment un couple dynamique appelé exciton. Et si le rôle du premier est bien documenté, le comportement du second dans le cadre de la photosynthèse n’a quasiment pas été étudié.

C’est quoi, un condensat de Bose-Einstein ?

Pour combler cette lacune, Mazziotti et ses collègues ont réalisé des modélisations informatiques du phénomène. Et en observant les allées et venues de ces excitons, ces spécialistes des interactions de la matière ont rapidement remarqué quelques motifs qui leur ont semblé familiers ; ils rappelaient fortement un concept proposé par Einstein en 1925.

Imaginez un gaz où des particules se déplacent aléatoirement les uns par rapport aux autres, animées par leur énergie interne. En le refroidissant (ce qui revient à retirer de l’énergie au système), on force les atomes à s’agglutiner ; le gaz passe à l’état liquide, puis solide dans certains cas.

Lorsqu’on le refroidit encore davantage pour s’approcher du zéro absolu, les atomes arrivent dans un état où ils n’ont quasiment plus d’énergie à disposition ; ils sont presque entièrement figés dans un état ultra-condensé, séparés par une distance si minuscule que la physique newtonienne traditionnelle ne suffit plus à l’expliquer.

Sans rentrer dans le détail, dans ces conditions, les atomes (ou plus précisément les bosons) qui composent certains matériaux deviennent quasiment indiscernables. Au niveau quantique, ils forment un système unique, une sorte de super-particule où chaque constituant est exactement dans le même état (voir la notion de dualité onde-corpuscule pour plus de détails). On appelle cela un condensat de Bose-Einstein.

Ces objets ne suivent pas les règles de la physique traditionnelle. Ils affichent des propriétés très particulières qui n’existent pas dans les gaz, les liquides, les solides ou le plasma. Pour cette raison, ces condensats sont parfois considérés comme les représentants du "cinquième état de la matière". (après le solide, le liquide, le gaz et le plasma)

De la biologie végétale à la physique quantique

La plus remarquable de ces propriétés, c’est que les condensats de Bose-Einstein sont de vraies autoroutes à particules. D’après la physicienne américaine Louise Lerner, l’énergie s’y déplace librement, sans la moindre résistance. Même si les mécanismes physiques sous-jacents sont différents, on se retrouve dans une situation comparable à ce que l’on trouve dans les supraconducteurs.

Or, d’après les modèles informatiques créés par Mazziotti et ses collègues, les excitons générés par la photosynthèse peuvent parfois se lier comme dans les condensats de Bose-Einstein. C’est une observation particulièrement surprenante, car jusqu’à présent, cela n’a été documenté qu’à des températures proches du zéro absolu. Selon Louise Lerner, c’est aussi étonnant que de voir "des glaçons se former spontanément dans une tasse de café chaud".

Le phénomène n’est pas aussi marqué chez les plantes que dans les vrais condensats de Bose-Einstein. Mais d’après les auteurs de l’étude, cela aurait quand même pour effet de doubler l’efficacité des transferts énergétiques indispensables à la photosynthèse.

De la recherche fondamentale aux applications pratiques

Les implications de cette découverte ne sont pas encore parfaitement claires. Mais il y en a une qui met déjà l’eau à la bouche des chercheurs : ces travaux pourraient enfin permettre d’utiliser les formidables propriétés des condensats de Bose-Einstein dans des applications concrètes.

En effet, même si ces matériaux sont très intéressants sur le papier, le fait de devoir atteindre une température proche du zéro absolu limite grandement leur intérêt pratique. Aujourd’hui, ils sont utilisés exclusivement en recherche fondamentale. Mais puisqu’un phénomène comparable a désormais été modélisé à température ambiante, les chercheurs vont pouvoir essayer d’utiliser ces mécanismes pour concevoir de nouveaux matériaux aux propriétés très intéressantes.

"Un condensat d’excitons parfait est très sensible et nécessite des conditions très spécifiques", précise Mazziotti. "Mais pour les applications réalistes, c’est très excitant de voir que ce phénomène qui augmente l’efficacité du système peut survenir à température ambiante", se réjouit-il.

A long terme, cette découverte va sans doute contribuer à la recherche fondamentale, en biologie végétale mais aussi en physique quantique pure. Cela pourrait aussi faire émerger une nouvelle génération de composants électroniques très performants. Il sera donc très intéressant de suivre les retombées de ces travaux encore balbutiants, mais exceptionnellement prometteurs.

Auteur: Internet

Info: https://www.journaldugeek.com/, Antoine Gautherie le 05 mai 2023

[ recherche fondamentale ]

 

Commentaires: 0

Ajouté à la BD par miguel

chronos

Comment les physiciens explorent et repensent le temps

Le temps est inextricablement lié à ce qui pourrait être l’objectif le plus fondamental de la physique : la prédiction. Qu'ils étudient des boulets de canon, des électrons ou l'univers entier, les physiciens visent à recueillir des informations sur le passé ou le présent et à les projeter vers l'avant pour avoir un aperçu de l'avenir. Le temps est, comme l’a dit Frank Wilczek, lauréat du prix Nobel, dans un récent épisode du podcast The Joy of Why de Quanta, " la variable maîtresse sous laquelle le monde se déroule ".  Outre la prédiction, les physiciens sont confrontés au défi de comprendre le temps comme un phénomène physique à part entière. Ils développent des explications de plus en plus précises sur la caractéristique la plus évidente du temps dans notre vie quotidienne : son écoulement inexorable. Et des expériences récentes montrent des façons plus exotiques dont le temps peut se comporter selon les lois de la mécanique quantique et de la relativité générale. Alors que les chercheurs approfondissent leur compréhension du temps dans ces deux théories chères, ils se heurtent à des énigmes qui semblent surgir de niveaux de réalité plus obscurs et plus fondamentaux. Einstein a dit en plaisantant que le temps est ce que mesurent les horloges. C'est une réponse rapide. Mais alors que les physiciens manipulent des horloges de plus en plus sophistiquées, on leur rappelle fréquemment que mesurer quelque chose est très différent de le comprendre. 

Quoi de neuf et remarquable

Une réalisation majeure a été de comprendre pourquoi le temps ne s'écoule qu'en avant, alors que la plupart des faits physiques les plus simples peuvent être faits et défaits avec la même facilité.  La réponse générale semble provenir des statistiques des systèmes complexes et de la tendance de ces systèmes à passer de configurations rares et ordonnées à des configurations désordonnées plus courantes, qui ont une entropie plus élevée. Les physiciens ont ainsi défini une " flèche du temps " classique dans les années 1800, et dans les temps modernes, les physiciens ont remanié cette flèche probabiliste en termes d’intrication quantique croissante. En 2021, ma collègue Natalie Wolchover a fait état d’une nouvelle description des horloges comme de machine qui ont besoin du désordre pour fonctionner sans problème, resserrant ainsi le lien entre emps et entropie. 

Simultanément, les expérimentateurs se sont fait un plaisir d'exposer les bizarres courbures et crépitements du temps que nous ne connaissons pas, mais qui sont autorisés par les lois contre-intuitives de la relativité générale et de la mécanique quantique. En ce qui concerne la relativité, Katie McCormick a décrit en 2021 une expérience mesurant la façon dont le champ gravitationnel de la Terre ralentit le tic-tac du temps sur des distances aussi courtes qu'un millimètre. En ce qui concerne la mécanique quantique, j'ai rapporté l'année dernière comment des physiciens ont réussi à faire en sorte que des particules de lumière fassent l'expérience d'un écoulement simultané du temps vers l'avant et vers l'arrière.

C'est lorsque les physiciens sont confrontés à la formidable tâche de fusionner la théorie quantique avec la relativité générale que tout ça devient confus ; chaque théorie a sa propre conception du temps, mais les deux notions n’ont presque rien en commun.

En mécanique quantique, le temps fonctionne plus ou moins comme on peut s'y attendre : vous commencez par un état initial et utilisez une équation pour le faire avancer de manière rigide jusqu'à un état ultérieur. Des manigances quantiques peuvent se produire en raison des façons particulières dont les états quantiques peuvent se combiner, mais le concept familier du changement se produisant avec le tic-tac d’une horloge maîtresse reste intact.

En relativité générale, cependant, une telle horloge maîtresse n’existe pas. Einstein a cousu le temps dans un tissu espace-temps qui se plie et ondule, ralentissant certaines horloges et en accélérant d’autres. Dans ce tableau géométrique, le temps devient une dimension au même titre que les trois dimensions de l'espace, bien qu'il s'agisse d'une dimension bizarroïde qui ne permet de voyager que dans une seule direction.

Et dans ce contexte, les physiciens dépouillent souvent le temps de sa nature à sens unique. Bon nombre des découvertes fondamentales de Hawking sur les trous noirs – cicatrices dans le tissu spatio-temporel créées par l’effondrement violent d’étoiles géantes – sont nées de la mesure du temps avec une horloge qui marquait des nombres imaginaires, un traitement mathématique qui simplifie certaines équations gravitationnelles et considère le temps comme apparié à l'espace. Ses conclusions sont désormais considérées comme incontournables, malgré la nature non physique de l’astuce mathématique qu’il a utilisée pour y parvenir.

Plus récemment, des physiciens ont utilisé cette même astuce du temps imaginaire pour affirmer que notre univers est l'univers le plus typique, comme je l'ai rapporté en 2022. Ils se demandent encore pourquoi l'astuce semble fonctionner et ce que signifie son utilité. "Il se peut qu'il y ait ici quelque chose de profond que nous n'avons pas tout à fait compris", a écrit le célèbre physicien Anthony Zee à propos du jeu imaginaire du temps dans son manuel de théorie quantique des champs.

Mais qu’en est-il du temps réel et à sens unique dans notre univers ? Comment les physiciens peuvent-ils concilier les deux images du temps alors qu’ils se dirigent sur la pointe des pieds vers une théorie de la gravité quantique qui unit la théorie quantique à la relativité générale ? C’est l’un des problèmes les plus difficiles de la physique moderne. Même si personne ne connaît la réponse, les propositions intrigantes abondent.

Une suggestion, comme je l’ai signalé en 2022, est d’assouplir le fonctionnement restrictif du temps en mécanique quantique en permettant à l’univers de générer apparemment une variété d’avenirs à mesure qu’il grandit – une solution désagréable pour de nombreux physiciens. Natalie Wolchover a écrit sur la suspicion croissante selon laquelle le passage du temps résulte de l'enchevêtrement de particules quantiques, tout comme la température émerge de la bousculade des molécules. En 2020, elle a également évoqué une idée encore plus originale : que la physique soit reformulée en termes de nombres imprécis et abandonne ses ambitions de faire des prévisions parfaites de l’avenir.

Tout ce que les horloges mesurent continue de s’avérer insaisissable et mystérieux. 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 1 avril 2024

 

Commentaires: 0

Ajouté à la BD par miguel

âme

Panpsychisme, l'esprit des pierres La plupart pense que tous les humains sont conscients, ainsi que beaucoup d'animaux. Certains, comme les grands singes, semblent même être timides comme nous. D'autres, comme les chiens et les chats, les porcs, manquent d'un sens de l'ego mais ils semblent éprouver les états intérieurs de plaisir, etc... Pour les créatures plus petites, comme des moustiques, nous ne sommes pas aussi sûrs et n'avons pas de scrupules pour les massacrer. Quant aux plantes, elles n'ont évidemment pas d'esprit, excepté dans des contes de fées. Et encore moins les choses non vivantes comme les tables et les pierres. Les Atomes Mentaux "Si l'évolution fonctionne en douceur, une certaines forme de conscience doit être présente à l'origine même des choses. On constate que les philosophes évolutionnistes commencent à en poser le principe. Chaque atome de la galaxie, supposent-ils, doit avoir eu un atome original de conscience lié avec lui. Les atomes mentaux... sont alors fondu en de plus grandes consciences : nous-mêmes et peut-être chez nos camarade-animaux." James William, Principes de Psychologie 1890 Tout paraît de bon sens. Mais le bon sens n'a pas toujours été un si bon guide pour comprendre le monde et sa partie la plus récalcitrante à notre compréhension à l'heure actuelle est bien la conscience elle-même. Comment les processus électrochimiques de notre cerveau, peuvent-ils exister et donner ce jeu en technicolor de la conscience, avec ses transports de joie, ses coups d'angoisse et autres moments de contentement doux alternant avec l'ennui ?... Voici peut-être une des dernières frontières des sciences. Elle nourrit les énergies intellectuelles de la communauté scientifique, les psychologues, philosophes, physiciens, informaticiens et aussi, de temps en temps, le Dalai Lama. Ceci amène certains à une hypothèse un peu folle. Peut-être, disent-ils, que l'esprit n'est pas limité aux cerveaux de quelques animaux. Peut-être est-il partout, présent dans chaque atome, des électrons et neutrinos jusqu'aux galaxies, sans exclure les choses de taille moyenne comme un verre de l'eau ou une plante en pot. Il n'aurait donc pas soudainement surgi quand quelques particules physiques sur une certaine planète se sont retrouvées, après évolution, dans la bonne configuration. Mais plutôt : il y a une conscience dans le cosmos depuis toujours. Cette doctrine que la substance du monde est fondamentalement esprit s'appelle panpsychisme. Il y a quelques décennies, le philosophe américain Thomas Nagel a montré que c'était une conséquence logique de quelques faits raisonnables. D'abord, nos cerveaux se composent de particules matérielles. Ensuite ces particules, dans certains arrangements, produisent des pensées et des sentiments subjectifs. Troisièmement, les propriétés physiques ne peuvent expliquer en elles-mêmes la subjectivité. (Comment l'ineffable expérience qui consiste à goûter une fraise pourrait-elle résulter en équations physiques ?) Nagel a donc théorisé que les propriétés d'un système complexe comme le cerveau ne surgissent pas simplement dans l'existence à partir de nulle part. Elles doivent dériver des propriétés des constituants de ce système. Ces constituants doivent par conséquent avoir eux-mêmes des propriétés subjectives - propriétés qui, dans les bonnes combinaisons, s'ajoutent jusqu'à donner nos pensées et sentiments intérieurs. Et comme les électrons, les protons et les neutrons constituant nos cerveaux ne sont pas différent de ceux qui constituent le reste du cosmos l'univers entier doit donc se composer d'infimes morceaux de conscience. Nagel n'est pas allé jusqu'au panpsychisme, mais aujourd'hui il peut constater quelque qui ressemble à une mode. Le philosophe australien David Chalmers et le physicien Roger Penrose d'Oxford ont parlé de lui. Dans le livre récent "La conscience et sa place dans la nature," le philosophe britannique Galen Strawson défend le panpsychisme contre de nombreuses critiques. Comment se pourrait-il, demandent les sceptiques, que des morceaux d'esprit poussière, avec des états mentaux vraisemblablement simples, se combinent-ils pour former le genres d'expériences mentales compliquées que nous autres humains vivons ? Après tout, quand on rassemble un groupe de personnes dans une salle, leurs différents esprits ne forment pas un esprit collectif simple. (Quoique!) Ensuite il y a le fait incommode qu'on ne peut pas scientifiquement tester cette affirmation qui, par exemple, dirait que la lune a un fonctionnement mental. (Et cela s'applique aussi aux gens - comment pourrez-vous démontrer que vos camarades de bureau de ne sont pas des robots sans connaissance, comme le commandant Data sur "Star Trek" ?) Il y a aussi cette idée un peu pernicieuse : si quelque chose comme un photon peut avoir des proto-émotions, proto-croyances et proto-désirs. Que pourrait alors être le contenu du désir d'un photon?.. Devenir un quark, ironise un anti panpsychisme. Il est plus facile de parodier le Panpsychisme que le réfuter. Mais même si cette recherche de compréhension de la conscience s'avère être un cul-de-sac, cela pourra éventuellement nous aider à nous élever au-dessus de nos pensées conventionnelles de la perspective cosmique. Nous sommes des êtres biologiques. Nous existons parce que nous sommes des autos réplications de nous-mêmes. Nous détectons et agissons sur l'information de notre environnement de sorte que nos réplications continuent. En tant que sous-produits, nous avons développé des cerveaux qui, nous voulons voir comme les choses les plus complexes de l'univers. Mais pensons à la matière brute. Prenez un rocher. Il ne semble pas faire grand-chose, en tout cas pour ce qui est d'animer nos perceptions. Mais à un nano niveau il se compose d'un nombre inimaginable d'atomes reliés par des liaisons chimiques flexibles, ondoyantes et s'agitant ensembles à des cadences que même notre ordinateur géant le plus rapide pourra envier pour encore longtemps. Et ils ne 'agitent pas au hasard. Les intestins du rocher "voient" l'univers entier au moyen de signaux gravitationnels et électromagnétiques qu'ils reçoivent sans interruption. Un tel système pourrait être regardé comme un processeur polyvalent d'informations, dont la dynamique intérieure pourrait refléter n'importe quelle séquence des états mentaux que nos cerveaux traversent. Et là où il y a de l'information, dit le panpsychisme, il y a de la conscience. Ainsi le slogan de David Chalmers, "l'expérience est information de l'intérieur; la physique est information de l'extérieur." Mais le rocher ne se démène pas lui-même comme résultat de toute cette "réflexion". Pourquoi le devrait-il ? Son existence, à la différence de la nôtre, ne dépend pas d'une lutte pour la survie et la reproduction. Il est indifférent à la perspective d'être pulvérisé. Etant poète on pourrait voir le rocher comme un être purement contemplatif. Et on pourrait dessiner cette morale que l'univers est, et a toujours été, saturé d'esprit. Même si nous autres snobs darwiniens reproducteurs retardataires sommes trop fermés pour le réaliser.

Auteur: Holt Jim

Info: Fortean Times 18 Nov. 2007

[ matière ] [ monade ] [ minéral ] [ métaphysique ] [ chiasme ]

 

Commentaires: 0