Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 4
Temps de recherche: 0.0294s

sel minéral

Le calcium joue un rôle central dans le métabolisme de toutes les cellules à noyau. Il joue un rôle indispensable dans le mouvement des cellules amiboïdes, la sécrétion cellulaire, la formation des microtubules et l’adhérence des cellules. Le calcium dissous doit être en permanence retiré de la solution environnante pour que les microtubules fonctionnent lors de la mitose, de la sexualité méiotique et de l’activité cérébrale. Du fait que la partie "chimio" des messages chimioélectriques envoyés par les cellules nerveuses du cerveau a quelque rapport avec le calcium, les réseaux de communication du cerveau qui déclenchent les neurones dépendent autant du calcium que les communications téléphoniques dépendent des câbles de cuivre.

Auteur: Margulis Lynn

Info: Dans "L'univers bactériel", page 203

[ physiologie cellulaire ] [ utilité ] [ conducteur ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

folie

La schizophrénie est une maladie psychiatrique qui touche environ 1% de la population mondiale et se manifeste généralement au début de l'âge adulte. Les symptômes les plus fréquents comprennent une altération des processus sensoriels et cognitifs et une altération profonde de la cognition sociale. L'équipe de Rebecca Piskorowski et Vivien Chevaleyre au laboratoire de Physiologie cérébrale, en collaboration avec un laboratoire américain, lève le voile sur un mécanisme impliqué dans ces altérations de mémoire sociale. Cette étude, publiée dans la revue Neuron, ouvre la voie à de nouvelles cibles thérapeutiques potentielles.
Bien que de nombreux progrès aient été réalisés concernant la compréhension des causes génétiques de la schizophrénie, les mécanismes cellulaires qui sous-tendent des symptômes spécifiques sont peu connus. La délétion génétique 22q11.2 (perte de matériel génétique sur le chromosome 22) est le facteur de risque le plus fort pour développer la schizophrénie. En utilisant un modèle de souris porteuse d'une délétion génétique similaire obtenu par le laboratoire de Joseph Gogos à Columbia University (USA), l'équipe "Plasticité Synaptique et Réseaux Neuronaux" de Rebecca Piskorowski et Vivien Chevaleyre au laboratoire de Physiologie cérébrale, a étudié une petite région de l'hippocampe, qui est une structure importante pour la formation de mémoires et dont l'activité est affectée au cours de la schizophrénie.
Les résultats révèlent des altérations spécifiques de la région CA2 de l'hippocampe, qui a été longtemps ignorée mais qui émerge comme importante pour la formation de mémoires sociales au travers d'études récentes. En particulier, des changements ont été observés dans la balance entre l'excitation et l'inhibition ainsi que des altérations des propriétés des neurones de CA2. Il en résulte une forte diminution de l'activité des neurones de cette région, ce qui sous-tend probablement le déficit de mémoire sociale aussi observé chez ces souris. De façon intéressante et en parallèle avec le développement des symptômes chez l'homme, ces changements ne sont pas observés sur de jeunes animaux mais apparaissent uniquement au début de l'âge adulte.
Cette étude représente une avancée significative concernant la compréhension des mécanismes cellulaires altérés au cours de la schizophrénie, mais aussi potentiellement au cours d'autres maladies psychiatriques dans lesquelles les interactions sociales sont également affectées. Les résultats révèlent un mécanisme potentiel pour le déficit de mémoire sociale et, étant données les caractéristiques de la région CA2, ils ouvrent la voie à des cibles thérapeutiques potentielles.

Auteur: Internet

Info: http://www.techno-science.net/?onglet=news&news=14788. Schizophrénie: une nouvelle piste dans la compréhension des déficits de mémoire sociale

[ cerveau ] [ sciences ]

 

Commentaires: 0

végétal

Les racines des plantes croissent et se ramifient pour explorer le sol, à la recherche d'eau et de nutriments. Les mécanismes à la base de cette croissance sont mal connus mais une équipe du Laboratoire de biochimie et physiologie moléculaire des plantes de Montpellier en collaboration avec des chercheurs anglais et allemands vient de faire une avancée. Leurs travaux décrivent un mécanisme qui, grâce à une hormone végétale et aux protéines régulant le passage de l'eau, permet l'émergence des racines secondaires. C'est la première fois que l'on observe un lien entre les processus d'absorption et de transport de l'eau et le mécanisme de ramification des racines. Outre leur importance fondamentale, ces résultats permettent d'envisager une optimisation de la croissance des racines de plantes.
Etapes précoces d'une ramification de racine. Ces études par microscopie indiquent, en vert, un massif de petites cellules donnant naissance à une racine secondaire et, en rose, le territoire d'expression d'une des aquaporines étudiées par les chercheurs. Ce territoire d'expression très précis peut être expliqué par la production d'auxine au niveau de la pointe de la racine secondaire.
À la base du mécanisme de ramification décrit par l'équipe de de Montpellier et des autres chercheurs, on trouve une famille de protéines membranaires appelées aquaporines, présentes chez les plantes et les animaux. Celles-ci forment des micro-pores permettant le passage d'eau à travers les membranes cellulaires. Chez la plante, elles déterminent la capacité de la racine à absorber l'eau du sol. Jusqu'à présent, leur rôle dans la croissance et la ramification des racines n'était pas connu. L'autre élément clé du processus mis en lumière par les scientifiques est une hormone, l'auxine, connue pour orchestrer les processus de croissance et de développement des racines. Ils ont montré qu'elle régule aussi l'activité des aquaporines.
Lorsqu'une ramification apparaît, la racine secondaire se forme à partir de couches cellulaires profondes de la racine primaire. Pour émerger, elle doit se frayer un passage au travers des cellules de cette dernière. Les chercheurs ont montré que, par l'intermédiaire de l'auxine et des aquaporines, la plante contrôle très précisément les flux d'eau à travers ces différents tissus. Ainsi, dans les zones de ramification, l'eau se concentre dans la racine secondaire en expansion, ce qui permet à ses cellules de gonfler et de repousser mécaniquement les cellules de la racine primaire qui les recouvrent. Cet apport d'eau se fait au détriment des couches superficielles de la racine primaire, dont la résistance mécanique se réduit. Ce mécanisme facilite l'émergence de la racine secondaire.
Pour arriver à ce résultat, les chercheurs ont procédé à diverses expériences sur une plante modèle, Arabidopsis thaliana. Ils ont notamment travaillé avec des mutants insensibles à l'auxine ou présentant des aquaporines non-fonctionnelles. Ils ont aussi identifié un facteur de transcription, une molécule permettant à l'auxine d'agir sur les aquaporines et étudié l'expression de ces dernières dans les racines primaires et secondaires. Enfin, à partir des résultats de ces expériences, ils ont construit un modèle mathématique représentant les flux d'eau et la perméabilité des divers tissus des racines.

