Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 35
Temps de recherche: 0.0415s

définition

La photosynthèse est un processus qui permet aux plantes de transformer l'eau et le dioxyde de carbone en énergie et en oxygène.

Les plantes absorbent l'eau par leurs racines et le dioxyde de carbone de l'air par leurs feuilles. Elles utilisent ensuite l'énergie du soleil pour transformer ces deux éléments en glucose, un type de sucre. Ce glucose est utilisé par la plante comme source d'énergie et pour produire d'autres substances organiques, comme les protéines et les lipides.

Elle est un processus essentiel à la vie sur Terre. En effet, les plantes sont les seuls êtres vivants capables de produire de l'oxygène. L'oxygène est un gaz indispensable à la respiration de tous les animaux, y compris les humains. Voici une équation simplifiée de la photosynthèse :  6 CO2 + 6 H2O + lumière → C6H12O6 + 6 O2

Cette équation signifie que six molécules de dioxyde de carbone (CO2), six molécules d'eau (H2O) et de la lumière réagissent pour produire une molécule de glucose (C6H12O6) et six molécules d'oxygène (O2).

Ce processus se déroule dans les chloroplastes, des organites présents dans les cellules des plantes. Les chloroplastes contiennent de la chlorophylle, un pigment vert qui absorbe l'énergie du soleil.



 

Auteur: Google Bard chatbot

Info: 14 octobre 2023, en réponse à la question : peux-tu expliquer, de la manière la plus simple et résumée, le processus de la photosynthèse

[ biosynthèse ] [ transmutation ] [ septénaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

entropie

C'est le destin du vin d'être bu, et c'est le destin du glucose de s'oxyder. Mais il ne s'oxyde pas tout de suite : celui qui l'a bu le conserve dans son foie pendant plus d'une semaine, bien enroulé et tranquille, comme aliment de réserve pour un effort soudain ; effort qu'il est contraint de faire le dimanche suivant, en poursuivant un cheval qui détale. Adieu la structure hexagonale : en l'espace de quelques instants, l'écheveau se déroule et redevient glucose, lequel est entraîné par la circulation sanguine jusqu'à une minuscule fibre musculaire de la cuisse pour y être brutalement scindé en deux molécules d'acide lactique, sinistre annonciatrices de la fatigue : ce n'est que plus tard, quelques minutes après, que le halètement des poumons sera à même de fournir l'oxygène nécessaire à l'oxydation discrète de ce dernier. Ainsi, une nouvelle molécule de dioxyde de carbone retourne dans l'atmosphère, et une parcelle de l'énergie que le soleil avait transmise au cep de vigne passe de l'état d'énergie chimique à celui d'énergie mécanique, puis se transforme en une chaleur paresseuse qui réchauffe imperceptiblement l'air déplacé par la course et le sang du coureur. Telle est la vie, bien qu'elle soit rarement décrite de cette manière : une inclusion, un prélèvement à son profit, un parasitage du cours descendant de l'énergie, de sa noble forme solaire à celle dégradée de la chaleur à basse température. Dans ce parcours descendant, qui mène à l'équilibre et donc à la mort, la vie dessine un coude et s'y niche.

Auteur: Levi Primo

Info: The Periodic Table (1975), trad en anglais Raymond Rosenthal (1984), 192-3. Trad en français MG avec DeepL

[ alcool ] [ hydrate de carbone ] [ photosynthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

Un simple électron à l'origine de l'adaptation des bactéries
Une équipe de l'IBS a déterminé la structure d'une metalloprotéine présente chez les bactéries et explique par là-même comment ses gènes sont bavards... ou muets !

Si le Vivant est composé essentiellement de matière organique, une très grande quantité de processus naturels dépendent directement de facteurs inorganiques. Ainsi, près de 40 % des protéines ne fonctionnent que parce qu'elles fixent un ou plusieurs ions métalliques (sodium, magnésium, calcium, fer, zinc, cuivre, etc.). Ce sont les métalloprotéines. Ces protéines contiennent ainsi des agrégats inorganiques qui interviennent dans des réactions biosynthétiques et métaboliques d'une très grande importance pour la vie cellulaire. Par exemple, les agrégats fer-soufre [Fe-S], ubiquitaires chez les animaux, les plantes et les bactéries sont essentiels pour le transfert d'électrons (respiration, photosynthèse) ou la régulation de l'expression des gènes.

Des chercheurs de l'IBS se sont intéressés à la métalloprotéine bactérienne RsrR comportant un centre [2Fe-2S]. RsrR participe au contrôle de l'accès au génome de la cellule, permettant, ou non, l'expression de certains gènes. Ils ont déterminé sa structure cristalline grâce à des études de diffraction de rayons X. "Nous avons montré que RsrR a la particularité de moduler sa fixation sur l'ADN grâce à la réduction à un électron de son agrégat [2Fe-2S], explique Juan Carlos Fontecilla-Camps, chercheur à l'IBS. Cet agrégat est lié à RsrR par quatre résidus d'acides aminés (deux cystéines, un glutamate et une histidine), une coordination jusque-là jamais observée dans une protéine." Les scientifiques ont également constaté, suivant la forme cristalline de la protéine et son état d'oxydation, la rotation d'un autre résidu d'acide aminé (un tryptophane) qui pourrait être à l'origine de la modulation de sa fixation à l'ADN.

Ces travaux jettent les bases structurales pour comprendre comment un effecteur aussi petit qu'un électron va pouvoir induire des changements structuraux responsables d'une réponse adaptée de la bactérie à son environnement. Internet,

Auteur: Internet

Info: https://www.techno-science.net, Adrien le 15/02/2019, source CEA

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

minéraux

La biominéralisation est le processus physiologique qui permet aux organismes vivants d’élaborer une structure minérale, le biominéral. Un biominéral se distingue de son équivalent purement minéral par la présence de molécules organiques qui lui confèrent des propriétés spécifiques telles qu’une meilleure résistance à la fracture. Parmi les nombreux biominéraux on peut citer quelques exemples comme les os et les dents des animaux, la coquille des mollusques mais aussi le squelette des coraux. En construisant leur squelette, les coraux édifient les récifs coralliens qui sont responsables, avec les coccolithophores et les foraminifères, de la majorité des dépôts calcaires à la surface du globe. Dans la mesure où le biominéral formé chez les coraux est du carbonate de calcium, on parle également de calcification pour décrire le processus.

Les équipes de Physiologie/Biochimie et Ecophysiologie coralliennes du Centre Scientifique de Monaco développent des recherches centrées sur la biominéralisation des coraux et ses interactions avec notre environnement. Le choix de cette thématique est justifié par le rôle majeur joué par la calcification dans le contrôle du climat et dans le modelage des paysages géologiques. La calcification est en effet, avec la respiration et la photosynthèse, l'un des mécanismes qui contrôlent la concentration en gaz carbonique (CO2), important gaz à effet de serre dans notre atmosphère. D'autre part, les squelettes des coraux constituent des enregistrements des conditions physico-chimiques (température, concentration en CO2, nutriments) qui prévalaient au moment de leur dépôt, et à ce titre on les qualifie d'archives environnementales. La lecture de ces archives par les paléoclimatologistes, au même titre que celles incluses dans les glaces polaires et dans les cernes des arbres, devrait permettre une meilleure prévision de l'évolution de notre climat. 

En plus de son intérêt dans le domaine des sciences environnementales, la biominéralisation est également un processus clé dans de nombreux autres domaines : santé humaine (processus d'ostéogenèse, chirurgie orthopédique...), chimie des matériaux (biomatériaux et nanotechnologies). Enfin certains biominéraux présentent une haute valeur économique et culturelle, comme le squelette axial du corail rouge ou les perles des huîtres.

Auteur: Internet

Info: https://www.centrescientifique.mc/fr/article/biologie-marine-fr/biomineralisation

[ spécificité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

survie

Les océans sont responsables de plus de la moitié de la production d'oxygène de la planète grâce à l'activité de photosynthèse du plancton végétal marin. Responsables de la majorité de cette photosynthèse océanique, les protistes, des micro-organismes marins eucaryotes (avec un noyau), unicellulaires et parfois photosynthétiques. Ni bactérie, ni virus, ni plante, ni animal à proprement parler, les protistes présentent une grande plasticité tant anatomique que physiologique, et un métabolisme complexe.
Emiliania huxleyi est un protiste appartenant à la lignée des haptophytes. De par son extrême abondance, cette toute petite cellule planctonique forme une espèce emblématique du phytoplancton marin. Dotée de métabolismes fondamentaux variés (photosynthèse, calcification, etc.), elle est connue pour son micro-squelette calcaire qui rend l'océan blanc-laiteux et visible depuis l'espace, lorsque les cellules se multiplient en gigantesques efflorescences.
Pour décrypter le génome d'Emiliania, premier génome d'haptophyte séquencé, les scientifiques ont utilisé treize souches de cette espèce provenant de tous les océans qui ont ensuite été isolées dans différents laboratoires.
Première découverte, le génome d'Emiliania huxleyi est vingt fois plus petit que le génome humain: il est constitué de 141 millions de bases (le génome des diatomées a environ 24 millions de bases et le génome humain environ 3 200 millions). Mais, surprise, il contient au moins un tiers de gènes en plus que le génome humain. Le consortium international a mis en évidence la présence de plus de 30 000 gènes codant pour toutes sortes de protéines et de fonctions, dont plus de la moitié sont totalement inconnues dans les bases de données génétiques existantes.
D'autre part, les treize souches séquencées, que l'on croyait relativement proches, ne partagent en moyenne que 75% de leurs gènes: on pourrait parler de génome-coeur d'Emiliania. Ainsi, 25% des gènes ne sont présents que dans certaines souches: ce génome "permutable" est composé des gènes spécifiques à certaines souches. Cette configuration en "pan-génome" (avec un génome-coeur entouré d'un génome permutable) est typique des bactéries et des archées. La présence d'une telle proportion de gènes spécifiques à certaines souches est remarquable pour un organisme eucaryote sexué. Elle offre sans nul doute à Emiliania une flexibilité génomique et des capacités d'adaptation élevées.

Auteur: Internet

Info: 14 juin 2013

[ sciences ] [ génétique ]

 

Commentaires: 0

matière

Une bactérie qui fabrique des minéraux dans ses cellules
Une nouvelle espèce de bactérie photosynthétique vient d'être mise en évidence: elle est capable de contrôler la formation de minéraux (carbonates de calcium, magnésium, baryum, strontium), à l'intérieur même de son organisme. Publiée dans Science le 27 avril 2012, une étude qui révèle l'existence de ce nouveau type de biominéralisation dont le mécanisme est encore inconnu. Cette découverte a d'importantes implications pour l'interprétation du registre fossile ancien.
Les cyanobactéries focalisent depuis longtemps l'attention des scientifiques. Capables de photosynthèse, ces micro-organismes ont joué un rôle majeur dans l'histoire de la Terre, conduisant notamment à l'oxygénation de l'atmosphère. Certaines cyanobactéries sont capables de former des carbonates de calcium à l'extérieur de leur cellule, notamment celles associées aux stromatolites, des roches carbonées qui datent d'environ 3,5 milliards d'années et comptent parmi les plus anciennes traces de vie sur Terre. Des cyanobactéries fossiles pourraient donc se retrouver au sein de ce type de formation. Pourtant, les premières cyanobactéries fossiles datent seulement de 700 millions d'années bien après le début de l'oxygénation de la Terre qui remonterait à 2,3 milliards d'années. Pourquoi un tel laps de temps ?
Une équipe française vient peut-être d'apporter une réponse. Dans des stromatolites recueillis dans un lac de cratère mexicain et cultivés au laboratoire, les scientifiques ont mis en évidence une nouvelle espèce de cyanobactérie, Candidatus Gloeomargarita lithophora. Ce micro-organisme est issu d'une lignée qui a divergé précocement chez les cyanobactéries. Sa principale caractéristique: grâce à un mécanisme de biominéralisation encore inconnu, cette cyanobactérie fabrique des nanoparticules de carbonate de calcium intracellulaires, d'environ 270 nanomètres. Si l'on connaissait l'existence de cyanobactéries capables de former du carbonate de calcium extracellulaire au sein des stromatolites, c'est la première fois que l'on révèle une formation à l'intérieur de la cellule. Autre particularité de cette nouvelle espèce: elle accumule le strontium et le baryum pour l'incorporer aux carbonates.
Cette découverte a d'importantes implications pour l'interprétation du registre fossile ancien. En effet, si les cyanobactéries associées aux stromatolites formaient des carbonates à l'intérieur de leurs cellules et non pas à l'extérieur, elles n'auraient pas été préservées dans le registre fossile et pourraient expliquer le laps de temps entre leur apparition (il y a au moins 2,3 milliards d'années) et les plus vieux fossiles retrouvés (il y a 700 millions d'années). Reste désormais à découvrir pourquoi et comment cette cyanobactérie fabrique ce carbonate de calcium.

Auteur: Internet

Info: 21 avril 2012, An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates, E. Couradeau, K. Benzerara, E. Gérard, D. Moreira, S.Bernard, G. E. Brown Jr.

[ historique ] [ biologie ]

 

Commentaires: 0

biophysique

En résumé, nous avons réexaminé les aspects quantiques de la récolte de lumière dans la photosynthèse. Il est apparu clairement, à partir de considérations de base, qu'il n'y a pas d'équivalence entre la quanticité des processus et les cohérences observées dans les expériences de spectroscopie femtoseconde. Même la question très fondamentale de savoir si les cohérences non stationnaires des systèmes photosynthétiques peuvent être excitées par la lumière du soleil n'a pas encore été totalement clarifiée. Quelle que soit la configuration la préparation de l'état, la dynamique sera régie par les couplages associés du système et son interaction avec son environnement (bath)*. En outre, les affirmations concernant la persistance de ces cohérences dans les expériences femtoseconde ont été réévaluées de manière critique. En particulier, l'analyse détaillée d'un système  exemplaire utilisée en biologie quantique - le complexe FMO** - montre sans ambiguïté l'absence de cohérence interexcitonnelle de longue durée sur les échelles de temps pertinentes dans ce système, à la fois aux températures cryogéniques et physiologiques. Au contraire, il est devenu évident que les signaux oscillants à longue durée de vie proviennent de modes vibratoires principalement issu de l'état électronique fondamental. Des analyses de données plus avancées et des traitements théoriques utilisant une paramétrisation réaliste de l'environnement modélisé (bath) sont nécessaires pour identifier clairement les signaux de cohérence. La discussion approfondie sur l'attribution antérieure de ces signatures spectrales, qui se développe dans la communauté depuis une décennie, souligne cette nécessité.

Le principal résultat positif de ce travail est l'amélioration des méthodes théoriques et expérimentales qui ont conduit à une meilleure compréhension des interactions système-bath responsables de la décohérence et de la dissipation dans les structures biologiques. La nature ne produit pas le bain (bath) pour éviter la décohérence des processus fonctionnels directs ; une telle approche ne serait certainement pas robuste. La nature, plutôt qu'essayer d'éviter la dissipation, l'exploite spécifiquement avec l'ingénierie des énergies sur site via le couplage excitonique* pour le transport direct de l'énergie. Le rôle des paramètres thermodynamiques dans le pilotage des fonctions biologiques est bien apprécié à d'autres niveaux. Ici, nous voyons que ce principe s'applique même aux processus de transfert d'énergie impliqués dans la photosynthèse qui se produisent sur des échelles de temps probablement plus rapides. La physique de base de la thermalisation étant utilisée pour imprimer une direction. Ce concept simple, maîtrisé par la nature dans toutes les dimensions temporelles et spatiales pertinentes, est une véritable merveille de la biologie. 

Auteur: Internet

Info: https://advances.sciencemag.org, 3 avril 2020. "Quantum biology revisited. Conclusions". By Jianshu Cao, Richard J. Cogdell, David F. Coker, Hong-Guang Duan, Jürgen Hauer, Ulrich Kleinekathöfer, Thomas L. C. Jansen, Tomáš Mančal, R. J. Dwayne Miller, Jennifer P. Ogilvie, Valentyn I. Prokhorenko, Thomas Renger, Howe-Siang Tan, Roel Tempelaar, Michael Thorwart, Sebastian Westenhof, Donatas Zigmantas. *En physique, un système quantique ouvert est un système de quantique qui interagit avec un système quantique externe (bath). En général, ces interactions modifient considérablement la dynamique du système et entraînent une dissipation quantique, de sorte que les informations contenues dans le système sont perdues pour son environnement. Comme aucun système quantique n'est complètement isolé de son environnement, il est important de développer un tel cadre théorique pour traiter ces interactions afin d'améliorer la compréhension des systèmes quantiques. **Complexe Fenna-Matthews-Olson : complexe hydrosoluble, a été le premier complexe pigment-protéine à être analysé par spectroscopie aux rayons X ***Un exciton est une quasi-particule que l'on peut voir comme une paire électron-trou liée par des forces de Coulomb. Une analogie consiste à comparer l'électron et le trou respectivement à l'électron et au proton d'un atome d'hydrogène. Ce phénomène se produit dans les semi-conducteurs et les isolants. Mise en forme Mg

[ anabolisme ] [ épigénétique ] [ hyper-complexité ]

 

Commentaires: 0

Ajouté à la BD par miguel

écologie

La pompe biotique est un phénomène naturel qui a été mis en évidence par des chercheurs. L’étude la plus complète concernant la pompe biotique est celle conduite par une équipe scientifique russe, animée par Anastassia Makarieva et Victor Gorshkov.

Le principe de ce phénomène tient au mécanisme suivant :

1 Les espaces forestiers ont capables d’accroitre la capacité des sols à absorber l’eau de pluie en comparaison de surfaces faiblement végétalisées ou de simples surfaces agricoles. Les systèmes racinaires des arbres et la matière organique des sols forestiers favorisent la pénétration de l'eau dans les terrains qui peuvent alors stocker plus. Dans un champ sans culture (comme souvent en hiver en France) l’eau après une forte pluie s'infiltre moins facilement dans le sol, reste en surface et s’évapore ou ruisselle plus rapidement vers les cours d'eau.

2 Les arbres régulent ensuite le retour de l’eau vers l'atmosphère par évapotranspiration. C’est le résultat de processus physico-chimique de la photosynthèse, qui absorbe le gaz carbonique et l’eau pour produire de l’oxygène et les matières organiques de l’arbre, bois et feuillages.  Une partie de cette eau pompée du sol échappe à la photosynthèse et retourne à l’atmosphère par les stomates des feuilles ou des épines de résineux.

3 L’évaporation dans l’atmosphère au-dessus des massifs forestiers accentue les phénomènes de condensation et restitue de la chaleur. Cet effet par conséquent peut créer une zone dépressionnaire sur les massifs.

4 Si le massif forestier se trouve proche d’une façade maritime, la dépression peut être plus importante qu’au-dessus de la mer et engendre donc une circulation de la mer vers l’intérieur des terres, qui peut aller au-delà de la simple brise de mer, phénomène diurne.

5 Si le massif forestier est très étendu, ou si plusieurs massifs forestiers se jouxtent vers l’intérieur des continents, le flux d’air chargé en eau se propage vers l’intérieur des continents, favorisant ainsi le transport de l’eau depuis les mers et océans.

6 Même en cas de masses d’air circulant naturellement des mers vers les terres, les forêts ont cette capacité de recharger l’atmosphère en eau pour la transporter plus loin.

L’ensemble de ce processus est appelé pompe biotique.

Lorsque l’on procède à de vastes déforestations comme en Amazonie, on désamorce la pompe biotique, les précipitations diminuent et on peut créer des zones désertiques. C’est ce que l’on observe en Amazonie, ou une diminution du rythme des précipitations suit l’abattage à grande échelle de la forêt.

On voit ainsi que la forêt peut influer le climat en accompagnant le cycle de l’eau et en favorisant les précipitations.  

 

Auteur: Internet

Info: https://www.terre-du-futur.fr/pompe-biotique-definition/

[ interdépendance ] [ ​​​​​​​rivières volantes ] [ gaïa ] [ aqua simplex ] [ mécanisme météorologique vertical ] [ refroidissement terrestre ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

biophysique

Brian David Josephson est un physicien théoricien qui a reçu le prix Nobel pour ses travaux sur l'effet tunnel quantique et le développement du circuit supraconducteur portant son nom : the Josephson Junction , qui a permis le développement de dispositifs quantiques tels que les dispositifs d'interférence quantique supraconducteurs et les supercalculateurs. 

Dans sa publication avec Fotini Pallikari-Viras " Utilisation biologique de la non-localité quantique ", il explique comment le système biologique pourrait disposer d'une plus grande connaissance discriminante des types de distributions de probabilités dans l'espace de phase des états naturels que celle que les scientifiques peuvent obtenir par des mesures quantiques. Grâce à ce degré de discrimination plus élevé, les processus d'évolution et de développement caractéristiques des biosystèmes peuvent, dans des conditions initiales appropriées, conduire à des distributions de probabilités ciblées qui permettent d'utiliser la connectivité non locale entre des systèmes séparés dans l'espace, dont on sait qu'elle existe grâce aux inégalités de Bell, c'est-à-dire l'intrication quantique. 

En d'autres termes, les critères selon lesquels les physiciens évaluent la possibilité d'une signalisation non locale et d'états quantiques dans le système biologique peuvent être fondés sur une présupposition erronée de la nature du hasard et de la moyenne statistique qui nierait conventionnellement la possibilité de tels processus d'information quantique non triviaux au sein du système biologique, mais qui néglige en fait la connaissance discriminante dont dispose le système biologique et qui lui permet de considérer de nombreux schémas de la nature comme non aléatoires. 

"La perception de la réalité par les biosystèmes est basée sur des principes différents, et à certains égards plus efficaces, que ceux utilisés par les procédures plus formelles de la science. Par conséquent, ce qui apparaît comme un modèle aléatoire pour la méthode scientifique peut être un modèle significatif pour un organisme vivant. L'existence de cette perception complémentaire de la réalité permet en principe aux organismes d'utiliser efficacement les interconnexions directes entre des objets séparés dans l'espace, dont l'existence a été démontrée dans les travaux de J. S. Bell"*.

(Post Remarque d'un suiveur)

Merci. Dans l'ouvrage de Robert Lanza intitulé Biocentrism. Bruce Lipton considère qu'il existe de nombreuses similitudes entre les cellules humaines et végétales. 

Récemment, il y a plusieurs années, une étude quantique a été réalisée sur la photosynthèse.  Les chercheurs ont rapporté que les photons dirigés par le soleil s'approchaient d'une feuille de plante dans une position supra-statique, puis se localisaient après avoir traversé la paroi de la feuille. Ils ont estimé que le photon donnait des instructions à l'ADN de la plante quant au processus et à l'utilisation de la photosynthèse, en créant des glucides pour l'alimentation.

Auteur: Haramein Nassim

Info: Sur son fil FB, mars 2023. *Brian D. Josephson & Fotini Pallikari-Viras. Biological utilization of quantum nonlocality, Foundations of Physics volume 21, pages 197-207 (1991).

[ épigénétique ] [ transcendance ]

 

Commentaires: 0

Ajouté à la BD par miguel

quête

Nous ne sommes pas égaux devant le temps. Toute forme - ou structure - fait partie d'un cycle et est poussière qui retourne à la poussière ; que ce soit une planète, une goutte d'eau ou un moustique. Toutes sont mouvantes, avec des durées de vies infiniment diverses. Dans ce processus la vie fragile, très instable de par sa faculté d'adaptation, apparait, se développe et se propage, un peu comme le feu dans une forêt, investissant le temps et l'espace. Nous pouvons donc entrevoir, hors notre existence si courte d'individu, qu'une filière de vie, parlons de notre planète, peut perdurer sur des centaines de millions d'années, ce qui est déjà phénoménal à notre échelle de conscience.

Les modèles physiques du cosmos - c'est à dire nos représentations spatio-temporelles actuelles de l'univers - semblent s'être grandement élargies, en tout cas par rapport à celles des hommes d'il y a quelques millénaires, voire quelques centaines d'années. Ces représentations actuelles s'appuient sur une science post Leibniz, cybernétique, alors qu'elles furent pendant longtemps beaucoup plus, disons, oniriques, animistes ou mythiques. Elles sont donc actuellement "mesurées", "cataloguées", "calibrées", bref plus fouillées... Mais est-ce bien une hypothèse correcte ? Une amélioration ?

La question est donc de savoir si la vie, en tant qu'hyper structure de la matière, est supposée rejoindre quelque chose de spirituel - donc d'intemporel - ou si elle doit simplement auto-affiner le cataloguage de son propre environnement.

Car il y a complexification, quelle que soit la manière de voir l'évolution. Mais est-ce un simple cul-de-sac ou a vie a-t'elle un but téléologique ?  Doit-elle renforcer quelque "esprit", de manière à nourrir un autre continuum pour des buts qui nous échappent ?

Avec une temporalité qui n'est qu'un simple outil, support unidirectionnel, destiné à permettre le développement de structures qui s'organisent les unes les autres de par leurs interactions, tout ceci étant peut-être même supervisé et orienté par quelque divinité locale - comme dans une éprouvette manipulée par un étudiant d'une forme de vie en regard de laquelle nous ne serions que d'improbables microbes.

Ou alors est-ce juste le HASARD ? Tel un aveugle aux sens obturés, tâtonnant... qui, devant l'infinitude des possibilités, aurait trouvé et élargi une brèche sur une plage vibratoire donnée. Niveau d'énergie permettant l'émergence (qui nous apparait miraculeuse) du subtil équilibre-échange entre la brute énergie photonique solaire et les atomes-molécules plus lents de notre planète satellisée. Tout ceci par le truchement du carbone et de la photosynthèse. Une vie qui aurait comme l'impression de s'auto observer et donc prendrait conscience de sa propre existence. Et par là même créerait le temps.

Cet HASARD tâtonnant s'appellerait alors : Dieu.

Un Éternel dotés de deux  subalternes locaux - en ce qui nous concerne bien sûr.

Le Soleil...

Et  le CO2, atome tétravalent aux stupéfiantes possibilités combinatoires, assisté ses principaux lieutenants-cousins : hydrogène, azote et oxygène.

Auteur: Mg

Info: 2 août 2009

[ question ] [ corps-esprit ] [ religion ] [ extraterrestres ] [ indéterminisme ] [ théologie ]

 

Commentaires: 0