Auteur: internet

Info: Natur Cell Biology, 16 septembre 2012, Comment les racines des plantes se ramifient

[ quête ] [ exploration ]

 

Commentaires: 0

biophysique

Comment les végétaux gèrent le trop-plein d’énergie solaire

La photosynthèse, c’est-à-dire la conversion d’énergie lumineuse en énergie chimique par les plantes, est essentielle à la vie sur terre. Un excès de lumière s’avère toutefois néfaste pour les complexes de protéines responsables de ce processus. Des chercheurs de l’Université de Genève (UNIGE) ont découvert comment Chlamydomonas reinhardtii, une algue unicellulaire mobile, active la protection de sa machinerie photosynthétique. Leur étude, publiée dans la revue PNAS, indique que les récepteurs (UVR8) qui détectent les rayons ultraviolets provoquent l’activation d’une valve de sécurité qui permet de dissiper sous forme de chaleur l’excès d’énergie. Un second rôle protecteur est ainsi attribué à ces récepteurs, dont l’équipe genevoise avait déjà montré la capacité à induire la production d’une "crème solaire" anti-UV.

Grâce à la photosynthèse, l’énergie du soleil est convertie par les végétaux en énergie chimique afin de produire des sucres pour se nourrir. La première étape de ce processus, qui se déroule dans des compartiments cellulaires nommés chloroplastes, consiste à capturer des photons de lumière grâce à la chlorophylle. Si la lumière est essentielle aux plantes, un excès de soleil pourrait endommager leur machinerie photosynthétique, ce qui affecterait leur croissance et leur productivité. Pour se protéger, les plantes activent alors un mécanisme de protection lorsque la lumière est trop abondante, qui fait appel à une série de protéines capables de convertir l’excès d’énergie en chaleur afin qu’elle se dissipe.

Produire des protéines qui détournent l’énergie

"Ce sont les rayons ultraviolets de type B qui sont susceptibles de causer le plus de dégâts à l’appareil photosynthétique, et nous avons voulu savoir s’ils jouaient un rôle de déclencheur du mécanisme de protection et, le cas échéant, lequel», expliquent Michel Goldschmidt-Clermont et Roman Ulm, professeurs au Département de botanique et biologie végétale de la Faculté des sciences de l’UNIGE. Ces travaux, menés en collaboration avec des chercheurs du Laboratoire de physiologie cellulaire et végétale (CEA/CNRS/Université Grenoble Alpes/INRA) et de l’Université de Californie, ont été effectués chez Chlamydomonas reinhardtii, une algue mobile unicellulaire employée comme organisme modèle.

L’équipe de Roman Ulm avait découvert en 2011 l’existence d’un récepteur aux UV-B, baptisé UVR8, dont l’activation permet aux plantes de se défendre contre ces UV et d’élaborer leur propre "crème solaire" moléculaire. Les chercheurs découvrent aujourd’hui que, chez cette algue, ce récepteur déclenche un deuxième mécanisme de protection. "En effet, lorsqu’UVR8 détecte des UV-B, il active un signal qui enclenche, au niveau du noyau cellulaire, la production de protéines , qui seront ensuite importées dans les chloroplastes. Une fois intégrées à l’appareil photosynthétique, elles contribuent à détourner l’énergie en excès, qui sera dissipée sous forme de chaleur grâce à des vibrations moléculaires", détaille Guillaume Allorent, premier auteur de l’article.

Chez les plantes terrestres, la perception des UV-B par ce récepteur est également importante pour la protection de la machinerie photosynthétique, mais le mécanisme n’a pas encore été élucidé. "Il est cependant crucial pour la productivité agricole et l’exploitation biotechnologique des processus photosynthétiques de mieux comprendre les mécanismes responsables de la photoprotection contre la lumière solaire et ses rayons UV-B", indique Michel Goldschmidt-Clermont. La recherche continue.



 

Auteur: Internet

Info: https://www.unige.ch, 2016

[ assimilation chlorophyllienne ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste