Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 320
Temps de recherche: 0.0516s

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Opinion: Pourquoi la science a besoin de la philosophe

Malgré les liens historiques étroits entre la science et la philosophie, les scientifiques d'aujourd'hui perçoivent souvent la philosophie comme complètement différente, voire antagoniste, de la science. Nous soutenons ici que, au contraire, la philosophie peut avoir un impact important et productif sur la science.

Nous illustrons notre propos par trois exemples tirés de divers domaines des sciences de la vie contemporaines. Chacun d'entre eux concerne la recherche scientifique de pointe, et chacun ayant été explicitement reconnu par les chercheurs en exercice comme une contribution utile à la science. Ces exemples, et d'autres, montrent que la contribution de la philosophie peut prendre au moins quatre formes : la clarification des concepts scientifiques, l'évaluation critique des hypothèses ou des méthodes scientifiques, la formulation de nouveaux concepts et de nouvelles théories, et la promotion du dialogue entre les différentes sciences, ainsi qu'entre la science et la société.

Clarification conceptuelle et cellules souches.

Tout d'abord, la philosophie offre une clarification conceptuelle. Les clarifications conceptuelles améliorent non seulement la précision et l'utilité des termes scientifiques, mais conduisent également à de nouvelles recherches expérimentales, car le choix d'un cadre conceptuel donné contraint fortement la façon dont les expériences sont conçues.

La définition des cellules souches (stem cells) en est un excellent exemple. La philosophie a une longue tradition d'étude des propriétés, et les outils utilisés dans cette tradition ont récemment été appliqués pour décrire la "souche", propriété qui définit les cellules souches. L'un d'entre nous a montré que quatre types de propriétés différentes existent sous cette dénomination de souche (stemness) au vu des connaissances scientifiques actuelles. Selon le type de tissu, la stemness peut être une propriété catégorielle (propriété intrinsèque de la cellule souche, indépendante de son environnement), une propriété dispositionnelle (propriété intrinsèque de la cellule souche qui est contrôlée par le micro-environnement), une propriété relationnelle (propriété extrinsèque qui peut être conférée aux cellules non souches par le microenvironnement), ou une propriété systémique (propriété qui est maintenue et contrôlée au niveau de la population cellulaire entière).

Hans Clevers, chercheur en biologie des cellules souches et du cancer, note que cette analyse philosophique met en lumière d'importants problèmes sémantiques et conceptuels en oncologie et en biologie des cellules souches ; il suggère également que cette analyse soit facilement applicable à l'expérimentation. En effet, au-delà de la clarification conceptuelle, ce travail philosophique a des applications dans le monde réel, comme l'illustre le cas des cellules souches cancéreuses en oncologie.

Les recherches visant à développer des médicaments ciblant soit les cellules souches cancéreuses, soit leur microenvironnement, reposent en fait sur différents types de souches et sont donc susceptibles d'avoir des taux de réussite différents selon le type de cancer. En outre, elles pourraient ne pas couvrir tous les types de cancer, car les stratégies thérapeutiques actuelles ne tiennent pas compte de la définition systémique de la souche. Déterminer le type de souche présent dans chaque tissu et chaque cancer est donc utile pour orienter le développement et le choix des thérapies anticancéreuses. Dans la pratique, ce cadre a conduit à la recherche de thérapies anticancéreuses qui combinent le ciblage des propriétés intrinsèques des cellules souches cancéreuses, de leur microenvironnement et des points de contrôle immunitaires afin de couvrir tous les types possibles de souches.

En outre, ce cadre philosophique a récemment été appliqué à un autre domaine, l'étude des organoïdes (tissus en 3D dérivés de cellules souches, sont capables de s'auto-organiser et de reproduire certaines fonctions d'un organe.). Dans une revue systémique des données expérimentales sur les organoïdes provenant de diverses sources, Picollet-D'hahan et al. ont caractérisé la capacité à former des organoïdes comme une propriété dispositionnelle. Ils ont pu alors affirmer que pour accroître l'efficacité et la reproductibilité de la production d'organoïdes, actuellement un défi majeur dans le domaine, les chercheurs doivent mieux comprendre la partie intrinsèque de la propriété dispositionnelle qui est influencée par le microenvironnement. Pour distinguer les caractéristiques intrinsèques des cellules qui ont une telle disposition, ce groupe développe actuellement des méthodes de génomique fonctionnelle à haut débit, permettant d'étudier le rôle de pratiquement tous les gènes humains dans la formation des organoïdes.

Immunogénicité et microbiome.

En complément de son rôle dans la clarification conceptuelle, la philosophie peut contribuer à la critique des hypothèses scientifiques et peut même être proactive dans la formulation de théories nouvelles, testables et prédictives qui aident à définir de nouvelles voies pour la recherche empirique.

Par exemple, une critique philosophique du cadre du cadre immunitaire du soi et du non-soi a conduit à deux contributions scientifiques importantes. Tout d'abord, elle a servi de base à la formulation d'un nouveau cadre théorique, la théorie de la discontinuité de l'immunité, qui complète les modèles antérieurs du non-soi et du danger en proposant que le système immunitaire réagisse aux modifications soudaines des motifs antigéniques. Cette théorie éclaire de nombreux phénomènes immunologiques importants, notamment les maladies auto-immunes, les réponses immunitaires aux tumeurs et la tolérance immunologique à des ligands exprimés de façon chronique. La théorie de la discontinuité a été appliquée à une multitude de questions, aidant à explorer les effets des agents chimiothérapeutiques sur l'immunomodulation dans le cancer et expliquant comment les cellules tueuses naturelles modifient constamment leur phénotype et leurs fonctions grâce à leurs interactions avec leurs ligands** d'une manière qui assure la tolérance aux constituants corporels. La théorie permet également d'expliquer les conséquences des vaccinations répétées chez les personnes immunodéprimées et propose des modèles mathématiques dynamiques de l'activation immunitaire. Collectivement, ces diverses évaluations empiriques illustrent comment des propositions d'inspiration philosophique peuvent conduire à des expériences inédites, ouvrant ainsi de nouvelles voies de recherche.

Deuxièmement, la critique philosophique a contribué, avec d'autres approches philosophiques, à la notion selon laquelle tout organisme, loin d'être un soi génétiquement homogène, est une communauté symbiotique abritant et tolérant de multiples éléments étrangers (notamment des bactéries et des virus), qui sont reconnus mais non éliminés par son système immunitaire. La recherche sur l'intégration symbiotique et la tolérance immunitaire a des conséquences considérables sur notre conception de ce qui constitue un organisme individuel, qui est de plus en plus conceptualisé comme un écosystème complexe dont les fonctions clés, du développement à la défense, la réparation et la cognition, sont affectées par les interactions avec les microbes.

Influence sur les sciences cognitives.

L'étude de la cognition et des neurosciences cognitives offre une illustration frappante de l'influence profonde et durable de la philosophie sur la science. Comme pour l'immunologie, les philosophes ont formulé des théories et des expériences influentes, aidé à lancer des programmes de recherche spécifiques et contribué à des changements de paradigme. Mais l'ampleur de cette influence est bien plus importante que dans le cas de l'immunologie. La philosophie a joué un rôle dans le passage du behaviorisme au cognitivisme et au computationnalisme dans les années 1960. La théorie de la modularité de l'esprit, proposée par le philosophe Jerry Fodor, a peut-être été la plus visible. Son influence sur les théories de l'architecture cognitive peut difficilement être dépassée. Dans un hommage rendu après le décès de Fodor en 2017, l'éminent psychologue cognitif James Russell a parlé dans le magazine de la British Psychological Society de "psychologie cognitive du développement BF (avant Fodor) et AF (après Fodor) ".

La modularité renvoie à l'idée que les phénomènes mentaux résultent du fonctionnement de multiples processus distincts, et non d'un seul processus indifférencié. Inspiré par les résultats de la psychologie expérimentale, par la linguistique chomskienne et par les nouvelles théories computationnelles de la philosophie de l'esprit, Fodor a théorisé que la cognition humaine est structurée en un ensemble de modules spécialisés de bas niveau, spécifiques à un domaine et encapsulés sur le plan informationnel, et en un système central de plus haut niveau, général à un domaine, pour le raisonnement abductif, l'information ne circulant que verticalement vers le haut, et non vers le bas ou horizontalement (c'est-à-dire entre les modules). Il a également formulé des critères stricts de modularité. Aujourd'hui encore, la proposition de Fodor définit les termes d'une grande partie de la recherche empirique et de la théorie dans de nombreux domaines des sciences cognitives et des neurosciences, y compris le développement cognitif, la psychologie de l'évolution, l'intelligence artificielle et l'anthropologie cognitive. Bien que sa théorie ait été révisée et remise en question, les chercheurs continuent d'utiliser, de peaufiner et de débattre de son approche et de sa boîte à outils conceptuelle de base.

La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de rigueur, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes.

La tâche des fausses croyances constitue un autre exemple clé de l'impact de la philosophie sur les sciences cognitives. Le philosophe Daniel Dennett a été le premier à concevoir la logique de base de cette expérience comme une révision d'un test utilisé pour évaluer la théorie de l'esprit, la capacité d'attribuer des états mentaux à soi-même et aux autres. Cette tâche teste la capacité d'attribuer à autrui des croyances que l'on considère comme fausses, l'idée clé étant que le raisonnement sur les croyances fausses d'autrui, par opposition aux croyances vraies, exige de concevoir les autres personnes comme ayant des représentations mentales qui divergent des siennes et de la façon dont le monde est réellement. Sa première application empirique remonte à 1983 , dans un article dont le titre, "Beliefs About Beliefs : Representation and Constraining Function of Wrong Beliefs in Young Children's Understanding of Deception", est en soi un hommage direct à la contribution de Dennett.

La tâche des fausses croyances représente une expérience marquante dans divers domaines des sciences cognitives et des neurosciences, avec de vastes applications et implications. Il s'agit notamment de tester les stades du développement cognitif chez les enfants, de débattre de l'architecture de la cognition humaine et de ses capacités distinctes, d'évaluer les capacités de la théorie de l'esprit chez les grands singes, de développer des théories de l'autisme en tant que cécité de l'esprit (selon lesquelles les difficultés à réussir la tâche des fausses croyances sont associées à cette maladie), et de déterminer quelles régions particulières du cerveau sont associées à la capacité de raisonner sur le contenu de l'esprit d'une autre personne .

La philosophie a également aidé le domaine des sciences cognitives à éliminer les hypothèses problématiques ou dépassées, contribuant ainsi à l'évolution de la science. Les concepts de l'esprit, de l'intelligence, de la conscience et de l'émotion sont utilisés de manière omniprésente dans différents domaines, avec souvent peu d'accord sur leur signification. L'ingénierie de l'intelligence artificielle, la construction de théories psychologiques des variables de l'état mental et l'utilisation d'outils neuroscientifiques pour étudier la conscience et l'émotion nécessitent des outils conceptuels pour l'autocritique et le dialogue interdisciplinaire - précisément les outils que la philosophie peut fournir.

La philosophie - parfois représentée par la lettre grecque phi - peut contribuer à faire progresser tous les niveaux de l'entreprise scientifique, de la théorie à l'expérience. Parmi les exemples récents, citons les contributions à la biologie des cellules souches, à l'immunologie, à la symbiose et aux sciences cognitives.  

La philosophie et la connaissance scientifique.

Les exemples ci-dessus sont loin d'être les seuls : dans les sciences de la vie, la réflexion philosophique a joué un rôle important dans des questions aussi diverses que l'altruisme évolutif , le débat sur les unités de sélection, la construction d'un "arbre de vie", la prédominance des microbes dans la biosphère, la définition du gène et l'examen critique du concept d'innéité. De même, en physique, des questions fondamentales comme la définition du temps ont été enrichies par les travaux des philosophes. Par exemple, l'analyse de l'irréversibilité temporelle par Huw Price et les courbes temporelles fermées par David Lewis ont contribué à dissiper la confusion conceptuelle en physique.

Inspirés par ces exemples et bien d'autres, nous considérons que la philosophie et la science se situent sur un continuum. La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de minutie, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes. Les philosophes possédant les connaissances scientifiques pertinentes peuvent alors contribuer de manière significative à l'avancement de la science à tous les niveaux de l'entreprise scientifique, de la théorie à l'expérimentation, comme le montrent les exemples ci-dessus.

Mais comment, en pratique, faciliter la coopération entre chercheurs et philosophes ? À première vue, la solution pourrait sembler évidente : chaque communauté devrait faire un pas vers l'autre. Pourtant, ce serait une erreur de considérer cette tâche comme facile. Les obstacles sont nombreux. Actuellement, un nombre important de philosophes dédaignent la science ou ne voient pas la pertinence de la science pour leur travail. Même parmi les philosophes qui privilégient le dialogue avec les chercheurs, rares sont ceux qui ont une bonne connaissance de la science la plus récente. À l'inverse, peu de chercheurs perçoivent les avantages que peuvent leur apporter les idées philosophiques. Dans le contexte scientifique actuel, dominé par une spécialisation croissante et des demandes de financement et de résultats de plus en plus importantes, seul un nombre très limité de chercheurs a le temps et l'opportunité d'être au courant des travaux produits par les philosophes sur la science, et encore moins de les lire.

 Pour surmonter ces difficultés, nous pensons qu'une série de recommandations simples, assez facile à mettre en œuvre, peuvent aider à combler le fossé entre la science et la philosophie. La reconnexion entre la philosophie et la science est à la fois hautement souhaitable et plus réalisable en pratique que ne le suggèrent les décennies d'éloignement qui les séparent.

1) Laisser plus de place à la philosophie dans les conférences scientifiques. Il s'agit d'un mécanisme très simple permettant aux chercheurs d'évaluer l'utilité potentielle des idées des philosophes pour leurs propres recherches. Réciproquement, davantage de chercheurs pourraient participer à des conférences de philosophie, en développant les efforts d'organisations telles que l'International Society for the History, Philosophy, and Social Studies of Biology, la Philosophy of Science Association et la Society for Philosophy of Science in Practice.

2) Accueillir des philosophes dans des laboratoires et des départements scientifiques. Il s'agit d'un moyen efficace (déjà exploré par certains des auteurs et d'autres) pour les philosophes d'apprendre la science et de fournir des analyses plus appropriées et bien fondées, et pour les chercheurs de bénéficier d'apports philosophiques et de s'acclimater à la philosophie en général. C'est peut-être le moyen le plus efficace d'aider la philosophie à avoir un impact rapide et concret sur la science.

3) Co-superviser des doctorants. La co-supervision de doctorants par un chercheur et un philosophe est une excellente occasion de rendre possible l'enrichissement mutuel des deux domaines. Elle facilite la production de thèses qui sont à la fois riches sur le plan expérimental et rigoureuses sur le plan conceptuel et, ce faisant, elle forme la prochaine génération de philosophes-scientifiques.

4) Créer des programmes d'études équilibrés en science et en philosophie qui favorisent un véritable dialogue entre elles. De tels programmes existent déjà dans certains pays, mais leur développement devrait être une priorité absolue. Ils peuvent offrir aux étudiants en sciences une perspective qui les rend plus aptes à relever les défis conceptuels de la science moderne et fournir aux philosophes une base solide de connaissances scientifiques qui maximisera leur impact sur la science. Les programmes d'enseignement des sciences peuvent inclure un cours d'histoire des sciences et de philosophie des sciences. Les programmes de philosophie pourraient inclure un module de sciences.

5) Lire science et philosophie. La lecture des sciences est indispensable à la pratique de la philosophie des sciences, mais la lecture de la philosophie peut également constituer une grande source d'inspiration pour les chercheurs, comme l'illustrent certains des exemples ci-dessus. Par exemple, les clubs de lecture où les contributions scientifiques et philosophiques sont discutées constituent un moyen efficace d'intégrer la philosophie et la science.

6) Ouvrir de nouvelles sections consacrées aux questions philosophiques et conceptuelles dans les revues scientifiques. Cette stratégie serait un moyen approprié et convaincant de suggérer que le travail philosophique et conceptuel est continu avec le travail expérimental, dans la mesure où il est inspiré par celui-ci, et peut l'inspirer en retour. Cela rendrait également les réflexions philosophiques sur un domaine scientifique particulier beaucoup plus visibles pour la communauté scientifique concernée que lorsqu'elles sont publiées dans des revues de philosophie, qui sont rarement lues par les scientifiques.

Nous espérons que les mesures pratiques exposées ci-dessus encourageront une renaissance de l'intégration de la science et de la philosophie. En outre, nous soutenons que le maintien d'une allégeance étroite à la philosophie renforcera la vitalité de la science. La science moderne sans la philosophie se heurtera à un mur : le déluge de données dans chaque domaine rendra l'interprétation de plus en plus difficile, négligence et ampleur ampleur de l'histoire risquent de séparer davantage les sous-disciplines scientifiques, et l'accent mis sur les méthodes et les résultats empiriques entraînera une formation de moins en moins approfondie des étudiants. Comme l'a écrit Carl Woese : "une société qui permet à la biologie de devenir une discipline d'ingénierie, qui permet à la science de se glisser dans le rôle de modifier le monde vivant sans essayer de le comprendre, est un danger pour elle-même." Nous avons besoin d'une revigoration de la science à tous les niveaux, une revigoration qui nous rende les bénéfices de liens étroits avec la philosophie.

Auteur: Internet

Info: https://hal.archives-ouvertes.fr/hal-02269657/document. " janvier 2020. Publication collective de Lucie Laplane, Paolo Mantovani, Ralph Adolphs, Hasok Chang, Alberto Mantovani, Margaret McFall-Ngai, Carlo Rovelli, Elliott Sober, et Thomas Pradeua. Trad Mg

[ mécanisme ] [ état des lieux ] [ corps-esprit ] [ tétravalences ] [ tour d'horizon ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel

question

Réel ou imaginaire ? Comment votre cerveau fait la différence.

De nouvelles expériences montrent que le cerveau fait la distinction entre les images mentales perçues et imaginées en vérifiant si elles franchissent un "seuil de réalité".

(image - Nous confondons rarement les images qui traversent notre imagination avec des perceptions de la réalité, bien que les mêmes zones du cerveau traitent ces deux types d'images).

S'agit-il de la vraie vie ? S'agit-il d'un fantasme ?

Ce ne sont pas seulement les paroles de la chanson "Bohemian Rhapsody" de Queen. Ce sont aussi les questions auxquelles le cerveau doit constamment répondre lorsqu'il traite des flux de signaux visuels provenant des yeux et des images purement mentales issues de l'imagination. Des études de scintigraphie cérébrale ont montré à plusieurs reprises que le fait de voir quelque chose et de l'imaginer suscite des schémas d'activité neuronale très similaires. Pourtant, pour la plupart d'entre nous, les expériences subjectives qu'elles produisent sont très différentes.

"Je peux regarder par la fenêtre en ce moment même et, si je le veux, imaginer une licorne marchant dans la rue", explique Thomas Naselaris, professeur associé à l'université du Minnesota. La rue semblerait réelle et la licorne ne le serait pas. "C'est très clair pour moi", a-t-il ajouté. Le fait de savoir que les licornes sont mythiques n'entre guère en ligne de compte : Un simple cheval blanc imaginaire semblerait tout aussi irréel.

Alors pourquoi ne sommes-nous pas constamment en train d'halluciner ?" s'interroge Nadine Dijkstra, chercheuse postdoctorale à l'University College de Londres. Une étude qu'elle a dirigée, récemment publiée dans Nature Communications, apporte une réponse intrigante : Le cerveau évalue les images qu'il traite en fonction d'un "seuil de réalité". Si le signal passe le seuil, le cerveau pense qu'il est réel ; s'il ne le passe pas, le cerveau pense qu'il est imaginé.

Ce système fonctionne bien la plupart du temps, car les signaux imaginaires sont généralement faibles. Mais si un signal imaginé est suffisamment fort pour franchir le seuil, le cerveau le prend pour la réalité.

Bien que le cerveau soit très compétent pour évaluer les images dans notre esprit, il semble que "ce type de vérification de la réalité soit une lutte sérieuse", a déclaré Lars Muckli, professeur de neurosciences visuelles et cognitives à l'université de Glasgow. Les nouvelles découvertes soulèvent la question de savoir si des variations ou des altérations de ce système pourraient entraîner des hallucinations, des pensées envahissantes ou même des rêves.

"Ils ont fait un excellent travail, à mon avis, en prenant une question dont les philosophes débattent depuis des siècles et en définissant des modèles avec des résultats prévisibles et en les testant", a déclaré M. Naselaris.

Quand les perceptions et l'imagination se mélangent

L'étude de Dijkstra sur les images imaginées est née dans les premiers jours de la pandémie de Covid-19, lorsque les quarantaines et les fermetures d'usines ont interrompu son programme de travail. S'ennuyant, elle a commencé à parcourir la littérature scientifique sur l'imagination, puis a passé des heures à éplucher des documents pour trouver des comptes rendus historiques sur la façon dont les scientifiques ont testé un concept aussi abstrait. C'est ainsi qu'elle est tombée sur une étude réalisée en 1910 par la psychologue Mary Cheves West Perky.

Perky a demandé à des participants d'imaginer des fruits en regardant un mur vide. Pendant qu'ils le faisaient, elle a secrètement projeté des images extrêmement faibles de ces fruits - si faibles qu'elles étaient à peine visibles - sur le mur et a demandé aux participants s'ils voyaient quelque chose. Aucun d'entre eux n'a cru voir quelque chose de réel, mais ils ont commenté la vivacité de leur image imaginaire. "Si je n'avais pas su que j'imaginais, j'aurais cru que c'était réel", a déclaré l'un des participants.

La conclusion de Perky était que lorsque notre perception d'une chose correspond à ce que nous savons que nous imaginons, nous supposons qu'elle est imaginaire. Ce phénomène a fini par être connu en psychologie sous le nom d'effet Perky. "C'est un grand classique", déclare Bence Nanay, professeur de psychologie philosophique à l'université d'Anvers. Il est devenu en quelque sorte "obligatoire, lorsqu'on écrit sur l'imagerie, de donner son avis sur l'expérience Perky".

Dans les années 1970, le chercheur en psychologie Sydney Joelson Segal a ravivé l'intérêt pour les travaux de Perky en actualisant et en modifiant l'expérience. Dans une étude de suivi, Segal a demandé aux participants d'imaginer quelque chose, comme la ligne d'horizon de la ville de New York, pendant qu'il projetait faiblement quelque chose d'autre sur le mur, par exemple une tomate. Ce que les participants voyaient était un mélange de l'image imaginée et de l'image réelle, comme la ligne d'horizon de la ville de New York au coucher du soleil. Les résultats obtenus par Segal suggèrent que la perception et l'imagination peuvent parfois "se mélanger littéralement", a déclaré Nanay.

Toutes les études visant à reproduire les résultats de Perky n'ont pas abouti. Certaines d'entre elles ont impliqué des essais répétés pour les participants, ce qui a brouillé les résultats : Une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Sous la direction de Steve Fleming, expert en métacognition à l'University College London, Dijkstra a donc mis au point une version moderne de l'expérience qui permet d'éviter ce problème. Dans leur étude, les participants n'ont jamais eu l'occasion de modifier leurs réponses car ils n'ont été testés qu'une seule fois. Les travaux ont permis de modéliser et d'examiner l'effet Perky et deux autres hypothèses concurrentes sur la manière dont le cerveau distingue la réalité de l'imagination.

Quand imagination et perception se mélangent

L'étude de Dijkstra sur les images imaginées est née dans les premiers jours de la pandémie de Covid-19, lorsque les quarantaines et les fermetures d'usines ont interrompu son programme de travail. S'ennuyant, elle a commencé à consulter la littérature scientifique sur l'imagination, puis a passé des heures à éplucher les journaux pour trouver des comptes rendus historiques sur la façon dont les scientifiques ont testé un concept aussi abstrait. C'est ainsi qu'elle est tombée sur une étude réalisée en 1910 par la psychologue Mary Cheves West Perky.

Perky a demandé à des participants d'imaginer des fruits en regardant un mur vide. Pendant qu'ils le faisaient, elle a secrètement projeté des images extrêmement faibles de ces fruits - si faibles qu'elles étaient à peine visibles - sur le mur et a demandé aux participants s'ils voyaient quelque chose. Aucun d'entre eux n'a cru voir quelque chose de réel, mais ils ont commenté la vivacité de leur image imaginaire. "Si je n'avais pas su que j'imaginais, j'aurais cru que c'était réel", a déclaré l'un des participants.

La conclusion de Perky était que lorsque notre perception d'une chose correspond à ce que nous savons que nous imaginons, nous supposons qu'elle est imaginaire. Ce phénomène a fini par être connu en psychologie sous le nom d'effet Perky. "C'est un grand classique", déclare Bence Nanay, professeur de psychologie philosophique à l'université d'Anvers. Il est devenu en quelque sorte "obligatoire, lorsqu'on écrit sur l'imagerie, de donner son avis sur l'expérience Perky".

Dans les années 1970, le chercheur en psychologie Sydney Joelson Segal a ravivé l'intérêt pour les travaux de Perky en actualisant et en modifiant l'expérience. Dans une étude de suivi, Segal a demandé aux participants d'imaginer quelque chose, comme la ligne d'horizon de la ville de New York, pendant qu'il projetait faiblement quelque chose d'autre sur le mur, par exemple une tomate. Ce que les participants voyaient était un mélange de l'image imaginée et de l'image réelle, comme la ligne d'horizon de la ville de New York au coucher du soleil. Les résultats obtenus par Segal suggèrent que la perception et l'imagination peuvent parfois "se mélanger littéralement", a déclaré Nanay.

Toutes les études visant à reproduire les résultats de Perky n'ont pas abouti. Certaines d'entre elles ont impliqué des essais répétés pour les participants, ce qui a brouillé les résultats : Une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Sous la direction de Steve Fleming, expert en métacognition à l'University College London, Dijkstra a donc mis au point une version moderne de l'expérience qui permet d'éviter ce problème. Dans leur étude, les participants n'ont jamais eu l'occasion de modifier leurs réponses car ils n'ont été testés qu'une seule fois. Les travaux ont permis de modéliser et d'examiner l'effet Perky et deux autres hypothèses concurrentes sur la manière dont le cerveau distingue la réalité de l'imagination.

Réseaux d'évaluation

L'une de ces hypothèses alternatives affirme que le cerveau utilise les mêmes réseaux pour la réalité et l'imagination, mais que les scanners cérébraux d'imagerie par résonance magnétique fonctionnelle (IRMf) n'ont pas une résolution suffisamment élevée pour permettre aux neuroscientifiques de discerner les différences dans la manière dont les réseaux sont utilisés. L'une des études de Muckli, par exemple, suggère que dans le cortex visuel du cerveau, qui traite les images, les expériences imaginaires sont codées dans une couche plus superficielle que les expériences réelles.

Avec l'imagerie cérébrale fonctionnelle, "nous plissons les yeux", explique Muckli. Dans chaque équivalent d'un pixel d'un scanner cérébral, il y a environ 1 000 neurones, et nous ne pouvons pas voir ce que fait chacun d'entre eux.

L'autre hypothèse, suggérée par des études menées par Joel Pearson à l'université de Nouvelle-Galles du Sud, est que les mêmes voies cérébrales codent à la fois pour l'imagination et la perception, mais que l'imagination n'est qu'une forme plus faible de la perception.

Pendant le confinement de la pandémie, Dijkstra et Fleming ont recruté des participants pour une étude en ligne. Ils ont demandé à 400 participants de regarder une série d'images statiques et d'imaginer des lignes diagonales s'inclinant vers la droite ou vers la gauche. Entre chaque essai, ils devaient évaluer la vivacité de l'image sur une échelle de 1 à 5. Ce que les participants ne savaient pas, c'est qu'au cours du dernier essai, les chercheurs ont lentement augmenté l'intensité d'une faible image projetée de lignes diagonales - inclinées soit dans la direction que les participants devaient imaginer, soit dans la direction opposée. Les chercheurs ont ensuite demandé aux participants si ce qu'ils voyaient était réel ou imaginé.

Dijkstra s'attendait à trouver l'effet Perky, c'est-à-dire que lorsque l'image imaginée correspondait à l'image projetée, les participants considéreraient la projection comme le produit de leur imagination. Au lieu de cela, les participants étaient beaucoup plus enclins à penser que l'image était réellement présente.

Pourtant, il y avait au moins un écho de l'effet Perky dans ces résultats : Les participants qui pensaient que l'image était là la voyaient plus clairement que les participants qui pensaient qu'il s'agissait de leur imagination.

Dans une deuxième expérience, Dijkstra et son équipe n'ont pas présenté d'image lors du dernier essai. Mais le résultat a été le même : les personnes qui considéraient que ce qu'elles voyaient était plus vivant étaient également plus susceptibles de le considérer comme réel.

Ces observations suggèrent que l'imagerie dans notre esprit et les images réelles perçues dans le monde se mélangent, a déclaré Mme Dijkstra. "Lorsque ce signal mixte est suffisamment fort ou vif, nous pensons qu'il reflète la réalité. Il est probable qu'il existe un seuil au-delà duquel les signaux visuels semblent réels au cerveau et en deçà duquel ils semblent imaginaires, pense-t-elle. Mais il pourrait également s'agir d'un continuum plus graduel.

Pour savoir ce qui se passe dans un cerveau qui tente de distinguer la réalité de l'imagination, les chercheurs ont réanalysé les scanners cérébraux d'une étude antérieure au cours de laquelle 35 participants avaient imaginé et perçu avec vivacité diverses images, allant de l'arrosoir au coq.

Conformément à d'autres études, ils ont constaté que les schémas d'activité dans le cortex visuel étaient très similaires dans les deux scénarios. "L'imagerie vive ressemble davantage à la perception, mais il est moins évident de savoir si la perception faible ressemble davantage à l'imagerie", a déclaré M. Dijkstra. Il y a des indices selon lesquels le fait de regarder une image faible pourrait produire un schéma similaire à celui de l'imagination, mais les différences n'étaient pas significatives et doivent être examinées de manière plus approfondie.

(image photo - Les scanners des fonctions cérébrales montrent que les images imaginées et perçues déclenchent des schémas d'activité similaires, mais que les signaux sont plus faibles pour les images imaginées (à gauche).

Ce qui est clair, c'est que le cerveau doit être capable de réguler avec précision la force d'une image mentale pour éviter la confusion entre l'imaginaire et la réalité. "Le cerveau doit faire preuve d'un grand sens de l'équilibre", explique M. Naselaris. "Dans un certain sens, il va interpréter l'imagerie mentale aussi littéralement que l'imagerie visuelle.

Les chercheurs ont découvert que l'intensité du signal pouvait être lue ou régulée dans le cortex frontal, qui analyse les émotions et les souvenirs (entre autres fonctions). Mais on ne sait pas encore exactement ce qui détermine la vivacité d'une image mentale ou la différence entre l'intensité du signal d'imagerie et le seuil de réalité. Il pourrait s'agir d'un neurotransmetteur, de modifications des connexions neuronales ou de quelque chose de totalement différent, a déclaré Naselaris.

Il pourrait même s'agir d'un sous-ensemble de neurones différent et non identifié qui fixe le seuil de réalité et détermine si un signal doit être dévié vers une voie pour les images imaginées ou une voie pour les images réellement perçues - une découverte qui relierait parfaitement la première et la troisième hypothèse, a déclaré Muckli.

Même si les résultats sont différents des siens, qui soutiennent la première hypothèse, Muckli apprécie leur raisonnement. Il s'agit d'un "article passionnant", a-t-il déclaré. C'est une "conclusion intrigante".

Selon Peter Tse, professeur de neurosciences cognitives au Dartmouth College, l'imagination est un processus qui va bien au-delà de la simple observation de quelques lignes sur un fond bruyant. L'imagination, dit-il, c'est la capacité de regarder ce qu'il y a dans votre placard et de décider ce que vous allez faire pour le dîner, ou (si vous êtes les frères Wright) de prendre une hélice, de la coller sur une aile et de l'imaginer en train de voler.

Les différences entre les résultats de Perky et ceux de Dijkstra pourraient être entièrement dues à des différences dans leurs procédures. Mais elles laissent également entrevoir une autre possibilité : nous pourrions percevoir le monde différemment de nos ancêtres.

L'étude de Mme Dijkstra ne portait pas sur la croyance en la réalité d'une image, mais plutôt sur le "sentiment" de la réalité. Les auteurs supposent qu'en raison de la banalisation des images projetées, des vidéos et autres représentations de la réalité au XXIe siècle, notre cerveau a peut-être appris à évaluer la réalité d'une manière légèrement différente qu'il y a un siècle.

Même si les participants à cette expérience "ne s'attendaient pas à voir quelque chose, ils s'y attendaient quand même plus que si vous étiez en 1910 et que vous n'aviez jamais vu de projecteur de votre vie", a déclaré M. Dijkstra. Le seuil de réalité est donc probablement beaucoup plus bas aujourd'hui que par le passé, de sorte qu'il faut peut-être une image imaginée beaucoup plus vive pour franchir le seuil et troubler le cerveau.

Une base pour les hallucinations

Ces résultats soulèvent la question de savoir si le mécanisme pourrait s'appliquer à un large éventail de conditions dans lesquelles la distinction entre l'imagination et la perception disparaît. M. Dijkstra suppose, par exemple, que lorsque les gens commencent à s'endormir et que la réalité commence à se confondre avec le monde des rêves, leur seuil de réalité pourrait s'abaisser. Dans des cas comme la schizophrénie, où il y a une "rupture générale de la réalité", il pourrait y avoir un problème d'étalonnage, a déclaré M. Dijkstra.

"Dans la psychose, il se peut que l'imagerie soit si bonne qu'elle atteigne le seuil, ou que le seuil soit décalé", a déclaré Karolina Lempert, professeur adjoint de psychologie à l'université Adelphi, qui n'a pas participé à l'étude. Certaines études ont montré que les personnes qui ont des hallucinations présentent une sorte d'hyperactivité sensorielle, ce qui suggère que le signal de l'image est augmenté. Mais des recherches supplémentaires sont nécessaires pour établir le mécanisme par lequel les hallucinations apparaissent, a-t-elle ajouté. "Après tout, la plupart des personnes qui font l'expérience d'images vivantes n'ont pas d'hallucinations.

Nanay pense qu'il serait intéressant d'étudier les seuils de réalité des personnes souffrant d'hyperphantasie, une imagination extrêmement vive qu'elles confondent souvent avec la réalité. De même, il existe des situations dans lesquelles les personnes souffrent d'expériences imaginées très fortes qu'elles savent ne pas être réelles, comme dans le cas d'hallucinations sous l'effet de drogues ou de rêves lucides. Dans des conditions telles que le syndrome de stress post-traumatique, les gens "commencent souvent à voir des choses qu'ils ne voulaient pas voir", et cela leur semble plus réel que cela ne devrait l'être, a déclaré M. Dijkstra.

Certains de ces problèmes peuvent être liés à des défaillances des mécanismes cérébraux qui aident normalement à faire ces distinctions. Dijkstra pense qu'il serait utile d'étudier les seuils de réalité des personnes atteintes d'aphantasie, l'incapacité d'imaginer consciemment des images mentales.

Les mécanismes par lesquels le cerveau distingue ce qui est réel de ce qui est imaginaire pourraient également être liés à la manière dont il distingue les images réelles des images factices (inauthentiques). Dans un monde où les simulations se rapprochent de la réalité, il sera de plus en plus difficile de faire la distinction entre les vraies et les fausses images, a déclaré M. Lempert. "Je pense que cette question est plus importante que jamais.

Mme Dijkstra et son équipe s'efforcent à présent d'adapter leur expérience pour qu'elle fonctionne dans un scanner cérébral. "Maintenant que le confinement est terminé, je veux à nouveau examiner des cerveaux", a-t-elle déclaré.

Elle espère enfin découvrir s'il est possible de manipuler ce système pour rendre l'imagination plus réelle. Par exemple, la réalité virtuelle et les implants neuronaux font actuellement l'objet de recherches pour des traitements médicaux, notamment pour aider les aveugles à retrouver la vue. La capacité de rendre les expériences plus ou moins réelles, dit-elle, pourrait être très importante pour ces applications.

Cela n'a rien d'extraordinaire, étant donné que la réalité est une construction du cerveau.

"Sous notre crâne, tout est inventé", explique Muckli. "Nous construisons entièrement le monde, dans sa richesse, ses détails, ses couleurs, ses sons, son contenu et son excitation. ... Il est créé par nos neurones".

Cela signifie que la réalité d'une personne sera différente de celle d'une autre, a déclaré M. Dijkstra : "La frontière entre l'imagination et la réalité n'est pas si solide.

Auteur: Internet

Info: https://www.quantamagazine.org/ Yasemin Saplakoglu, Staff Writer, May 24, 2023

[ intellection ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution subatomique

Une nouvelle idée pour assembler la vie         (Avec l'aimable autorisation de Lee Cronin)

Si nous voulons comprendre des constructions complexes, telles que nous-mêmes, la théorie de l'assemblage affirme que nous devons tenir compte de toute l'histoire de la création de ces entités, du pourquoi et comment elles sont ce qu'elles sont.

La théorie de l'assemblage explique pourquoi, étant donné les possibilités combinatoires apparemment infinies, nous n'observons qu'un certain sous-ensemble d'objets dans notre univers.

La vie sur d'autres mondes - si elle existe - pourrait être si étrangère qu'elle en serait méconnaissable. Il n'est pas certain que la biologie extraterrestre utilise la même chimie que celle de la Terre, avec des éléments constitutifs familiers tels que l'ADN et les protéines. Avec cette approche les scientifiques pourraient même repérer les signatures de ces formes de vie sans savoir qu'elles sont le fruit de la biologie.

Ce problème est loin d'être hypothétique. En avril, la sonde Juice de l'Agence spatiale européenne a décollé de la Guyane française en direction de Jupiter et de ses lunes. L'une de ces lunes, Europe, abrite un océan profond et saumâtre sous sa croûte gelée et figure parmi les endroits les plus prometteurs du système solaire pour la recherche d'une vie extraterrestre. L'année prochaine, le vaisseau spatial Europa Clipper de la NASA sera lancé, lui aussi en direction d'Europe. Les deux engins spatiaux sont équipés d'instruments embarqués qui rechercheront les empreintes de molécules organiques complexes, signe possible de vie sous la glace. En 2027, la NASA prévoit de lancer un hélicoptère ressemblant à un drone, appelé Dragonfly, pour survoler la surface de Titan, une lune de Saturne, un monde brumeux, riche en carbone, avec des lacs d'hydrocarbures liquides qui pourraient être propices à la vie, mais pas telle que nous la connaissons.

Ces missions et d'autres encore se heurteront au même obstacle que celui auquel se heurtent les scientifiques depuis qu'ils ont tenté pour la première fois de rechercher des signes de biologie martienne avec les atterrisseurs Viking dans les années 1970 : Il n'y a pas de signature définitive de la vie.

C'est peut-être sur le point de changer. En 2021, une équipe dirigée par Lee Cronin, de l'université de Glasgow, en Écosse, et Sara Walker, de l'université d'État de l'Arizona, a proposé une méthode très générale pour identifier les molécules produites par les systèmes vivants, même ceux qui utilisent des chimies inconnues. Leur méthode suppose simplement que les formes de vie extraterrestres produisent des molécules dont la complexité chimique est similaire à celle de la vie sur Terre.

Appelée théorie de l'assemblage, l'idée qui sous-tend la stratégie des deux chercheurs a des objectifs encore plus ambitieux. Comme l'indique une récente série de publications, elle tente d'expliquer pourquoi des choses apparemment improbables, telles que vous et moi, existent. Et elle cherche cette explication non pas, à la manière habituelle de la physique, dans des lois physiques intemporelles, mais dans un processus qui imprègne les objets d'histoires et de souvenirs de ce qui les a précédés. Elle cherche même à répondre à une question qui laisse les scientifiques et les philosophes perplexes depuis des millénaires : qu'est-ce que la vie, de toute façon ?

Il n'est pas surprenant qu'un projet aussi ambitieux ait suscité le scepticisme. Ses partisans n'ont pas encore précisé comment il pourrait être testé en laboratoire. Et certains scientifiques se demandent si la théorie de l'assemblage peut même tenir ses promesses les plus modestes, à savoir distinguer la vie de la non-vie et envisager la complexité d'une nouvelle manière.

La théorie de l'assemblage a évolué, en partie, pour répondre au soupçon de Lee Cronin selon lequel "les molécules complexes ne peuvent pas simplement émerger, parce que l'espace combinatoire est trop vaste".

Mais d'autres estiment que la théorie de l'assemblage n'en est qu'à ses débuts et qu'il existe une réelle possibilité qu'elle apporte une nouvelle perspective à la question de la naissance et de l'évolution de la complexité. "Il est amusant de s'engager dans cette voie", a déclaré le théoricien de l'évolution David Krakauer, président de l'Institut Santa Fe. Selon lui, la théorie de l'assemblage permet de découvrir l'histoire contingente des objets, une question ignorée par la plupart des théories de la complexité, qui ont tendance à se concentrer sur la façon dont les choses sont, mais pas sur la façon dont elles sont devenues telles. Paul Davies, physicien à l'université de l'Arizona, est d'accord avec cette idée, qu'il qualifie de "nouvelle, susceptible de transformer notre façon de penser la complexité".

Sur l'ordre des choses

La théorie de l'assemblage est née lorsque M. Cronin s'est demandé pourquoi, compte tenu du nombre astronomique de façons de combiner différents atomes, la nature fabrique certaines molécules et pas d'autres. C'est une chose de dire qu'un objet est possible selon les lois de la physique, c'en est une autre de dire qu'il existe une voie réelle pour le fabriquer à partir de ses composants. "La théorie de l'assemblage a été élaborée pour traduire mon intuition selon laquelle les molécules complexes ne peuvent pas simplement émerger parce que l'espace combinatoire est trop vaste", a déclaré M. Cronin.

Walker, quant à lui, s'est penché sur la question de l'origine de la vie - une question étroitement liée à la fabrication de molécules complexes, car celles des organismes vivants sont bien trop complexes pour avoir été assemblées par hasard. Walker s'est dit que quelque chose avait dû guider ce processus avant même que la sélection darwinienne ne prenne le dessus.

Cronin et Walker ont uni leurs forces après avoir participé à un atelier d'astrobiologie de la NASA en 2012. "Sara et moi discutions de la théorie de l'information, de la vie et des voies minimales pour construire des machines autoreproductibles", se souvient M. Cronin. "Et il m'est apparu très clairement que nous convergions tous les deux sur le fait qu'il manquait une 'force motrice' avant la biologie."

Aujourd'hui, la théorie de l'assemblage fournit une explication cohérente et mathématiquement précise de l'apparente contingence historique de la fabrication des objets - pourquoi, par exemple, ne peut-on pas développer de fusées avant d'avoir d'abord la vie multicellulaire, puis l'homme, puis la civilisation et la science. Il existe un ordre particulier dans lequel les objets peuvent apparaître.

"Nous vivons dans un univers structuré de manière récursive*", a déclaré M. Walker. "La plupart des structures doivent être construites à partir de la mémoire du passé. L'information se construit au fil du temps.

Cela peut sembler intuitivement évident, mais il est plus difficile de répondre à certaines questions sur l'ordre des choses. Les dinosaures ont-ils dû précéder les oiseaux ? Mozart devait-il précéder John Coltrane ? Peut-on dire quelles molécules ont nécessairement précédé l'ADN et les protéines ?

Quantifier la complexité

La théorie de l'assemblage repose sur l'hypothèse apparemment incontestable que les objets complexes résultent de la combinaison de nombreux objets plus simples. Selon cette théorie, il est possible de mesurer objectivement la complexité d'un objet en examinant la manière dont il a été fabriqué. Pour ce faire, on calcule le nombre minimum d'étapes nécessaires pour fabriquer l'objet à partir de ses ingrédients, que l'on quantifie en tant qu'indice d'assemblage (IA).

En outre, pour qu'un objet complexe soit intéressant d'un point de vue scientifique, il faut qu'il y en ait beaucoup. Des objets très complexes peuvent résulter de processus d'assemblage aléatoires - par exemple, on peut fabriquer des molécules de type protéine en reliant n'importe quels acides aminés en chaînes. En général, cependant, ces molécules aléatoires ne feront rien d'intéressant, comme se comporter comme une enzyme. En outre, les chances d'obtenir deux molécules identiques de cette manière sont extrêmement faibles.

En revanche, les enzymes fonctionnelles sont fabriquées de manière fiable à maintes reprises en biologie, car elles sont assemblées non pas au hasard, mais à partir d'instructions génétiques transmises de génération en génération. Ainsi, si le fait de trouver une seule molécule très complexe ne vous dit rien sur la manière dont elle a été fabriquée, il est improbable de trouver plusieurs molécules complexes identiques, à moins qu'un processus orchestré - peut-être la vie - ne soit à l'œuvre.

Cronin et Walker ont calculé que si une molécule est suffisamment abondante pour être détectable, son indice d'assemblage peut indiquer si elle a été produite par un processus organisé et réaliste. L'intérêt de cette approche est qu'elle ne suppose rien sur la chimie détaillée de la molécule elle-même, ni sur celle de l'entité vivante qui l'a produite. Elle est chimiquement agnostique. C'est ce qui la rend particulièrement précieuse lorsque nous recherchons des formes de vie qui pourraient ne pas être conformes à la biochimie terrestre, a déclaré Jonathan Lunine, planétologue à l'université Cornell et chercheur principal d'une mission proposée pour rechercher la vie sur la lune glacée de Saturne, Encelade.

"Il est bien qu'au moins une technique relativement agnostique soit embarquée à bord des missions de détection de la vie", a déclaré Jonathan Lunine.

Il ajoute qu'il est possible d'effectuer les mesures requises par la théorie de l'assemblage avec des techniques déjà utilisées pour étudier la chimie des surfaces planétaires. "La mise en œuvre de mesures permettant l'utilisation de la théorie de l'assemblage pour l'interprétation des données est éminemment réalisable", a-t-il déclaré.

La mesure du travail d'une vie

Ce qu'il faut, c'est une méthode expérimentale rapide et facile pour déterminer l'IA (indice d'assemblage) de certaines molécules. À l'aide d'une base de données de structures chimiques, Cronin, Walker et leurs collègues ont conçu un moyen de calculer le nombre minimum d'étapes nécessaires à la fabrication de différentes structures moléculaires. Leurs résultats ont montré que, pour les molécules relativement petites, l'indice d'assemblage est à peu près proportionnel au poids moléculaire. Mais pour les molécules plus grandes (tout ce qui est plus grand que les petits peptides, par exemple), cette relation est rompue.

Dans ces cas, les chercheurs ont découvert qu'ils pouvaient estimer l'IA à l'aide de la spectrométrie de masse, une technique déjà utilisée par le rover Curiosity de la NASA pour identifier les composés chimiques à la surface de Mars, et par la sonde Cassini de la NASA pour étudier les molécules qui jaillissent d'Encelade.

La spectrométrie de masse décompose généralement les grosses molécules en fragments. Cronin, Walker et leurs collègues ont constaté qu'au cours de ce processus, les grosses molécules à IA élevé se fracturent en mélanges de fragments plus complexes que celles à IA faible (comme les polymères simples et répétitifs). Les chercheurs ont ainsi pu déterminer de manière fiable l'IA (indice d'assemblage) en fonction de la complexité du spectre de masse de la molécule.

Lorsque les chercheurs ont ensuite testé la technique, ils ont constaté que les mélanges complexes de molécules produites par des systèmes vivants - une culture de bactéries E. coli, des produits naturels comme le taxol (un métabolite de l'if du Pacifique aux propriétés anticancéreuses), de la bière et des cellules de levure - présentaient généralement des IA moyens nettement plus élevés que les minéraux ou les simples substances organiques.

L'analyse est susceptible de donner lieu à des faux négatifs : certains produits issus de systèmes vivants, tels que le scotch Ardbeg single malt, ont des IA qui suggèrent une origine non vivante. Mais ce qui est peut-être plus important encore, c'est que l'expérience n'a produit aucun faux positif : Les systèmes abiotiques ne peuvent pas obtenir des IA suffisamment élevés pour imiter la biologie. Les chercheurs ont donc conclu que si un échantillon doté d'un IA moléculaire élevé est mesuré sur un autre monde, il est probable qu'il ait été fabriqué par une entité que l'on pourrait qualifier de vivante.

(Photo-schéma : Une échelle de la vie)

Les chercheurs ont établi/estimé l'indice d'assemblage (IA) de substance variées par des mesures répétés de leurs structures moléculaires, Seules celles assemblées biologiquement ont un AI au-dessus d'un certain palier. 

Non biologique        (vert)

Indice               bas        moyen       haut

charbon             10...    12

quarz                    11... 12

granit                 10  ..   12..   15

Biologique               (jaune)

levure                10                         24

urine                9                          ...   27

eau de mer      9                                 ....28

e-Coli                                    15                        31

bière                 10                                 ..            34

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.1038/s41467-021-23258-x)

La spectrométrie de masse ne fonctionnerait que dans le cadre de recherches astrobiologiques ayant accès à des échantillons physiques, c'est-à-dire des missions d'atterrissage ou des orbiteurs comme Europa Clipper, qui peuvent ramasser et analyser des molécules éjectées de la surface d'un monde. Mais Cronin et ses collègues viennent de montrer qu'ils peuvent mesurer l'IA moléculaire en utilisant deux autres techniques qui donnent des résultats cohérents. L'une d'entre elles, la spectroscopie infrarouge, pourrait être utilisée par des instruments tels que ceux du télescope spatial James Webb, qui étudient à distance la composition chimique de mondes lointains.

Cela ne veut pas dire que ces méthodes de détection moléculaire offrent un instrument de mesure précis permettant de passer de la pierre au reptile. Hector Zenil, informaticien et biotechnologue à l'université de Cambridge, a souligné que la substance présentant l'IA le plus élevé de tous les échantillons testés par le groupe de Glasgow - une substance qui, selon cette mesure, pourrait être considérée comme la plus "biologique" - n'était pas une bactérie.

C'était de la bière.

Se débarrasser des chaînes du déterminisme

La théorie de l'assemblage prédit que des objets comme nous ne peuvent pas naître isolément - que certains objets complexes ne peuvent émerger qu'en conjonction avec d'autres. C'est intuitivement logique : l'univers n'a jamais pu produire un seul être humain. Pour qu'il y ait des êtres humains, il faut qu'il y en ait beaucoup.

La physique traditionnelle n'a qu'une utilité limitée lorsqu'il s'agit de prendre en compte des entités spécifiques et réelles telles que les êtres humains en général (et vous et moi en particulier). Elle fournit les lois de la nature et suppose que des résultats spécifiques sont le fruit de conditions initiales spécifiques. Selon ce point de vue, nous devrions avoir été codés d'une manière ou d'une autre dans les premiers instants de l'univers. Mais il faut certainement des conditions initiales extrêmement bien réglées pour que l'Homo sapiens (et a fortiori vous) soit inévitable.

La théorie de l'assemblage, selon ses défenseurs, échappe à ce type d'image surdéterminée. Ici, les conditions initiales n'ont pas beaucoup d'importance. Les informations nécessaires à la fabrication d'objets spécifiques tels que nous n'étaient pas présentes au départ, mais se sont accumulées au cours du processus d'évolution cosmique, ce qui nous dispense de faire porter toute la responsabilité à un Big Bang incroyablement bien réglé. L'information "est dans le chemin", a déclaré M. Walker, "pas dans les conditions initiales".

Cronin et Walker ne sont pas les seuls scientifiques à tenter d'expliquer que les clés de la réalité observée pourraient bien ne pas résider dans des lois universelles, mais dans la manière dont certains objets sont assemblés et se transforment en d'autres. La physicienne théorique Chiara Marletto, de l'université d'Oxford, développe une idée similaire avec le physicien David Deutsch. Leur approche, qu'ils appellent la théorie des constructeurs et que Marletto considère comme "proche dans l'esprit" de la théorie de l'assemblage, examine quels types de transformations sont possibles et lesquels ne le sont pas.

"La théorie des constructeurs parle de l'univers des tâches capables d'effectuer certaines transformations", explique M. Cronin. "On peut considérer qu'elle limite ce qui peut se produire dans le cadre des lois de la physique. La théorie de l'assemblage, ajoute-t-il, ajoute le temps et l'histoire à cette équation.

Pour expliquer pourquoi certains objets sont fabriqués et d'autres non, la théorie de l'assemblage identifie une hiérarchie imbriquée de quatre "univers" distincts.

1 Dans l'univers de l'assemblage, toutes les permutations des éléments de base sont autorisées. 2 Dans l'univers de l'assemblage possible, les lois de la physique limitent ces combinaisons, de sorte que seuls certains objets sont réalisables. 3 L'univers de l'assemblage contingenté élague alors le vaste éventail d'objets physiquement autorisés en sélectionnant ceux qui peuvent effectivement être assemblés selon des chemins possibles. 4 Le quatrième univers est l'assemblage observé, qui comprend uniquement les processus d'assemblage qui ont généré les objets spécifiques que nous voyons actuellement.

(Photo - schéma montrant l'univers de l'assemblage dès son origine via un entonnoir inversé présentant ces 4 étapes, qui élargissent en descendant)

1 Univers assembleur

Espace non contraint contenant toutes les permutations possibles des blocs de base de l'univers

2 Assemblage possibles

Seuls les objets physiquement possibles existent, limités par les lois de la physique.

3 Assemblages contingents

Objets qui peuvent effectivement être assemblés en utilisant des chemins possibles

4 Assemblage dans le réel

Ce que nous pouvons observer

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.48550/arXiv.2206.02279)

La théorie de l'assemblage explore la structure de tous ces univers, en utilisant des idées tirées de l'étude mathématique des graphes, ou réseaux de nœuds interconnectés. Il s'agit d'une "théorie de l'objet d'abord", a déclaré M. Walker, selon laquelle "les choses [dans la théorie] sont les objets qui sont effectivement fabriqués, et non leurs composants".

Pour comprendre comment les processus d'assemblage fonctionnent dans ces univers notionnels, prenons le problème de l'évolution darwinienne. Conventionnellement, l'évolution est quelque chose qui "s'est produit" une fois que des molécules répliquées sont apparues par hasard - un point de vue qui risque d'être une tautologie (affirmation/certitude), parce qu'il semble dire que l'évolution a commencé une fois que des molécules évolutives ont existé. Les partisans de la théorie de l'assemblage et de la théorie du constructeur recherchent au contraire "une compréhension quantitative de l'évolution ancrée dans la physique", a déclaré M. Marletto.

Selon la théorie de l'assemblage, pour que l'évolution darwinienne puisse avoir lieu, il faut que quelque chose sélectionne de multiples copies d'objets à forte intelligence artificielle dans l'assemblage possible. Selon M. Cronin, la chimie à elle seule pourrait en être capable, en réduisant des molécules relativement complexes à un petit sous-ensemble. Les réactions chimiques ordinaires "sélectionnent" déjà certains produits parmi toutes les permutations possibles parce que leur vitesse de réaction est plus rapide.

Les conditions spécifiques de l'environnement prébiotique, telles que la température ou les surfaces minérales catalytiques, pourraient donc avoir commencé à vidanger/filtrer le pool des précurseurs moléculaires de la vie parmi ceux de l'assemblage possible. Selon la théorie de l'assemblage, ces préférences prébiotiques seront "mémorisées" dans les molécules biologiques actuelles : Elles encodent leur propre histoire. Une fois que la sélection darwinienne a pris le dessus, elle a favorisé les objets les plus aptes à se répliquer. Ce faisant, ce codage de l'histoire s'est encore renforcé. C'est précisément la raison pour laquelle les scientifiques peuvent utiliser les structures moléculaires des protéines et de l'ADN pour faire des déductions sur les relations évolutives des organismes.

Ainsi, la théorie de l'assemblage "fournit un cadre permettant d'unifier les descriptions de la sélection en physique et en biologie", écrivent Cronin, Walker et leurs collègues. Plus un objet est "assemblé", plus il faut de sélections successives pour qu'il parvienne à l'existence.

"Nous essayons d'élaborer une théorie qui explique comment la vie naît de la chimie", a déclaré M. Cronin, "et de le faire d'une manière rigoureuse et vérifiable sur le plan empirique".

Une mesure pour tous les gouverner ?

Krakauer estime que la théorie de l'assemblage et la théorie du constructeur offrent toutes deux de nouvelles façons stimulantes de réfléchir à la manière dont les objets complexes prennent naissance. "Ces théories sont davantage des télescopes que des laboratoires de chimie", a-t-il déclaré. "Elles nous permettent de voir les choses, pas de les fabriquer. Ce n'est pas du tout une mauvaise chose et cela pourrait être très puissant".

Mais il prévient que "comme pour toute la science, la preuve sera dans le pudding".

Zenil, quant à lui, estime que, compte tenu de l'existence d'une liste déjà considérable de mesures de la complexité telles que la complexité de Kolmogorov, la théorie de l'assemblage ne fait que réinventer la roue. Marletto n'est pas d'accord. "Il existe plusieurs mesures de la complexité, chacune capturant une notion différente de cette dernière", a-t-elle déclaré. Mais la plupart de ces mesures ne sont pas liées à des processus réels. Par exemple, la complexité de Kolmogorov suppose une sorte d'appareil capable d'assembler tout ce que les lois de la physique permettent. Il s'agit d'une mesure appropriée à l'assemblage possible, a déclaré Mme Marletto, mais pas nécessairement à l'assemblage observé. En revanche, la théorie de l'assemblage est "une approche prometteuse parce qu'elle se concentre sur des propriétés physiques définies de manière opérationnelle", a-t-elle déclaré, "plutôt que sur des notions abstraites de complexité".

Selon M. Cronin, ce qui manque dans les mesures de complexité précédentes, c'est un sens de l'histoire de l'objet complexe - les mesures ne font pas la distinction entre une enzyme et un polypeptide aléatoire.

Cronin et Walker espèrent que la théorie de l'assemblage permettra à terme de répondre à des questions très vastes en physique, telles que la nature du temps et l'origine de la deuxième loi de la thermodynamique. Mais ces objectifs sont encore lointains. "Le programme de la théorie de l'assemblage n'en est qu'à ses débuts", a déclaré Mme Marletto. Elle espère voir la théorie mise à l'épreuve en laboratoire. Mais cela pourrait aussi se produire dans la nature, dans le cadre de la recherche de processus réalistes se déroulant sur des mondes extraterrestres.

 

Auteur: Internet

Info: https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=78bedba296 - Philip Ball , contributing Writer,  4 mai 2023. *Qui peut être répété un nombre indéfini de fois par l'application de la même règle.

[ ergodicité mystère ] [ exobiologie ] [ astrobiologie ] [ exploration spatiale ] [ origine de la vie ] [ xénobiologie ] [ itération nécessaire ] [ ordre caché ] [ univers mécanique ] [ théorie-pratique ] [ macromolécules ] [ progression orthogonale ] [ décentrement anthropique ]

 

Commentaires: 0

Ajouté à la BD par miguel

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

Afrique-Occident

Robert Farris Thompson: les canons du Cool
Une bouteille de Cinzano, une boîte de fixatif, un chandelier à sept branches, une machette et un juke-box cassé sont des objets de dévotion ornant l'autel d'un temple vodun ("vaudou") en périphérie de Port-au-Prince. Le temple est situé dans l'enceinte d'André Pierre, prêtre vodun et peintre, en bordure d'un fossé sur la route du Cap-Haïtien. Il y a des voitures accidentées dans la cour, des chiens, des chèvres et un petit taureau attaché. En arrivant de l'aéroport international François Duvalier, l'esprit prédisposé aux présages, je ne peux m'empêcher de remarquer un grand panneau de signalisation à proximité. On y lit "LA ROUTE TUE ET BLESSE."

Robert Farris Thompson et moi sommes descendus de New York vers Haïti pour passer le week-end avec André Pierre et Madame Nerva, une prêtresse vaudou. Thompson est historien de l'art, professeur titulaire à Yale et maître au Timothy Dwight College. Je suis un de ses anciens élèves, venu voir Bob faire ce qu'il nomme "un petit sondage". André Pierre est le Fra Angelico haïtien, un clerc vodun dont les toiles sont accrochées au musée national de Haïti; des copies de son travail remplissent les porte-cartes de l'aéroport. La femme, les enfants et les enfants des cousins ​​d'André Pierre légument dans l'ombre alors que Thompson fait pénétrer sa voiture de location verte dans l'enceinte, criant: "Bam nouvelle" et "Comment ouyé?"

Nous retrouvons André Pierre, petit, noir, visage marqué, dans la chaleur de son atelier. Les murs sont couverts de brillants motifs vodun - diptyques et triptyques d'Ogûn, dieu du fer; Agoué, seigneur de la mer; Erzuli, déesse de l'amour; et Damballah, dieu serpent de la créativité, de la fécondité et de la pluie. À côté du chevalet, il y a un uniforme militaire à glands pour le Baron Samedi, seigneur des cimetières, soigneusement protégé dans son sac de nettoyage à sec.

Avec la révérence et l'attitude d'un abbé pilotant ses visiteurs dans un vénérable monastère du sud de la France, André Pierre nous fait visiter ce temple d'étain ondulé. Il nous montre des salles-autels contenant des tambours, des bassins, des faux, des cartes à jouer, de l'alcool, des fouets et des lits (dans lesquels André Pierre dort quand il passe la nuit avec une divinité particulière). Il s'exprime via une sorte de flux créole théoloco-vodun tout en marchant et en pointant des choses. Soudain, André Pierre se met à chanter pour illustrer une idée particulière; elle correspond à un tableau et il l'explique, de la même façon qu'un requiem correspond à une crucifixion. Thompson attrape un tambour et commence à tambouriner et à chanter. Lorsqu'ils ont fini, en geste de célébration, ils versent chacun une cuillerée de liqueur de racine sur le sol. Thompson m'avertit à part en anglais de faire attention près des bassins en pierre dans la pièce sombre, car c'est un de ceux dédiés à Damballah, le dieu serpent, et ils contiennent parfois des serpents.

À la tombée de la nuit, Thompson, polo humide de transpiration, a empli un carnet et demi de croquis et de notes, commencé une monographie sur l'iconographie de 10 peintures vodun, tambouriné, bu des coups et pris rendez-vous pour revenir tôt le lendemain. Alors que nous partons à la recherche de notre hôtel, Thompson, excité, m'explique les subtilités morales de tout ce que nous avons vu. Il me parle de notre emploi du temps: nous devons aller demain soir à Jacmel, de l'autre côté des montagnes, voir Madame Nerva célébrer les rites de la déesse de l'amour, Erzuli. Je suis épuisé, ayant trouvé que le voyage de Manhattan au temple d'André Pierre en un après-midi c'est déjà beaucoup. Thompson ne semble ressentir aucune tension suite à cette journée; il entre en Haïti tout en fluidité. En fait il semble juste revenir chez lui.

Blanc de peau, blanc de cheveux et blanc d'origine, d'éducation et de par sa société, Robert Farris Thompson est tombé amoureux de la musique noire, de l'art noir et de la négritude il y a 30 ans et a basé toute sa carrière sur cette passion particulière. Suivant cet instinct, suscité par un mambo entendu en 1950, Thompson a appris couramment le ki-kongo, le yoruba, le français, l'espagnol et le portugais et s'est familiarisé avec une vingtaine de langues créoles et tribales; il a parcouru la forêt de l'Ituri au Zaïre avec des pygmées; est grand connaisseur du vaudou; a écrit quatre livres sur la religion, la philosophie et l'art ouest-africains; a organisé deux grandes expositions à la National Gallery de Washington. Il est également devenu, dansant dans un costume indigo brodé de coquillages pris sur les gésiers de crocodiles morts, "universitaire junioir membre de la Basinjon Society", agence tribale camerounaise qui contrôle la foudre et autres forces naturelles.

Incorporant l'anthropologie, la sociologie, l'ethnomusicologie et ce que Thompson nomme une "bourse scolaire pour guérilla" (il dit : "laissons les crétins se débrouiller avec ça"), la carrière de Thompson tend vers une seule fin: un savant plaidoyer de la civilisation atlantique noire. Il passe sa vie à poursuivre ce frisson cérébral qui est de rendre cohérent et significatif tout ce qui est mal compris, ou vu comme aléatoire, superficiel ou obscur à son sujet. Comme un historien de l'art extrairait des plans détaillés de la basilique une compréhension de l'esprit médiéval ou de la statuaire romaine tardive une compréhension du déclin de l'empire, Thompson travaille sur l'iconographie de la salsa, les pas de danse, les vêtements, la sculpture, le geste et l'argot pour une définition de la négritude. Il aime montrer à quel point le "primitif" est sophistiqué. Comme archéologue, il donne vie à des artefacts; comme critique, il les déchiffre; et comme vrai croyant, il promeut leur valeur artistique et spirituelle.

Le dernier livre de Thompson, Flash of the Spirit, explique les racines de l'influence africaine dans le Nouveau Monde. Il est une sorte de Baedeker du funk. Un critique a écrit: "Ce livre fait pour l'histoire de l'art ce que le dunk shot a fait pour le basket-ball."

Sous la manche droite de sa chemise Brooks Brothers, Bob Thompson porte le bracelet d'initiation en maille de fer de la divinité chasseuse de rivière Yoruba. Avec ses deux enfants, son récent divorce, ses études à Yale et Andover et ses 55 ans, il ressemble à un avocat d'entreprise en pleine forme ou à un brillant dirigeant pétrolier américain qui aurait mené une carrière polyglotte à l'étranger. Il vit à New Haven, dans le manoir géorgien du maître du collège, où l'on peut entendre le son des percussions résonner dans la cour.

En parallèle à Yale, ses élèves, des bonnes bouffes et de ses conférences, au travers de rencontres au coin de la rue et de conversations précieuses, Thompson fait du prosélytisme. Il enseigne à 100 ou 150 étudiants chaque trimestre et possède l'enthousiasme amusé d'un élève de premier cycle. Le reste de l'université connaît Thompson sous le nom de "Mambo". Pour clarifier ils diront même "noir comme Bob". Ce qui compte, c'est que le président de Yale, Bart Giamatti, brillant franc-tireur lui-même, admire suffisamment la singularité intrépide de Thompson pour l'avoir reconduit dans ses fonctions durant cinq ans.

Sur le campus, les affiches du Chubb Fellowship expriment un peu mieux le statut de Thompson et sa particularité majeure. La bourse Chubb est un programme destiné à amener des visiteurs politiques sur le campus, elle est aussi étoffée que les bourses bien dotées peuvent l'être. Pendant le mandat de Thompson, des personnages habituels - Walter Mondale, Alexander Haig, John Kenneth Galbraith - furent parmi les conférenciers invités. Des affiches commémorant leurs visites tapissent les murs de la maison du maître comme des trophées sportifs de conférences. Une affiche, plus grande et plus audacieuse que les autres, est suspendue dans le bureau de Thompson. Elle annonce que la Chubb Fellowship parraine, pour un colloque et une réception au Timothy Dwight College, une visite de Son Altesse le Granman de la Djuka, du Surinam, "roi afro-américain véritable".

Bob Thompson donne des cours à sa classe comme un prédicateur fondamentaliste réveille sa congrégation, genoux pliés, microphone branché, le fil traînant derrière lui. Il marche parmi les 200 étudiants qui débordent de l'auditorium de Street Hall dans le couloir. Le cours d'automne de Thompson, HoA 379a, est intitulé "La structure du New York Mambo: le microcosme de la créativité noire". Sur scène, un magnétophone émet un jog pygmée; du pupitre vacant pend une carte des dominions tribales ouest-africaines; et sur l'écran : des diapositives flash de Harlem, des pygmées, des tissus de motifs syncopés et des sculptures funéraires influencées par le Kongo des cimetières de Caroline du Nord. "Pourquoi" demande Thompson, "les Noirs sont-ils si impertinents ?"

La réponse commence par l'étymologie de l'expression "descendre - get down". Il passe aux concepts yoruba de cool (itutu) et de commandement (àshe); il parle durant une marche latérale et aussi sagittale (d'avant en arrière ou inversément); de l'esthétique de la batterie; de l'importance du phrasé décalé (off-beat/à contre-temps) ; des appels et réponses; et enfin de Muhammad Ali. Puis la voix de Thompson redevient celle du prof sérieux standard et il énumère une litanie d'influences africaines:

"Une grande partie de notre argot fut créée par des gens qui pensent en yoruba et en ki-kongo, tout en parlant en anglais. Les sons de base de l'accord et du désaccord, uh-huh et unh-unh, sont purement ouest-africains. Funky est du Ki-Kongo lu-fuki, "sueur positive". Boogie vient de Ki-Kongo mbugi, qui signifie "diablement bon". Le jazz et le jism dérivent probablement de la même racine Ki-Kongo dinza, qui signifie "éjaculer". Mojo vient du terme Ki-Kongo pour "âme"; juke, comme dans jukebox, de Mande-kan qui veut dire 'mauvais'; et Babalu-Aye - comme pourle disc-jockey Babalu - est du Yoruba pur et simple qui signifie "Père et maître de l'univers".

"La plupart de nos danses de salon sont africanisées" poursuit-il, "la rhumba, le tango, même les claquettes et le Lindy. Le poulet frit est africain. Et le short patchwork J. Press est lié à un tissu d'Afrique. Même le cheerleading incorpore certains gestes Kongo apparents: main gauche sur la hanche, main droite levée faisant tournoyer un bâton. Il s'est développé au travers des groupes Vodun Rara de la Nouvelle-Orléans jusqu'au spectacle de la mi-temps des Cowboys de Dallas."

"Laisse-moi te raconter comment tout ceci s'est mis en marche", explique Thompson, assis dans un restaurant du campus. "J'ai grandi au Texas; J'étais fou de boogie. Je n'étais pas footballeur ou quoi que ce soit, et je me rends compte maintenant que tous les éléments d'attractivité que j'avais pour les filles étaient à la fois musicaux et influencés par les noirs. Durant ma dernière année à l'école préparatoire, je suis allé en voyage à Mexico. Il y avait ce mambo - Mexico était inondé de mambo - j'ai entendu des serveurs le fredonner, je l'ai entendu sur les lèvres des préposés de station-service, je l'ai entendu en arrière-plan lorsque je parlait au téléphone de l'exploitant de l'hôtel. Ce fut mon premier bain complet de musique africaine: polyphonie noire totale, multimétrie mambo. Une femme magnifique s'est arrêtée devant moi dans un café; elle a écouté cette musique et je l'ai entendue dire à son compagnon: "Mais chéri, c'est un rythme si différent."

Un mambo, titré La Camisa de Papel - de Justi Barretto, est l'icône principale de la carrière de Thompson. Une partie brisée du disque mexicain 78 tours, chanté par Perez Prado, est encadré dans son étude. "Plus précisément, il s'agit d'un noir qui porte une chemise littéralement composée de mots effrayants - d'assemblage de titres de journaux. La chanson ne craignait pas d'aborder un sujet fort - celui du début de la guerre de Corée et de la peur de la guerre thermonucléaire. Une phrase dit: "Hé, homme noir, t'as les nouvelles?" J'ai été irradié par cette musique, désespérément accro au mambo."

En 1954, Thompson passa les vacances de Thanksgiving de sa dernière année à Yale enfermé à l'hôtel Carlton House à New York, essayant de commencer un livre. Il l'avait titré : Notes vers une définition de Mambo. "Mon père était chirurgien, et avec ma mère ils étaient un peu déboussolés par ce que je faisais: 'Mon fils le mambologue!!??' Alors que j'essayais de leur expliquer cette passion..."

"La musique questionnait", dit Thompson, "et l'histoire de l'art fut la réponse." Il décida de devenir étudiant à Yale. "Plus j'étudiais, plus je voyais comment le monde avait dissimulé la source de tout cela. Ce n'était pas de la musique latine - c'était de la musique Kongo-Cubano-Brésilienne. Vous pouvez entendre les rythmes Kongo dans "The Newspaper Shirt". Et mambu en Ki-Kongo signifie "questions, questions importantes, texte". Un mambo est un séminaire sur l'entrecroisement des courants africains.

"Ce sont quelques-uns des fils du tissu: la salsa et le reggae partagent l'impulsion du mambo, et la composante mambo est à son tour sortie de Cuba en fin des années 1930. Le yoruba y est encore parlé. Si vous étiez Yoruba et pris en esclavage au XIXe siècle, vous risquiez de vous retrouver à Cuba ou dans le nord-est du Brésil. La culture afro-cubaine a survécu à l'esclavage. Ces rythmes afro-cubains sont chauds, âcres et cahotants. J'ai passé ma vie de critique littéraire", dit-il, "à essayer de rassembler tous les textes pertinents pour décoder "The Newspaper Shirt Mambo".

La prochaine étape importante dans le développement de Thompson fut une bourse de la Fondation Ford pour aller au Yoruba-land (Nigéria) pour un travail sur le terrain; il a fait 14 allers-retours entre Yale et l'Afrique. Thompson habite les deux mondes. Il raconte par exemple comment un grand prêtre de la religion Yoruba à New York est venu le voir à New Haven. La voiture du prêtre yoruba est tombée en panne. Thompson raconte que le prêtre a ouvert le capot, puis a emprunté du rhum à Thompson pour faire une brume de rhum qu'il a soufflé de sa bouche sur le moteur surchauffé (c'est un geste yoruba pour refroidir les choses). Ensuite, le prêtre a sorti sa carte de l'American Automobile Association et a appelé Triple-A.

Dans ce processus pour accéder à Yale, Thompson a publié Black Gods and Kings, The Four Moments of the Sun et African Art in Motion, à propos de l'esthétique entrelacée de la sculpture, du tissu et de la danse ouest-africains. "Flash of the Spirit" atteint maintenant des lecteurs qui ne sont pas des spécialistes, des iconographes ou des universitaires. Son prochain livre, enfin, dans 30 ans, sera le "livre mambo".

"Chaque vague d'immigration successive - dominicaine, porto-ricaine, haïtienne, jamaïcaine - améliore la musique. On peut parler de "conjugaison" d'un battement. C'est explosif. La salsa fut le tournant majeur - en 1968, New York est devenue pratiquement la capitale musicale du monde latin. Et tout cela est en pollinisation croisée avec du jazz et de la pure musique yoruba comme King Sunny Ade, et puis, via des réverbérations secondaires, vers des groupes blancs, comme les Talking Heads.

"La musique est un domaine où l'influence noire est omniprésente. Leurs rythmes secouent ce siècle. Quoi qu'on ait pu refuser aux Noirs, les ondes sont à eux. À l'heure actuelle, d'importantes collisions culturelles ont lieu à New York. La ville est devenue un organe coloré des cultures. Si vous avez manqué le Ballet Russe et le Rite de Stravinsky à Paris au début du siècle, ne vous inquiétez pas. Il y a maintenant des événements de cet ordre stravinskien dans le quartier."

"New York en tant que ville africaine secrète" voilà ce que Thompson appelle son cours de premier cycle à Yale. "Quasi voyage scolaire" que nous entreprenons tous les deux un jour et qui commence à 89th Street et sur Amsterdam Avenue dans un botanica, ou boutique d'articles religieux, où les autels fumants des divinités ouest-africaines partagent l'espace avec Pac-Man et Donkey Kong. Juste au coin de la rue se trouve la Claremont Riding Academy, où les élèves de sixième année des écoles privées prennent des cours, et deux pâtés de maisons plus à l'est se trouvent les coopératives de logements dans lesquelles ils vivent sur Central Park. Cet après-midi, nous traversons le sombre bidonville dominicain sous Columbia University, Harlem, Queens et les bandes jamaïcaines et haïtiennes de Brooklyn. Près de la coupole néoclassique du Musée de Brooklyn se trouve La Boutanique St. Jacques Mejur, qui vend des figurines en cire, des bougies conditionnelles "Du Me", un aérosol "Love", "Success" et "Commanding Do My Will". L'une des bougies est une bougie de vengeance, qui promet de transmettre le mal, le déshonneur, les conflits, l'infidélité, la pauvreté, le danger et les puissants ennemis au nom de celui qui est inscrit sur son côté.

"Ce truc est une combine touristique", dit Thompson. "Le vodun est un système moral de croyance comme les autres, mélange de croyances dahoméennes, kongo et chrétiennes. Nous vivons dans le péché intellectuel avec la culture Kongo et Yoruba. Le Kongo est une culture légale-thérapeutique-visionnaire aussi riche et dense que le christianisme ou le judaïsme; elle me rappelle le judaïsme.

"Mais les Occidentaux restent toujours dans les même zones tempérées lorsqu'ils recherchent la philosophie. Les juifs deviennent bouddhistes, les méthodistes deviennent bahaïs; ils ne vont jamais au sud. Mais maintenant, les religions Kongo et Yoruba prospèrent à New York. Traversez simplement la rue et vous êtes en Afrique. "

Pour Thompson, les trois étapes progressives de la culture atlantique noire sont comme trois versions d'un texte inscrit sur une sorte de pierre de Rosette noire Atlantique. Elle se déplace à New York, intellectuellement péripatéticienne, dans les deux sens via les traces des trois étapes de son sujet. Primo, les tribus dont les esclaves furent pris au Nigeria, au Mali, au Cameroun et au Zaïre. Deuxièmement, les cultures afro-antillaises qui en résultent, y compris les célébrités vodun d'Haïti et les adeptes de Capoera du Brésil. Enfin, les salles de danse, les clubs, la culture ghetto pop de New York.

Au club brésilien SOB's, sur Varick Street, amis, collègues, diffuseurs de livres et éditeurs se rassemblent, un peu sous le charme, alors que cinq batteurs cubo-yoruba tiennent un rythme féroce sur scène. C'est la fête de Random House bool pour le lancement de "Flash of the Spirit" de Thompson. Une démonstration de Capoera suit - mélange brésilien de ballet et d'art martial - produite par deux athlètes torse nu, devant le bar. Thompson danse doucement dans sa combinaison J. Press, tête haute, dos et bras relâchés. C'est intrinsèque à son alternance constante entre participer et observer, de même qu'on peut le voir à la fois donner des conférences et danser durant ces dernières.

"Les religions africaines entremêlent une critique morale élevée doublée d'un délicieux backbeat boogie", dit Thompson. "Elles nous attirent vers une perspicacité morale qui active le corps tout en exigeant une conscience sociale. Les mambos d'Eddie Palmieri peuvent recouper les phrasés musicaux yoruba religieux avec le populaire New York noir."

Alors qu'il danse, Thompson note mentalement le sens et le contenu culturel de ce que tout le monde dans la salle pense n'être qu'une danse. "Derrière toute la viscosité et le groove se cache une philosophie qui dit que dans l'horreur de ces temps qu'il y a un antidote. C'est de ces petits villages ternes de stalles en béton et de générateurs portables que vient cette musique, elle porte un message qui dit que tu peux "rejouer" le désastre - que tu peux le transformer, prendre la mort et l'horreur et les transformer en roue et en carrousel."

Un autre soir, au Château Royal, une salle de danse haïtienne dans le Queens, Thompson est à peu près le seul visage blanc parmi un millier d'élégants Haïtiens. Criant en créole au-dessus du merengue, il est en conversation profonde avec le chef d'orchestre; le groupe a été invité à Yale. Sur la piste de danse, Thompson semble transporté - regard d'un homme dans un bain chaud.

"Il s'agit de libérer les impératifs moraux dans le divertissement", explique Thompson. "La musique est à la fois morale et sournoise; elle porte autant de dandysme et de ruse urbaine que tout ce qui fut écrit à Paris à l'époque de Ravel. L'Occident peut en extraire les parties les plus ambrosiales et se laisser emporter par le rythme vers des sublimités morales."

Bien que Thompson vive et se déplace au sein d'un milieu hip, lui-même n'a rien de particulièrement branché. Il agit de la manière inconsciente et directe du soldat professionnel - marche ordonnée, jamais de pagaille, léger balancement des bras lors de la foulée - qui donne l'impression qu'il est toujours sur le point de faire quelque chose. Sa position et ses perspectives n'ont rien de la morosité typique de l'universitaire. Mais son attention est hautement idiosyncrasique; ses actions semblent dictées par un programme connu de lui seul.

Lorsqu'il est plongé dans une ambiance tout à fait blanche, comme une conférence au Metropolitan Museum of Art de New York ou assis dans cet endroit incongru que sont les salons de la maison du maître de Yale, Thompson perd parfois le rythme. Il s'éloigne, comme privé de l'objet de ses affections. Ensuite, quelque chose de banal - une remarque, le phrasé d'une remarque ou peut-être une scène d'un film diffusé au Showcase Cinema à Orange - lui offre une petite étincelle de négritude, et il est à nouveau attentif. Il donne parfois l'impression d'être en tournée d'inspection, cherchant dans le monde blanc des signes salutaires de culture noire. On sent qu'il suit sans cesse, avec ce qu'il appelle ses "yeux noirs", les contours de l'objet d'un désir spirituel.

Thompson tient à faire la distinction entre pratique de la religion ouest-africaine et l'enseignement de la culture dont elle fait partie. Récemment, quelqu'un qu'il connaissait à peine lui a demandé des conseils spirituels et Thompson en fut consterné. Il se considère comme un médium, mais un médium du genre le plus ordinaire. Il pense que ce qu'il doit enseigner n'est que ce qu'il choisit et filtre de toutes ses "informations" du monde. Dans les livres de Thompson, les sections de notes biographiques contiennent des centaines et des centaines de minuscules petits noms sonores, qui, s'ils sont lus à haute voix, ressemblent aux listes des annuaires téléphoniques de Lagos, Rio, Ouagadougou et New Haven combinés. Telles sont les sources du "flash de l'esprit" sans lequel, Thompson, n'est "que Joe, l'universitaire aux cheveux gris".

S'il y a une partie des croyances africaines auxquelles Thompson adhère, c'est ce qu'il perçoit comme leur génie social. L'épiphanie de Thompson, s'il y en a une dans sa sphère très privée, se distingue par les accents pleine de sens qu' utilise lorsqu'il parle des incendies dans les forêts pygmées, des prêtresses de la rivière au Cameroun, de l'escalade des arbres zaïrois pour le miel et de la dernière veille de Nouvel An sur la plage de Copacabana à Rio, où Thompson a vu des milliers de femmes de chambre, gardiennes, journalières et leurs enfants, creuser des trous dans le sable à minuit pour y mettre des bougies, applaudissant lorsque les lumières furent emportée hors du rivage par la marée.

Ceux qui minimisent l'importance de ces rituels folkloriques noirs et du travail de la vie de Thompson le rendent furieux. "Comment les gens osent-ils fréquenter l'Afrique?" il demande. "Ces gens sont des géants qui nous apprennent à vivre. Il y a une voix morale ancrée dans l'esthétique afro-atlantique que l'Occident est infichu de saisir. Les occidentaux ne voient pas les monuments, juste la philosophie pieds nus venant des anciens du village. Alors que le monument est une grande forme d'art qui réconcilie, qui tente de reconstruire moralement une personne sans l'humilier. "Parfois, lorsque Thompson commence à s'échauffer, sa voix prend des cadences du discours noir."

"Ce sont les canons du cool: il n'y a pas de crise qui ne puisse être pesée et résolue; rien ne peut être réalisé par l'hystérie ou la lâcheté; vous devez porter et montrer votre capacité à réaliser la réconciliation sociale. Sortez du cauchemar. C'est un appel au dialogue, au con-gress et à l'auto con-fiance. "Ce tea-shirt avec ces phrases issue de titres de journaux" ne fait que poser le problème sur ta poitrine. Les formes d'art afro-atlantique sont à la fois juridiques, médicales et esthétiques. C'est une manière intransigeante d'utiliser l'art."

À Jacmel, à 8 h 30 du matin, Thompson et moi déjeunons avec des croissants à bord de la piscine de l'hôtel, discutant au son des tambours qui résonnent sur la plage. La veille au soir, dans son temple en carton ondulé, la charmante prêtresse Madame Nerva, qui aime beaucoup plaisanter, a donné son bâton constellé de bonbons à un homme, avec pour consigne d'appeler les batteurs et la congrégation pour le lendemain matin. Il y a 50 voduistes à l'intérieur du temple vibrant quand nous arrivons, y compris le flic local. Cinq batteurs, dirigés par un homme du nom de "Gasoline", suivent un rythme sauvage et déferlant. Dix-neuf femmes noires vêtues de robes blanches et de turbans blancs sortent en dansant d'une porte de l'autel pour se mettre en en cercle autour de Madame Nerva, qui, vêtue d'une robe dorée, secoue un hochet et une cloche sacrés pour donner le tempo. À tour de rôle, chacune des femmes prend la main de Madame Nerva et tombe dans un geste à la fois révérencieux et prostré, lui tenant la main tout en descendant pour embrasser le sol à ses pieds.

Tandis que deux femmes tenant des drapeaux dansent autour de lui, un jeune homme dessine lentement dans la poudre blanche sur le sol un cœur ou une vulve, avec en superposé des épées et un serpent. Au moment où il termine l'image, la cérémonie double d'intensité et les femmes tournent avec des bougies, puis s'agenouillent. Soudain, l'icône est effacée et Madame Nerva se précipite dans la pièce en tenant une poupée américaine en plastique blanche d'un mètre (elle est faite de rangées de maïs et d'une main droite d'enfant qui fait le salut Kongo). Un à la fois, nous sommes embrassés par la poupée sur nos joues gauches. Une femme, tourbillonnant avec un turban sur la tête, devient possédée et commence à se trémousser et à tanguer. Les autres danseurs la frappent doucement pour la calmer et faire partir l'esprit. Elle s'évanouit et ils la retiennent. La ligne des danseurs s'est rompue; les tambours s'arrêtent.

"Un peu sauvage pour un simple sondage", me dit Thompson alors que nous faisons nos adieux. "Cette femme n'était pas censée être possédée. As-tu entendu comment Mme Nerva a décrit la possession - tel "un dialogue avec l'Afrique"? "

Nous retournons par les montagnes vers Port-au-Prince, pour un retour dans l'après-midi à New York. À 15 heures, après le déjeuner et un saut dans la piscine de l'hôtel, nous sommes en train de prendre un verre dans l'avion, Thompson est en train de remplir ses carnets de croquis et de notes.

"Il y a tout un langage dans la possession", dit-il, "une expression et une position différentes pour chaque dieu. L'Occident a oublié les états de ravissement sacré, mais l'art chrétien s'est construit sur l'extase. Le gothique était extatique - les cathédrales ne peuvent pas être comprises sans référence à lui." Il montre une photo sur la couverture de son cahier qui présente une femme aux yeux retournés. "C'est l'histoire de l'art vivant. Et il faut comprendre les états extatiques pour comprendre l'art extatique."

Thompson se tord sur son siège pour montrer les gestes de possession. Il lève les bras, les plie au coude, puis les lève les paumes vers le haut, doigts écartés. Il projette sa tête en arrière, yeux fermés; puis avance rapidement; puis fait des grimaces, trois façons différentes. Il baisse les bras, prend un verre et dit: "Ce n'est pas si hérétique d'examiner l’extase. Après tout". Ici il dessine dans son cahier une figure d'homme, tête renversée en arrière avec une ligne de visée qui va vers le haut - "la rosace de Chartres ne peut être vue que sous un angle extatique."

Auteur: Iseman Fred

Info: https://www.rollingstone.com 22 novembre 1984. Trad Mg (à peaufiner)

[ transe ] [ portrait ] [ perméabilités ethniques ] [ osmose ] [ nord-sud ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-végétal

Il arrive parfois qu’une personne puisse nommer le moment exact où sa vie a changé de manière irrévocable. Pour Cleve Backster, ce fut tôt le matin du 2 février 1966, treize minutes et cinquante-cinq secondes après le début d'un test polygraphique qu'il administrait. Backster, un expert en polygraphie de premier plan dont le test de comparaison de zones Backster est la norme mondiale en matière de détection de mensonge, avait à ce moment-là menacé le bien-être de son sujet de test. Le sujet répondit électrochimiquement à sa menace. Le sujet était une plante.

Depuis lors, Backster a mené des centaines d’expériences démontrant non seulement que les plantes réagissent à nos émotions et à nos intentions, mais aussi les feuilles coupées, les œufs (fécondés ou non), les yaourts et les échantillons de cellules humaines. Il a découvert, par exemple, que les globules blancs prélevés dans la bouche d'une personne et placés dans un tube à essai réagissent toujours électrochimiquement aux états émotionnels du donneur, même lorsque celui-ci est hors de la pièce, du bâtiment ou de l'État.

J'ai entendu parler du travail de Backster pour la première fois quand j'étais enfant. Ses observations ont confirmé une compréhension que j’avais alors, une compréhension que même un diplôme en physique ne pourrait éradiquer plus tard : que le monde est vivant et sensible.

J'ai parlé avec Backster à San Diego, trente et un ans et vingt-deux jours après sa première observation, et à un continent entier du bureau de Times Square à New York où il avait autrefois travaillé et vécu. Avant de commencer, il a placé du yaourt dans un tube à essai stérilisé, a inséré deux électrodes en or et a allumé la mire d'enregistrement. J'étais excité, mais dubitatif. Nous avons commencé à parler et le stylo s'est tortillé de haut en bas. Puis, juste au moment où je reprenais mon souffle avant d'être en désaccord avec quelque chose qu'il avait dit, le stylo sembla vaciller. Mais est-ce que ça avait vraiment bougé, ou est-ce que je voyais seulement ce que je voulais voir ?

À un moment donné, alors que Backster était hors de la pièce, j'ai essayé d'exprimer ma colère en pensant aux forêts coupées à blanc et aux politiciens qui les sanctionnent, aux enfants maltraités et à leurs agresseurs. Mais la ligne représentant la réponse électrochimique du yaourt est restée parfaitement plate. Peut-être que le yaourt ne m'intéressait pas. Perdant moi-même tout intérêt, j'ai commencé à errer dans le laboratoire. Mes yeux sont tombés sur un calendrier qui, après une inspection plus approfondie, s'est avéré être une publicité pour une compagnie maritime. J’ai ressenti une soudaine montée de colère face à l’omniprésence de la publicité. Puis j'ai réalisé : une émotion spontanée ! Je me suis précipité vers le graphique et j'y ai vu un pic soudain correspondant apparemment au moment où j'avais vu l'annonce.

Au retour de Backster, j’ai continué l’entretien, toujours excité et peut-être un peu moins sceptique.

Jensen : Pouvez-vous nous raconter en détail comment vous avez remarqué pour la première fois une réaction électrochimique dans une plante ?

Backster : C'était une plante de canne à sucre dracaena que j'avais dans mon laboratoire à Manhattan. Les plantes ne m'intéressaient pas particulièrement, mais il y avait une vente suite à une cessation d'activité chez un fleuriste au rez-de-chaussée de l'immeuble, et la secrétaire avait acheté quelques plantes pour le bureau : une plante à caoutchouc et cette dracaena. J'avais arrosé ces plantes jusqu'à saturation – en les mettant sous le robinet jusqu'à ce que l'eau coule du fond des pots – et j'étais curieux de voir combien de temps il faudrait à l'humidité pour atteindre le sommet. J'étais particulièrement intéressé par le dracaena, car l'eau devait remonter le long d'un long tronc, puis ressortir jusqu'au bout des longues feuilles. Je pensais que si je plaçais le détecteur de réponse galvanique cutanée du polygraphe au bout de la feuille, une baisse de résistance serait enregistrée sur le papier à mesure que l'humidité arriverait entre les électrodes.

C’est du moins ma façon de voir les choses. Je ne sais pas s’il y avait une autre raison, plus profonde, à mon action. Il se pourrait que mon subconscient m'ait poussé à faire ça – je ne sais pas.

En tout cas, j’ai remarqué quelque chose sur le graphique qui ressemblait à une réponse humaine sur un polygraphe : ce n’est pas du tout ce à quoi j’aurais pu m’attendre si de l’eau pénétrait dans une feuille. Les détecteurs de mensonge fonctionnent sur le principe selon lequel lorsque les gens perçoivent une menace pour leur bien-être, ils réagissent physiologiquement de manière prévisible. Par exemple, si vous effectuez un test polygraphique dans le cadre d’une enquête pour meurtre, vous pourriez demander à un suspect : " Est-ce vous qui avez tiré le coup mortel ? " Si la vraie réponse était oui , le suspect craindrait de mentir et les électrodes placées sur sa peau détecteraient la réponse physiologique à cette peur. J’ai donc commencé à réfléchir à des moyens de menacer le bien-être de la plante. J’ai d’abord essayé de tremper une de ses feuilles dans une tasse de café chaud. La plante, au contraire, montrait de l’ennui – la ligne sur le graphique continuait de baisser.

Puis, à treize minutes et cinquante-cinq secondes de temps graphique, l'idée m'est venue à l'esprit de brûler la feuille. Je n'ai pas verbalisé l'idée ; Je n'ai pas touché à la plante ; Je n'ai pas touché au matériel. Pourtant, la plante s'est comme affolée. Le stylo a sauté du haut du graphique. La seule chose à laquelle il avait pu réagir était mon image mentale.

Ensuite, j'ai récupéré quelques allumettes sur le bureau de mon secrétaire et, en allumant une, j'ai fait quelques passages sur la feuille. Cependant, j'ai réalisé que je constatais déjà une réaction si extrême qu'aucune augmentation ne serait perceptible. J'ai donc essayé une approche différente : j'ai éloigné la menace en remettant les allumettes sur le bureau du secrétaire. La plante s'est immédiatement calmée.

J’ai tout de suite compris qu’il se passait quelque chose d’important. Je ne trouvais aucune explication scientifique conventionnelle. Il n'y avait personne d'autre dans le laboratoire et je ne faisais rien qui aurait pu déclencher un mécanisme de déclenchement. A partir de ce moment, ma conscience n'a plus été la même. Toute ma vie a été consacrée à étudier ce phénomène.

Après cette première observation, j’ai parlé à des scientifiques de différents domaines pour obtenir leurs explications sur ce qui se passait. Mais cela leur était totalement étranger. J’ai donc conçu une expérience pour explorer plus en profondeur ce que j’ai commencé à appeler la perception primaire.

Jensen : Pourquoi  " perception primaire " ?

Backster : Je ne puis nommer ce dont j'ai été témoin perception extrasensorielle, car les plantes ne possèdent pas la plupart des cinq sens. Cette perception de la part de la plante semblait se produire à un niveau beaucoup plus basique – ou primaire.

Quoi qu’il en soit, ce qui a émergé est une expérience dans laquelle j’ai fait tomber automatiquement les crevettes de saumure, à intervalles aléatoires, dans de l’eau frémissante, tandis que la réaction des plantes était enregistrée à l’autre bout du laboratoire.

Jensen : Comment pouviez-vous savoir si les plantes réagissaient à la mort de la crevette ou à vos émotions ?

Backster : Il est très difficile d'éliminer le lien entre l'expérimentateur et les plantes testées. Même une brève association avec les plantes – quelques heures seulement – ​​suffit pour qu’elles s’adaptent à vous. Ensuite, même si vous automatisez et randomisez l’expérience et quittez le laboratoire, ce qui garantit que vous ignorez totalement le moment où l’expérience commence, les plantes resteront à votre écoute, peu importe où vous irez. Au début, mon partenaire et moi allions dans un bar situé à un pâté de maisons, mais au bout d'un certain temps, nous avons commencé à soupçonner que les plantes réagissaient, non pas à la mort des crevettes saumâtres, mais à l'augmentation et à la diminution du niveau d'excitation dans nos conversations.

Finalement, quelqu'un d'autre a acheté les plantes et les a stockées dans une autre partie du bâtiment. Le jour de l’expérience, nous sommes allés chercher les plantes, les avons amenées, les avons branchées et sommes partis. Cela signifiait que les plantes étaient seules dans un environnement étrange, avec seulement la pression des électrodes et un petit filet d'électricité traversant leurs feuilles. Parce qu’il n’y avait pas d’humains avec lesquels s’harmoniser, elles ont commencé à " regarder autour " de leur environnement. Ce n’est qu’à ce moment-là que quelque chose d’aussi subtil que la mort des artémias a été capté par les plantes.

Jensen : Les plantes s'adaptent-elles uniquement aux humains, ou également aux autres créatures vivantes de leur environnement ?

Backster : Je vais répondre à cette question avec un exemple. Souvent, je branche une plante et je m'occupe de mes affaires, puis j'observe ce qui la fait réagir. Un jour, je faisais bouillir de l'eau dans une bouilloire pour faire du café. Puis j’ai réalisé que j’avais besoin de la bouilloire pour autre chose, alors j’ai versé l’eau bouillante dans l’évier. Le végétal en question, surveillé, a réagi énormément à cela. Maintenant, si vous ne mettez pas de produits chimiques ou d’eau chaude dans l’évier pendant une longue période, une jungle microscopique commence à s’y développer. Il s’est avéré que la plante réagissait à la mort des microbes présents dans les égouts.

À maintes reprises, j'ai été étonné de constater que la capacité de perception s'étend jusqu'au niveau bactérien. Un échantillon de yaourt, par exemple, réagira lorsqu'un autre est nourri, comme pour dire : " Celui-là reçoit de la nourriture. Où est la mienne? " Cela se produit avec un certain degré de répétabilité. Ou si vous déposez des antibiotiques dans l’autre échantillon, le premier échantillon de yaourt montre une énorme réponse à la mort de l’autre. Et il n’est même pas nécessaire qu’il s’agisse de bactéries du même type pour que cela se produise. Mon premier chat siamois ne mangeait que du poulet. J'en gardais un cuit dans le réfrigérateur du laboratoire et en retirais un morceau chaque jour pour nourrir le chat. Au moment où j'arriverais à la fin, la carcasse serait assez vieille et des bactéries auraient commencé à s'y développer. Un jour, j'ai fait brancher du yaourt, et alors que je sortais le poulet du réfrigérateur et commençais à retirer des lanières de viande, le yaourt a répondu. Ensuite, je mets le poulet sous une lampe chauffante pour le ramener à température ambiante.

Jensen : Vous avez visiblement chouchouté votre chat.

Backster : Je n'aurais pas voulu que le chat doive manger du poulet froid ! Quoi qu’il en soit, la chaleur frappant les bactéries a provoqué une énorme réaction dans le yaourt.

Jensen : Comment saviez-vous que vous n'aviez pas d'influence sur cela ?

Backster : Je n’étais pas au courant de la réaction à l’époque. Vous voyez, j'avais installé des commutateurs pip partout dans le laboratoire ; chaque fois que j'effectuais une action, j'appuyais sur un interrupteur, ce qui plaçait une marque sur un tableau distant. Ce n’est que plus tard que j’ai comparé la réaction du yaourt à ce qui s’était passé en laboratoire.

Jensen : Et quand le chat a commencé à ingérer le poulet ?

Backster : Chose intéressante, les bactéries semblent avoir un mécanisme de défense tel qu'un danger extrême les amène dans un état similaire à un choc : en fait, elles s'évanouissent. De nombreuses plantes font cela également ; si vous les harcelez suffisamment, elles se bloquent. C'est apparemment ce que les bactéries ont fait, car dès qu'elles ont touché le système digestif du chat, le signal s'est éteint. À partir de ce moment-là, la ligne est plate.

Jensen : Le Dr David Livingstone, l'explorateur africain, a été mutilé par un lion. Il a déclaré plus tard que lors de l'attaque, il n'avait pas ressenti de douleur, mais plutôt un sentiment de bonheur. Il a dit que cela n'aurait posé aucun problème de se livrer au lion.

Backster : Une fois, j'étais dans un avion et j'avais avec moi un petit compteur à réponse galvanique alimenté par batterie. Juste au moment où les agents de bord commençaient à servir le déjeuner, j'ai dit à l'homme assis à côté de moi : " Vous voulez voir quelque chose d'intéressant ? J'ai mis un morceau de laitue entre les électrodes, et quand les gens ont commencé à manger leurs salades, nous avons eu des réactions, mais elles se sont arrêtées car les feuilles étaient en état de choc. " Attendez qu'ils récupèrent les plateaux ", dis-je, "et voyez ce qui se passe." Lorsque les préposés ont retiré nos repas, la laitue a retrouvé sa réactivité. Le fait est que la laitue passait dans un état de latence pour ne pas souffrir. Quand le danger est parti, la réactivité est revenue. Cet arrêt de l’énergie électrique au niveau cellulaire est lié, je crois, à l’état de choc chez les humains.

Les cellules extérieures au corps réagissent toujours aux émotions que vous ressentez, même si vous êtes à des kilomètres de vous. La plus grande distance que nous avons testée est d’environ trois cents milles.

Jensen : Vous avez donc testé des plantes, des bactéries, des feuilles de laitue. . .

Backster : Et des œufs. J'ai eu un Doberman pinscher pendant un certain temps et je lui donnais un œuf par jour. Un jour, j'avais une plante reliée à un grand compteur à réponse galvanique, et alors que je cassais un œuf pour nourrir le chien, le compteur est devenu fou. Après cela, j’ai passé des centaines d’heures à surveiller les œufs, fécondés et non fécondés, c'est pareil ; c'est toujours une cellule vivante.

Après avoir travaillé avec des plantes, des bactéries et des œufs, j’ai commencé à me demander comment les animaux réagiraient. Mais je n’arrivais pas à faire en sorte qu’un chat ou un chien reste immobile assez longtemps pour effectuer une surveillance significative. J'ai donc pensé essayer les spermatozoïdes humains, qui sont capables de rester vivants en dehors du corps pendant de longues périodes et sont certainement assez faciles à obtenir. Dans cette expérience, l’échantillon du donneur était placé dans un tube à essai doté d’électrodes et le donneur était séparé du sperme par plusieurs pièces. Ensuite, le donneur a inhalé du nitrite d'amyle, qui dilate les vaisseaux sanguins et est classiquement utilisé pour arrêter un accident vasculaire cérébral. Le simple fait d’écraser le nitrite d’amyle a provoqué une réaction importante du sperme, et lorsque le donneur a inhalé, le sperme s’est déchaîné.

Cependant, je ne pouvais pas poursuivre ces recherches. Cela aurait été scientifiquement valable, mais politiquement stupide. Les sceptiques dévoués m'auraient sans doute ridiculisé en me demandant où se trouvait mon masturbatorium, etc.

Puis j’ai rencontré un chercheur dentaire qui avait mis au point une méthode de collecte de globules blancs dans la bouche. C’était politiquement faisable, facile à réaliser et ne nécessitait aucune surveillance médicale. J'ai commencé à faire des expériences enregistrées sur écran partagé, avec l'affichage du graphique superposé au bas d'un écran montrant les activités du donneur. Nous avons prélevé des échantillons de globules blancs, puis renvoyé les gens chez eux pour regarder un programme télévisé présélectionné susceptible de susciter une réaction émotionnelle – par exemple, montrer à un vétéran de Pearl Harbor un documentaire sur les attaques aériennes japonaises. Ce que nous avons découvert, c'est que les cellules situées à l'extérieur du corps réagissent toujours aux émotions que vous ressentez, même si elles sont à des kilomètres de vous.

La plus grande distance que nous avons testée est d’environ trois cents milles. Brian O'Leary, qui a écrit Exploring Inner and Outer Space , a laissé ses globules blancs ici à San Diego, puis s'est envolé pour Phoenix. En chemin, il a gardé une trace des événements qui l'avaient agacé, en notant soigneusement l'heure de chacun. La corrélation est restée, même sur cette distance.

Jensen : Les implications de tout cela...

Backster : – sont stupéfiantes, oui. J'ai des tiroirs remplis de données anecdotiques de haute qualité montrant à maintes reprises comment les bactéries, les plantes, etc. sont toutes incroyablement en harmonie les unes avec les autres. Les cellules humaines ont elles aussi cette capacité de perception primaire, mais d'une manière ou d'une autre, elle s'est perdue au niveau conscient. Ou peut-être n’avons-nous jamais eu un tel talent.

Je soupçonne que lorsqu’une personne est suffisamment avancée spirituellement pour gérer de telles perceptions, elle sera correctement à l’écoute. En attendant, il serait peut-être préférable de ne pas être à l’écoute, à cause des dommages que nous pourrions causer en manipulant mal les informations reçues.

Nous avons tendance à nous considérer comme la forme de vie la plus évoluée de la planète. C'est vrai, nous réussissons très bien dans nos efforts intellectuels. Mais ce n’est peut-être pas le critère ultime permettant de juger. Il se pourrait que d’autres formes de vie soient plus avancées spirituellement. Il se pourrait également que nous nous approchons de quelque chose qui nous permettra d'améliorer notre perception en toute sécurité. De plus en plus de personnes travaillent ouvertement dans ces domaines de recherche encore marginalisés. Par exemple, avez-vous entendu parler du travail de Rupert Sheldrake avec les chiens ? Il installe une caméra d'enregistrement du temps sur le chien à la maison et sur le compagnon humain au travail. Il a découvert que, même si les gens rentrent du travail à une heure différente chaque jour, au moment où la personne quitte le travail, le chien de la maison se dirige vers la porte.

Jensen : Comment la communauté scientifique a-t-elle accueilli votre travail ?

Backster : À l’exception de scientifiques marginalisés comme Sheldrake, la réponse a été d’abord la dérision, puis l’hostilité, et maintenant surtout le silence.

Au début, les scientifiques appelaient la perception primaire " l’effet Backster ", espérant peut-être pouvoir banaliser les observations en leur donnant le nom de cet homme sauvage qui prétendait voir des choses qui avaient échappé à la science dominante. Le nom est resté, mais comme la perception primaire ne peut pas être facilement écartée, ce n'est plus un terme de mépris.

Au moment même où les scientifiques ridiculisaient mon travail, la presse populaire lui prêtait une très grande attention, dans des dizaines d'articles et dans des livres, comme The Secret Life of Plants de Peter Tompkins . Je n’ai jamais demandé aucune attention et je n’en ai jamais profité. Les gens sont toujours venus me chercher des informations.

Pendant ce temps, la communauté botanique était de plus en plus mécontente. Ils voulaient " aller au fond de toutes ces absurdités " et prévoyaient de résoudre le problème lors de la réunion de 1975 de l’Association américaine pour l’avancement de la science à New York. Arthur Galston, un botaniste bien connu de l'Université de Yale, a réuni un groupe restreint de scientifiques pour, à mon avis, tenter de discréditer mon travail ; il s’agit d’une réponse typique de la communauté scientifique aux théories controversées. J'avais déjà appris qu'on ne se lance pas dans ces combats pour gagner ; vous y allez pour survivre. Et c’est exactement ce que j’ai pu faire.

Ils en sont maintenant arrivés au point où ils ne peuvent plus contrer mes recherches, leur stratégie consiste donc simplement à m'ignorer et à espérer que je m'en aille. Bien sûr, cela ne fonctionne pas non plus.

Jensen : Quelle est leur principale critique ?

Backster : Le gros problème – et c’est un gros problème en ce qui concerne la recherche sur la conscience en général – est la répétabilité. Les événements que j'ai observés ont tous été spontanés. Elles doivent être. Si vous les planifiez à l'avance, vous les avez déjà modifiés. Tout se résume à ceci : répétabilité et spontanéité ne font pas bon ménage, et aussi longtemps que les membres de la communauté scientifique insisteront trop sur la répétabilité dans la méthodologie scientifique, ils n’iront pas très loin dans la recherche sur la conscience.

Non seulement la spontanéité est importante, mais l’intention l’est aussi. Vous ne pouvez pas faire semblant. Si vous dites que vous allez brûler une feuille sur la plante, mais que vous ne le pensez pas, rien ne se passera. J'entends constamment des gens de tout le pays vouloir savoir comment provoquer des réactions chez les plantes. Je leur dis : " Ne faites rien. Allez à votre travail; prenez des notes sur ce que vous faites à des moments précis et comparez-les plus tard à votre enregistrement graphique. Mais ne planifiez rien, sinon l’expérience ne fonctionnera pas. " Les gens qui font cela obtiennent souvent les mêmes résultats que moi et remportent le premier prix aux expo-sciences. Mais lorsqu'ils arrivent au cours de biologie 101, on leur dit que ce qu'ils ont vécu n'est pas important.

Il y a eu quelques tentatives de la part des scientifiques pour reproduire mon expérience avec les crevettes Artemia, mais elles se sont toutes révélées inadéquates sur le plan méthodologique. Lorsqu’ils ont appris qu’ils devaient automatiser l’expérience, ils se sont simplement rendus de l’autre côté d’un mur et ont utilisé la télévision en circuit fermé pour regarder ce qui se passait. De toute évidence, ils ne retiraient pas leur conscience de l’expérience, il leur était donc très facile d’échouer. Et soyons honnêtes : certains scientifiques ont été soulagés lorsqu’ils ont échoué, car le succès aurait été contraire à l’ensemble des connaissances scientifiques.

Jensen : L'accent mis sur la répétabilité semble anti-vie, car la vie elle-même n'est pas reproductible. Comme Francis Bacon l’a clairement indiqué, la répétabilité est inextricablement liée au contrôle, et le contrôle est fondamentalement l’essence même de la science occidentale, de la culture occidentale. Pour que les scientifiques abandonnent la répétabilité, ils devraient abandonner le contrôle, ce qui signifie qu’ils devraient abandonner la culture occidentale, et cela n’arrivera pas tant que cette civilisation ne s’effondrera pas sous le poids de ses propres excès écologiques.

Backster : J’ai renoncé à lutter contre d’autres scientifiques sur ce point. Mais je sais que s’ils réalisent mon expérience, même si elle échoue, ils verront quand même des choses qui changeront leur conscience. Ils ne seront plus jamais tout à fait les mêmes.

Des gens qui n’auraient rien dit il y a vingt ans me disent souvent : " Je pense que je peux maintenant vous dire en toute sécurité à quel point vous avez vraiment changé ma vie avec ce que vous faisiez au début des années soixante-dix. " À l’époque, ces scientifiques ne pensaient pas avoir le luxe de faire bouger les choses ; leur crédibilité, et donc leurs demandes de subvention, en auraient été affectées.

Jensen : En regardant votre travail, nous sommes confrontés à plusieurs options : Nous pouvons croire que vous mentez, ainsi que tous ceux qui ont déjà fait des observations similaires. On peut croire que ce que vous dites est vrai, ce qui nécessiterait de retravailler toute la notion de répétabilité dans la méthode scientifique, ainsi que nos notions de conscience, de communication, de perception, etc. Ou bien on peut croire que vous avez commis une erreur. Est-il possible que vous ayez négligé une explication strictement mécaniste de vos observations ? Un scientifique a dit qu’il devait y avoir un fil lâche dans votre détecteur de mensonge.

Backster : En trente et un ans de recherche, c'est comme si j'avais " desserré tous les noeuds ". Non, je ne vois aucune solution mécaniste. Certains parapsychologues pensent que je maîtrise l'art de la psychokinésie, que je fait bouger les aiguilles et autres indicateurs avec mon esprit – ce qui serait en soi une très bonne astuce. Mais ils négligent le fait que j'ai automatisé et randomisé de nombreuses expériences, de sorte que je ne suis même conscient de ce qui se passe que plus tard, lorsque j'étudie les graphiques et les bandes vidéo qui en résultent. Les explications conventionnelles sont devenues assez minces. L’une de ces explications, proposée dans un article du Harper’s, était l’électricité statique : si vous vous déplacez à travers la pièce et touchez la plante, vous obtenez une réponse. Mais bien sûr, je touche rarement la plante pendant l'observation, et de toute façon cette réaction serait totalement différente.

Jensen : Alors, quel est le signal capté par la plante ?

Backster : Je ne sais pas. Quoi qu’il en soit, je ne crois pas que le signal se dissipe à distance, comme ce serait le cas si nous avions affaire à un phénomène électromagnétique. Le signal de Phoenix, par exemple, était aussi fort que si Brian O'Leary avait été dans la pièce voisine.

Nous avons également tenté d'obstruer le signal à l'aide de plomb et d'autres matériaux, mais nous ne pouvons pas l'arrêter. Cela me fait penser que le signal ne va pas réellement d'ici à là, mais se manifeste plutôt à différents endroits. Je soupçonne que le signal ne prend pas de temps pour se déplacer. Il n'y a aucun moyen, en utilisant les distances terrestres, de tester cela, car si le signal était électromagnétique, il se propagerait à la vitesse de la lumière, et les retards biologiques consommeraient plus que la fraction de seconde qu'il faudrait au signal pour se propager. La seule façon de tester cela serait dans l’espace.

Certains physiciens quantiques soutiennent cette conviction – selon laquelle le signal ne dépend ni du temps ni de la distance. Il existe une théorie quantique appelée théorème de Bell, qui stipule que deux atomes éloignés l'un de l'autre changent parfois simultanément la direction de leur rotation.

Bien entendu, tout cela nous amène fermement sur le territoire du métaphysique et du spirituel. Pensez à la prière, par exemple. Si vous deviez prier Dieu, et que Dieu se trouvait de l’autre côté de la galaxie, et que votre prière voyageait à la vitesse de la lumière, vos os seraient depuis longtemps poussière avant que Dieu puisse répondre. Mais si Dieu – quelle que soit la manière dont vous définissez Dieu – est partout, la prière n'a pas besoin de voyager.

Jensen : Soyons plus concrets. Vous avez une image mentale de la plante en train de brûler et la plante réagit. Que se passe-t-il précisément à cet instant ? Comment la plante sait-elle réagir ?

Backster : Je ne prétends pas savoir. En fait, j’ai attribué une grande partie de ma réussite à pouvoir rester actif dans ce domaine – et à ne pas avoir été discrédité – au fait que je ne prétends pas le savoir. Vous voyez, si je donne une explication erronée, peu importe la quantité de données dont je dispose ou le nombre d’observations de qualité que j’ai faites. La communauté scientifique dominante utilisera l’explication incorrecte comme excuse pour rejeter mes données et mes observations. J'ai donc toujours dit que je ne savais pas comment cela se produisait. Je suis un expérimentateur, pas un théoricien.

Jensen : La capacité des plantes à percevoir l'intention me suggère une redéfinition radicale de la conscience.

Backster : Vous voulez dire que cela supprimerait la notion de conscience comme quelque chose sur lequel les humains ont le monopole ?

Jensen : Les humains et autres animaux dits supérieurs. Selon la pensée occidentale, parce que les plantes n’ont pas de cerveau, elles ne peuvent pas avoir de conscience.

Backster : Je pense que la science occidentale exagère le rôle du cerveau dans la conscience. Des livres entiers ont été écrits sur la conscience de l’atome. La conscience pourrait exister à un tout autre niveau. De très bonnes recherches ont été réalisées sur la survie de la conscience après la mort corporelle. Tout cela pointe vers l’idée selon laquelle la conscience n’a pas besoin d’être spécifiquement liée à la matière grise. Cette notion est une autre camisole de force dont nous devons nous débarrasser. Le cerveau a peut-être quelque chose à voir avec la mémoire, mais on peut affirmer avec force qu’une grande partie de notre mémoire n’y est pas stockée.

Jensen : La notion de mémoire corporelle est familière à tout athlète : lorsque vous vous entraînez, vous essayez de créer des souvenirs dans vos muscles.

Backster : Le cerveau ne fait peut-être même pas partie de cette boucle.

Jensen : J'ai également lu des articles sur les séquelles physiologiques des traumatismes – maltraitance des enfants, viol, guerre. De nombreuses recherches montrent que le traumatisme s’imprime sur différentes parties du corps ; une victime de viol pourrait plus tard ressentir une brûlure dans son vagin, par exemple.

Backster : Si je me cogne, j'explique aux tissus de cette zone ce qui s'est passé. Je ne sais pas à quel point cette méthode de guérison est efficace, mais elle ne peut pas faire de mal.

Jensen : Avez-vous également travaillé avec ce que l'on appelle normalement des matériaux inanimés ?

Backster : J'ai déchiqueté certaines substances et je les ai mises en suspension dans de la gélose. Je reçois des signaux électriques, mais ils ne sont pas nécessairement liés à quoi que ce soit qui se passe dans l'environnement. Les schémas sont trop grossiers pour que je puisse les déchiffrer. Mais je soupçonne que la conscience est plus répandue.

En 1987, j'ai participé à un programme de l'Université du Missouri qui comprenait une conférence du Dr Sidney Fox, qui était alors lié à l'Institut pour l'évolution moléculaire et cellulaire de l'Université de Miami. Fox avait enregistré des signaux électriques provenant d’un matériau semblable à une protéine qui présentait des propriétés étonnamment similaires à celles des cellules vivantes. La simplicité du matériel qu'il a utilisé et la capacité d'auto-organisation dont il fait preuve me suggèrent que la biocommunication était présente dès les tout premiers stades de l'évolution de la vie sur cette planète.

Bien sûr, l’hypothèse de Gaia – selon laquelle la Terre est un grand, grand organisme fonctionnel – s’inscrit parfaitement dans ce contexte. La planète va avoir le dernier mot concernant les dégâts que les humains lui infligent. Il ne lui faudra qu'un certain nombre d'abus, et alors il pourrait bien roter et renifler un peu, et détruire une bonne partie de la population. Je ne pense pas qu'il serait exagéré de pousser l'hypothèse un peu plus loin et d'attribuer une telle stratégie de défense à une sorte d'intelligence planétaire.

Jensen : Comment votre travail a-t-il été reçu dans d'autres parties du monde ?

Backster : Les Russes ont toujours été très intéressés et n'ont pas eu peur de s'aventurer dans ces domaines de recherche. À bien des égards, ils semblent beaucoup plus sensibles aux concepts spirituels que la plupart des scientifiques occidentaux. Et chaque fois que je parle de ce que je fais avec des scientifiques indiens – bouddhistes ou hindous –, ils me demandent : " Qu’est-ce qui vous a pris autant de temps ? " Mon travail s'accorde très bien avec de nombreux concepts adoptés par l'hindouisme et le bouddhisme.

Jensen : De quoi avons-nous peur, nous, les Occidentaux ?

Backster : La crainte est que, si ce que j’observe est exact, bon nombre des théories sur lesquelles nous avons construit nos vies doivent être complètement remaniées. J'ai connu des biologistes dire : " Si Backster a raison, nous sommes dans la merde . " Cela signifierait une refonte radicale de notre place dans le monde. Je pense que nous le voyons déjà.

Notre communauté scientifique occidentale en général se trouve dans une situation difficile car, pour maintenir notre mode de pensée scientifique actuel, nous devons ignorer une énorme quantité d’informations. Et de plus en plus d’informations de ce type sont recueillies en permanence. Les chercheurs butent partout sur ce phénomène de biocommunication. Il semble impossible, compte tenu de la sophistication des instruments modernes, de passer à côté de cette harmonisation fondamentale entre les êtres vivants. Seulement pendant un certain temps, ils pourront prétendre qu’il s’agit que de " cables déconnectés ".

Auteur: Internet

Info: Les plantes réagissent - Une entrevue avec Cleve Backster, Derrick Jensen,  Juillet 1997 - https://www.thesunmagazine.org/

[ télépathie ] [ adéquation corps-esprit ] [ universel esprit ] [ ego prison ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

chronos

Il est difficile d'imaginer un univers atemporel, non pas parce que le temps est un concept techniquement complexe ou philosophiquement insaisissable mais pour une raison plus structurelle.

Imaginer la non temporalité implique que le temps s'écoule. Même lorsqu'on essayez d'imaginer son absence, on le sent passer à mesure que nos pensées changent, que notre cœur pompe le sang vers votre cerveau et que les images, sons et odeurs bougent autour de nous. Le temps semble ne jamais s'arrêter. On peut même avoir l'impression d'être tissé dans son tissu en un perpétuel mouvement, alors que l'Univers se contracte et se rétracte. Mais est-ce vraiment ainsi que le temps fonctionne ?

Selon Albert Einstein, notre expérience du passé, du présent et du futur n'est rien d'autre qu'une "illusion obstinément persistante". Selon Isaac Newton, le temps n'est rien d'autre qu'une toile de fond, en dehors de la vie. Et selon les lois de la thermodynamique, le temps n'est rien d'autre que de l'entropie et de la chaleur. Dans l'histoire de la physique moderne, il n'y a jamais eu de théorie largement acceptée dans laquelle un sens du temps mobile et directionnel soit fondamental. Nombre de nos descriptions les plus fondamentales de la nature - des lois du mouvement aux propriétés des molécules et de la matière - semblent exister dans un univers où le temps ne s'écoule pas vraiment. Cependant, des recherches récentes menées dans divers domaines suggèrent que le mouvement du temps pourrait être plus important que la plupart des physiciens ne l'avaient supposé.

Une nouvelle forme de physique appelée théorie de l'assemblage suggère que le sens d'un temps en mouvement et directionnel est réel et fondamental. Elle suggère que les objets complexes de notre univers qui ont été fabriqués par la vie, y compris les microbes, les ordinateurs et les villes, n'existent pas hors du temps : impossibles sans un mouvement temporel. De ce point de vue, le passage du temps n'est pas seulement intrinsèque à l'évolution de la vie ou à notre expérience de l'univers. Il est aussi le tissu matériel en perpétuel mouvement de l'Univers lui-même. Le temps est un objet. Il a une taille physique, comme l'espace. Il peut être mesuré au niveau moléculaire dans les laboratoires.

L'unification du temps et de l'espace a radicalement changé la trajectoire de la physique au 20e siècle. Elle a ouvert de nouvelles perspectives sur la façon dont nous concevons la réalité. Que pourrait faire l'unification du temps et de la matière à notre époque ? Que se passe-t-il lorsque le temps est un objet ?

Pour Newton, le temps était fixe. Dans ses lois du mouvement et de la gravité, qui décrivent comment les objets changent de position dans l'espace, le temps est une toile de fond absolue. Le temps newtonien passe, mais ne change jamais. Cette vision temporelle perdure dans la physique moderne - même dans les fonctions d'onde de la mécanique quantique, le temps reste une toile de fond et non une caractéristique fondamentale. Pour Einstein, cependant, le temps n'est pas absolu. Il était relatif à chaque observateur. Il a décrit notre expérience du temps qui passe comme "une illusion obstinément persistante". Le temps einsteinien est mesuré par le tic-tac des horloges ; l'espace est mesuré par le tic-tac des règles qui enregistrent les distances. En étudiant les mouvements relatifs des horloges et des règles, Einstein a pu combiner les concepts de mesure de l'espace et du temps en une structure unifiée que nous appelons aujourd'hui "espace-temps". Dans cette structure, l'espace est infini et tous les points existent en même temps. Mais le temps, tel que décrit par Einstein, possède également cette propriété, ce qui signifie que tous les temps - passé, présent et futur - sont pareillement vrais. Le résultat est parfois appelé "univers bloc", qui contient tout ce qui s'est passé et se passera dans l'espace et le temps. Aujourd'hui, la plupart des physiciens soutiennent  cette notion d'univers-bloc.

Mais l'univers-bloc avait été fissuré avant même d'exister. Au début du XIXe siècle, près d'un siècle avant qu'Einstein ne développe le concept d'espace-temps, Nicolas Léonard Sadi Carnot et d'autres physiciens s'interrogeaient déjà sur l'idée que le temps était soit une toile de fond, soit une illusion. Ces questions se poursuivront au XIXe siècle, lorsque des physiciens tels que Ludwig Boltzmann commenceront à s'intéresser aux problèmes posés par une technologie d'un genre nouveau : la machine (engine - ou moteur : nous par exemple)

Bien que les machines puissent être reproduites mécaniquement, les physiciens ne savent pas exactement comment elles fonctionnent. La mécanique newtonienne est réversible, ce qui n'est pas le cas des machines. Le système solaire de Newton fonctionnait aussi bien en avançant qu'en reculant dans le temps. En revanche, si vous conduisez une voiture et qu'elle tombe en panne d'essence, vous ne pouvez pas faire tourner le moteur en marche arrière, récupérer la chaleur générée et désenflammer le carburant. Les physiciens de l'époque pensaient que les moteurs devaient obéir à certaines lois, même si ces lois étaient inconnues. Ils ont découvert que les moteurs ne fonctionnaient pas si le temps ne s'écoulait pas et n'avait pas de direction. En exploitant les différences de température, les moteurs entraînent un mouvement de chaleur des parties chaudes vers les parties froides. Plus le temps passe, plus la différence de température diminue et moins le "travail" peut être effectué. Telle est l'essence de la deuxième loi de la thermodynamique (également connue sous le nom de loi de l'entropie) qui fut proposée par Carnot et expliquée plus tard de manière statistique par Boltzmann. Cette loi décrit la manière dont un moteur peut effectuer moins de "travail" utile au fil du temps. Vous devez de temps en temps faire le plein de votre voiture, et l'entropie doit toujours être en augmentation.

Vivons-nous vraiment dans un univers qui n'a pas besoin du temps comme caractéristique fondamentale ?

Tout ça a du sens dans le contexte des machines ou d'autres objets complexes, mais n'est pas utile lorsqu'il s'agit d'une simple particule. Parler de la température d'une seule particule n'a aucun sens, car la température est un moyen de quantifier l'énergie cinétique moyenne de nombreuses particules. Dans les lois de la thermodynamique, l'écoulement et la directionnalité du temps sont considérés comme une propriété émergente plutôt que comme une toile de fond ou une illusion - une propriété associée au comportement d'un grand nombre d'objets. Bien que la théorie thermodynamique ait introduit la notion de directionnalité du temps, cette propriété n'était pas fondamentale. En physique, les propriétés "fondamentales" sont réservées aux propriétés qui ne peuvent être décrites par d'autres termes. La flèche du temps en thermodynamique est donc considérée comme "émergente" parce qu'elle peut être expliquée en termes de concepts plus fondamentaux, tels que l'entropie et la chaleur.

Charles Darwin, qui vécut et travailla entre l'ère de la machine à vapeur de Carnot et l'émergence de l'univers en bloc d'Einstein, fut un des premiers à voir clairement comment la vie doit exister dans le temps. Dans la dernière phrase de L'origine des espèces (1859), il résume avec éloquence cette perspective : "Alors que cette planète a continué de tourner selon la loi fixe de la gravité, à partir d'un commencement aussi simple... des formes infinies, les plus belles et les plus merveilleuses, ont été et sont en train d'évoluer". L'arrivée des "formes infinies" de Darwin ne peut s'expliquer que dans un univers où le temps existe et possède une direction claire.

Au cours des derniers milliards d'années, la vie a évolué d'organismes unicellulaires vers des organismes multicellulaires complexes. Elle est passée de sociétés simples à des villes grouillantes et, aujourd'hui, à une planète potentiellement capable de reproduire sa vie sur d'autres mondes. Ces choses mettent du temps à apparaître parce qu'elles ne peuvent émerger qu'à travers les processus de sélection et d'évolution.

Nous pensons que l'intuition de Darwin n'est pas assez profonde. L'évolution décrit avec précision les changements observés dans les différentes formes de vie, mais elle fait bien plus que cela : c'est le seul processus physique de notre univers qui peut générer les objets que nous associons à la vie. Qu'il s'agisse de bactéries, de chats et d'arbres, mais aussi de choses telles que des fusées, des téléphones portables et des villes. Aucun de ces objets n'apparaît spontanément par fluctuation, contrairement à ce que prétendent les ouvrages de physique moderne. Ces objets ne sont pas le fruit du hasard. Au contraire, ils ont tous besoin d'une "mémoire" du passé pour être fabriqués dans le présent. Ils doivent être produits au fil du temps - un temps qui avance continuellement. Pourtant, selon Newton, Einstein, Carnot, Boltzmann et d'autres, le temps est soit inexistant, soit simplement émergent.

Les temps de la physique et de l'évolution sont incompatibles. Mais cela n'a pas toujours été évident parce que physique et évolution traitent de types d'objets différents.  La physique, en particulier la mécanique quantique, traite d'objets simples et élémentaires : quarks, leptons et  autres particules porteuses de force du modèle standard. Ces objets étant considérés comme simples, l'Univers n'a pas besoin de "mémoire" pour les fabriquer (à condition que l'énergie et les ressources disponibles soient suffisantes). La "mémoire" est un moyen de décrire l'enregistrement des actions ou des processus nécessaires à la fabrication d'un objet donné. Lorsque nous abordons les disciplines qui traitent de l'évolution, telles que la chimie et la biologie, nous trouvons des objets trop complexes pour être produits en abondance instantanément (même lorsque l'énergie et les matériaux sont disponibles). Ils nécessitent une mémoire, accumulée au fil du temps, pour être produits. Comme l'a compris Darwin, certains objets ne peuvent voir le jour que grâce à l'évolution et à la sélection de certains "enregistrements" de la mémoire pour les fabriquer.

Cette incompatibilité crée un ensemble de problèmes qui ne peuvent être résolus qu'en s'écartant radicalement de la manière dont la physique aborde actuellement le temps, en particulier si nous voulons expliquer la vie. Si les théories actuelles de la mécanique quantique peuvent expliquer certaines caractéristiques des molécules, comme leur stabilité, elles ne peuvent pas expliquer l'existence de l'ADN, des protéines, de l'ARN ou autres molécules grands et complexes. De même, la deuxième loi de la thermodynamique est censée donner lieu à la flèche du temps et à des explications sur la manière dont les organismes convertissent l'énergie, mais elle n'explique pas la directionnalité du temps, dans laquelle des formes infinies se construisent sur des échelles de temps évolutives sans que soit en vue l'équilibre final ou la mort thermique de la biosphère. La mécanique quantique et la thermodynamique sont nécessaires pour expliquer certaines caractéristiques de la vie, mais elles ne sont pas suffisantes.

Ces problèmes et d'autres encore nous ont amenés à développer une nouvelle façon de penser la physique du temps, que nous avons appelée la théorie de l'assemblage. Cette théorie décrit la quantité de mémoire nécessaire pour qu'une molécule ou une combinaison de molécules - les objets dont est faite la vie - vienne à l'existence. Dans la théorie de l'assemblage, cette mémoire est mesurée au cours du temps en tant que caractéristique d'une molécule, en mettant l'accent sur la mémoire minimale requise pour que cette (ou ces) molécule(s) puisse(nt) voir le jour. La théorie de l'assemblage quantifie la sélection en faisant du temps une propriété des objets qui n'ont pu émerger que par l'évolution.

Nous avons commencé à développer cette nouvelle physique en examinant comment la vie émerge par le biais de changements chimiques. La chimie de la vie fonctionne de manière combinatoire : les atomes se lient pour former des molécules, et les combinaisons possibles augmentent avec chaque liaison supplémentaire. Ces combinaisons sont réalisées à partir d'environ 92 éléments naturels, dont les chimistes estiment qu'ils peuvent être combinés pour construire jusqu'à 10 puissance 60 de molécules différentes  (1 suivi de 60 zéros). Pour devenir utile, chaque combinaison individuelle devrait être répliquée des milliards de fois - pensez au nombre de molécules nécessaires pour fabriquer ne serait-ce qu'une seule cellule, sans parler d'un insecte ou d'une personne. Faire des copies de tout objet complexe prend donc du temps car chaque étape nécessaire à son assemblage implique une recherche dans l'immensité de l'espace combinatoire pour sélectionner les molécules qui prendront une forme physique.

Les espaces à structure combinatoire semblent apparaître lorsque la vie existe.

Prenons les protéines macromoléculaires que les êtres vivants utilisent comme catalyseurs dans les cellules. Ces protéines sont fabriquées à partir d'éléments moléculaires plus petits appelés acides aminés, qui se combinent pour former de longues chaînes dont la longueur varie généralement entre 50 et 2 000 acides aminés. Si toutes les protéines possibles d'une longueur de 100 acides aminés étaient assemblées à partir des 20 acides aminés les plus courants qui forment les protéines, le résultat ne remplirait pas seulement notre univers, mais 10 (puissance 23 ) univers.

Il est difficile d'imaginer le champ de toutes les molécules possibles.  À titre d'analogie, considérons les combinaisons qu'on peut réaliser avec un jeu de briques donné genre Lego. Si le jeu ne contient que deux briques, le nombre de combinaisons sera faible. En revanche, si le jeu contient des milliers de pièces, comme  un modèle Lego de 5 923 pièces du Taj Mahal, le nombre de combinaisons possibles est astronomique. Si vous deviez spécifiquement construire le Taj Mahal en suivant les instructions, l'espace des possibilités devient limité, mais si vous pouviez construire n'importe quel objet Lego avec ces 5 923 pièces, il y aurait une explosion combinatoire des structures possibles qui pourraient être construites - les possibilités augmentant de manière exponentielle avec chaque bloc supplémentaire que vous ajouteriez. Si vous connectez chaque seconde deux structures Lego préalablement construites, vous ne pourriez pas explorer toutes les possibilités d'objets de la taille du jeu Lego Taj Mahal avant la fin de l'univers. En fait, tout espace construit de manière combinatoire, même à partir de quelques blocs de construction simples, aura cette propriété. Idée qui inclut tous les objets cellulaires possibles construits à partir de la chimie, tous les organismes possibles construits à partir de différents types de cellules, tous les langages possibles construits à partir de mots ou d'énoncés, et tous les programmes informatiques possibles construits à partir de tous les jeux d'instructions possibles.

Le schéma est le suivant : les espaces combinatoires semblent se manifester lorsque la vie existe. En d'autres termes, la vie ne devient évidente que lorsque le champ des possibles est si vaste que l'univers est obligé de ne sélectionner qu'une partie de cet espace pour exister. La théorie de l'assemblage vise à formaliser cette idée. Dans la théorie de l'assemblage, les objets sont construits de manière combinatoire à partir d'autres objets et, tout comme vous pouvez utiliser une règle pour mesurer la taille d'un objet donné dans l'espace, la théorie de l'assemblage fournit une mesure - appelée "indice d'assemblage" - pour mesurer la taille d'un objet dans le temps.

Partant de cette analogie, l'ensemble Lego Taj Mahal équivaut à une molécule complexe. La reproduction d'un objet spécifique, comme un jeu de Lego, d'une manière qui n'est pas aléatoire, nécessite une sélection dans l'espace de tous les objets possibles. En d'autres termes, à chaque étape de la construction, des objets ou des ensembles d'objets spécifiques doivent être sélectionnés parmi le grand nombre de combinaisons possibles qui pourraient être construites. Outre la sélection, la "mémoire" est également nécessaire : les objets existants doivent contenir des informations pour assembler le nouvel objet spécifique, qui est mis en œuvre sous la forme d'une séquence d'étapes pouvant être accomplies en un temps fini, comme les instructions requises pour construire le Taj Mahal en Lego. Les objets plus complexes nécessitent davantage de mémoire pour voir le jour.

Dans la théorie de l'assemblage, les objets gagnent en complexité au fil du temps grâce au processus de sélection. Au fur et à mesure que les objets deviennent plus complexes, leurs parties uniques augmentent, ce qui signifie que la mémoire locale doit également augmenter. "Mémoire locale" qui est la chaîne causale d'événements qui font que l'objet est d'abord "découvert" ou "émergé" via la sélection, puis créé en plusieurs exemplaires. Par exemple, dans le cadre de la recherche sur l'origine de la vie, les chimistes étudient comment les molécules s'assemblent pour devenir des organismes vivants. Pour qu'un système chimique émerge spontanément en tant que "vie", il doit s'auto-reproduire en formant, ou en catalysant, des réseaux de réactions chimiques auto-entretenus. Mais comment le système chimique "sait-il" quelles combinaisons faire ? Nous pouvons voir une "mémoire locale" à l'œuvre dans ces réseaux de molécules qui ont "appris" à se lier chimiquement de certaines manières. À mesure que les exigences en matière de mémoire augmentent, la probabilité qu'un objet ait été produit par hasard tombe à zéro, car le nombre de combinaisons alternatives qui n'ont pas été sélectionnées est tout simplement trop élevé. Un objet, qu'il s'agisse d'un Lego Taj Mahal ou d'un réseau de molécules, ne peut être produit et reproduit qu'avec une mémoire et un processus de construction. Mais la mémoire n'est pas partout, elle est locale dans l'espace et le temps. Ce qui signifie qu'un objet ne peut être produit que s'il existe une mémoire locale qui peut guider le choix des pièces, de leur emplacement et de leur moment.

Dans la théorie de l'assemblage, la "sélection" fait référence à ce qui a émergé dans l'espace des combinaisons possibles. Elle est formellement décrite par le nombre de copies et la complexité d'un objet. Le nombre de copies, ou concentration, est un concept utilisé en chimie et en biologie moléculaire qui fait référence au nombre de copies d'une molécule présentes dans un volume d'espace donné. Dans la théorie de l'assemblage, la complexité est tout aussi importante que le nombre de copies. Une molécule très complexe qui n'existe qu'en un seul exemplaire importe peu. Ce qui intéresse la théorie de l'assemblage, ce sont les molécules complexes dont le nombre de copies est élevé, ce qui indique que la molécule a été produite par l'évolution. Cette mesure de la complexité est également connue sous le nom d'"indice d'assemblage" d'un objet. Valeur qui est liée à la quantité de mémoire physique nécessaire pour stocker les informations permettant de diriger l'assemblage d'un objet et d'établir une direction dans le temps du simple au complexe. Bien que la mémoire doive exister dans l'environnement pour faire naître l'objet, dans la théorie de l'assemblage la mémoire est également une caractéristique physique intrinsèque de l'objet. En fait, elle est l'objet.

Ce sont des piles d'objets construisant d'autres objets qui construisent d'autres objets - objets qui construisent des objets, jusqu'au bout. Certains objets ne sont apparus que relativement récemment, tels que les "produits chimiques éternels" synthétiques fabriqués à partir de composés chimiques organofluorés. D'autres sont apparus il y a des milliards d'années, comme les cellules végétales photosynthétiques. Les objets ont des profondeurs temporelles différentes. Cette profondeur est directement liée à l'indice d'assemblage et au nombre de copies d'un objet, que nous pouvons combiner en un nombre : une quantité appelée "assemblage", ou A. Plus le nombre d'assemblage est élevé, plus l'objet a une profondeur temporelle.

Pour mesurer un assemblage en laboratoire, nous analysons chimiquement un objet pour compter le nombre de copies d'une molécule donnée qu'il contient. Nous déduisons ensuite la complexité de l'objet, connue sous le nom d'indice d'assemblage moléculaire, en comptant le nombre de parties qu'il contient. Ces parties moléculaires, comme les acides aminés dans une chaîne de protéines, sont souvent déduites en déterminant l'indice d'assemblage moléculaire d'un objet - un numéro d'assemblage théorique. Mais il ne s'agit pas d'une déduction théorique. Nous "comptons" les composants moléculaires d'un objet à l'aide de trois techniques de visualisation : la spectrométrie de masse, la spectroscopie infrarouge et la spectroscopie de résonance magnétique nucléaire (RMN). Il est remarquable que le nombre de composants que nous avons comptés dans les molécules corresponde à leur nombre d'assemblage théorique. Cela signifie que nous pouvons mesurer l'indice d'assemblage d'un objet directement avec un équipement de laboratoire standard.

Un numéro d'assemblage élevé - indice d'assemblage élevé et nombre de copies élevé - indique que l'objet peut être fabriqué de manière fiable par un élément de son environnement. Il peut s'agir d'une cellule qui construit des molécules à indice d'assemblage élevé, comme les protéines, ou d'un chimiste qui fabrique des molécules à indice d'assemblage encore plus élevé, comme le Taxol (paclitaxel), un médicament anticancéreux. Les objets complexes ayant un nombre élevé de copies ne sont pas apparus au hasard, mais sont le résultat d'un processus d'évolution ou de sélection. Ils ne sont pas le fruit d'une série de rencontres fortuites, mais d'une sélection dans le temps. Plus précisément, d'une certaine profondeur dans le temps.

C'est comme si l'on jetait en l'air les 5 923 pièces du Lego Taj Mahal et que l'on s'attendait à ce qu'elles s'assemblent spontanément

Il s'agit d'un concept difficile. Même les chimistes ont du mal à l'appréhender, car s'il est facile d'imaginer que des molécules "complexes" se forment par le biais d'interactions fortuites avec leur environnement, en laboratoire, les interactions fortuites conduisent souvent à la production de "goudron" plutôt qu'à celle d'objets à haut niveau d'assemblage. Le goudron est le pire cauchemar des chimistes, un mélange désordonné de molécules qui ne peuvent être identifiées individuellement. On le retrouve fréquemment dans les expériences sur l'origine de la vie. Dans l'expérience de la "soupe prébiotique" menée par le chimiste américain Stanley Miller en 1953, les acides aminés sélectionnés au départ se transformaient en une bouillie noire non identifiable si l'expérience se poursuivait trop longtemps (et aucune sélection n'était imposée par les chercheurs pour empêcher les changements chimiques de se produire). Le problème dans ces expériences est que l'espace combinatoire des molécules possibles est si vaste pour les objets à fort assemblage qu'aucune molécule spécifique n'est produite en grande abondance. Le résultat est le "goudron".

C'est comme si l'on jetait en l'air les 5 923 pièces du jeu Lego Taj Mahal et qu'on s'attendait à ce qu'elles s'assemblent spontanément de manière exacte comme le prévoient les instructions. Imaginez maintenant que vous preniez les pièces de 100 boîtes du même jeu de Lego, que vous les lanciez en l'air et que vous vous attendiez à ce que 100 exemplaires du même bâtiment soient fabriqués. Les probabilités sont incroyablement faibles et pourraient même être nulles, si la théorie de l'assemblage est sur la bonne voie. C'est aussi probable qu'un œuf écrasé se reforme spontanément.

Mais qu'en est-il des objets complexes qui apparaissent naturellement sans sélection ni évolution ? Qu'en est-il des flocons de neige, des minéraux et des systèmes de tempêtes météo  complexes ? Contrairement aux objets générés par l'évolution et la sélection, ces objets n'ont pas besoin d'être expliqués par leur "profondeur dans le temps". Bien qu'individuellement complexes, ils n'ont pas une valeur d'assemblage élevée parce qu'ils se forment au hasard et n'ont pas besoin de mémoire pour être produits. Ils ont un faible nombre de copies parce qu'ils n'existent jamais en copies identiques. Il n'y a pas deux flocons de neige identiques, et il en va de même pour les minéraux et les systèmes de tempête.

La théorie des assemblages modifie non seulement notre conception du temps, mais aussi notre définition de la vie elle-même. En appliquant cette approche aux systèmes moléculaires, il devrait être possible de mesurer si une molécule a été produite par un processus évolutif. Cela signifie que nous pouvons déterminer quelles molécules n'ont pu être produites que par un processus vivant, même si ce processus implique des chimies différentes de celles que l'on trouve sur Terre. De cette manière, la théorie de l'assemblage peut fonctionner comme un système universel de détection de la vie qui fonctionne en mesurant les indices d'assemblage et le nombre de copies de molécules dans des échantillons vivants ou non vivants.

Dans nos expériences de laboratoire, nous avons constaté que seuls les échantillons vivants produisent des molécules à fort taux d'assemblage. Nos équipes et nos collaborateurs ont reproduit cette découverte en utilisant une technique analytique appelée spectrométrie de masse, dans laquelle les molécules d'un échantillon sont "pesées" dans un champ électromagnétique, puis réduites en morceaux à l'aide d'énergie. Le fait de réduire une molécule en morceaux nous permet de mesurer son indice d'assemblage en comptant le nombre de parties uniques qu'elle contient. Nous pouvons ainsi déterminer le nombre d'étapes nécessaires à la production d'un objet moléculaire et quantifier sa profondeur dans le temps à l'aide d'un équipement de laboratoire standard.

Pour vérifier notre théorie selon laquelle les objets à fort indice d'assemblage ne peuvent être générés que par la vie, l'étape suivante a consisté à tester des échantillons vivants et non vivants. Nos équipes ont pu prélever des échantillons de molécules dans tout le système solaire, y compris dans divers systèmes vivants, fossiles et abiotiques sur Terre. Ces échantillons solides de pierre, d'os, de chair et d'autres formes de matière ont été dissous dans un solvant, puis analysés à l'aide d'un spectromètre de masse à haute résolution capable d'identifier la structure et les propriétés des molécules. Nous avons constaté que seuls les systèmes vivants produisent des molécules abondantes dont l'indice d'assemblage est supérieur à une valeur déterminée expérimentalement de 15 étapes. La coupure entre 13 et 15 est nette, ce qui signifie que les molécules fabriquées par des processus aléatoires ne peuvent pas dépasser 13 étapes. Nous pensons que cela indique une transition de phase où la physique de l'évolution et de la sélection doit prendre le relais d'autres formes de physique pour expliquer la formation d'une molécule.

Ces expériences vérifient que seuls les objets avec un indice d'assemblage suffisamment élevé - molécules très complexes et copiées - semblent se trouver dans la vie. Ce qui est encore plus passionnant, c'est que nous pouvons trouver cette information sans rien savoir d'autre sur la molécule présente. La théorie de l'assemblage peut déterminer si des molécules provenant de n'importe quel endroit de l'univers sont issues de l'évolution ou non, même si nous ne connaissons pas la chimie utilisée.

La possibilité de détecter des systèmes vivants ailleurs dans la galaxie est passionnante, mais ce qui l'est encore plus pour nous, c'est la possibilité d'un nouveau type de physique et d'une nouvelle explication du vivant. En tant que mesure empirique d'objets uniquement produisibles par l'évolution, l'Assemblage déverouille une théorie plus générale de la vie. Si cette théorie se vérifie, son implication philosophique la plus radicale est que le temps existe en tant que propriété matérielle des objets complexes créés par l'évolution. En d'autres termes, tout comme Einstein a radicalisé notre notion du temps en l'unifiant avec l'espace, la théorie de l'assemblage indique une conception radicalement nouvelle du temps en l'unifiant avec la matière.

La théorie de l'assemblage explique les objets évolués, tels que les molécules complexes, les biosphères et les ordinateurs.

Elle est radicale parce que, comme nous l'avons noté, le temps n'a jamais été fondamental dans l'histoire de la physique. Newton et certains physiciens quantiques le considèrent comme une toile de fond. Einstein pensait qu'il s'agissait d'une illusion. Et, dans les travaux de ceux qui étudient la thermodynamique, il est considéré comme une simple propriété émergente. La théorie de l'assemblage considère le temps comme un élément fondamental et matériel : le temps est la matière dont sont faites les choses dans l'univers. Les objets créés par la sélection et l'évolution ne peuvent être formés que par le passage du temps. Mais il ne faut pas considérer ce temps comme le tic-tac mesuré d'une horloge ou comme une séquence d'années calendaires. Le temps est un attribut physique. Pensez-y en termes d'assemblage, propriété intrinsèque mesurable de la profondeur ou de la taille d'une molécule dans le temps.

Cette idée est radicale car elle permet également à la physique d'expliquer les changements évolutifs. La physique a traditionnellement étudié des objets que l'Univers peut assembler spontanément, tels que des particules élémentaires ou des planètes. La théorie de l'assemblage, en revanche, explique les objets évolués, tels que les molécules complexes, les biosphères et les ordinateurs. Ces objets complexes n'existent que le long de lignées où des informations spécifiques à leur construction furent acquises.

Si nous remontons ces lignées, depuis l'origine de la vie sur Terre jusqu'à l'origine de l'Univers, il serait logique de suggérer que la "mémoire" de l'Univers était plus faible dans le passé. Ce qui signifie que la capacité de l'Univers à générer des objets à fort assemblage est fondamentalement limitée par sa taille dans le temps. De même qu'un camion semi-remorque ne rentre pas dans le garage d'une maison standard, certains objets sont trop grands dans le temps pour naître dans des intervalles inférieurs à leur indice d'assemblage. Pour que des objets complexes comme les ordinateurs puissent exister dans notre univers, de nombreux autres objets ont d'abord dû se former : les étoiles, les éléments lourds, la vie, les outils, la technologie et l'abstraction de l'informatique. Cela prend du temps et dépend fortement du chemin parcouru en raison de la contingence causale de chaque innovation. Il est possible que l'Univers primitif n'était pas capable de calculer comme nous le savons, simplement parce qu'il n'y avait pas encore assez d'histoire. Le temps devait s'écouler et être matériellement instancié par la sélection des objets constitutifs de l'ordinateur. Il en va de même pour les structures Lego, les grands modèles de langage, les nouveaux médicaments, la "technosphère" ou tout autre objet complexe.

Les conséquences de la profondeur matérielle intrinsèque des objets dans le temps sont considérables. Dans l'univers-bloc, tout est considéré comme statique et existant en même temps. Ce qui signifie que les objets ne peuvent pas être ordonnés en fonction de leur profondeur temporelle, et que sélection et évolution ne peuvent pas être utilisées pour expliquer pourquoi certains objets existent et pas d'autres. La reconceptualisation du temps en tant que dimension physique de la matière complexe et la définition d'une directionnalité temporelle pourraient nous aider à résoudre ces questions. La matérialisation du temps via notre théorie de l'assemblage permet d'unifier plusieurs concepts philosophiques déconcertants liés à la vie dans un cadre mesurable. Au cœur de cette théorie se trouve l'indice d'assemblage, qui mesure la complexité d'un objet. Il s'agit d'une manière quantifiable de décrire le concept évolutif de sélection en montrant combien d'alternatives ont été exclues pour obtenir un objet donné. Chaque étape du processus d'assemblage d'un objet nécessite des informations, une mémoire, pour spécifier ce qui doit ou ne doit pas être ajouté ou modifié. Pour construire le Taj Mahal en Lego, par exemple, nous devons suivre une séquence spécifique d'étapes, chacune d'entre elles nous menant à la construction finale. Chaque pas manqué est une erreur, et si nous faisons trop d'erreurs, il ne sera pas possible de construire une structure reconnaissable. La copie d'un objet nécessite des informations sur les étapes qui furent précédemment nécessaires pour produire des objets similaires.

Tout ceci fait de la théorie de l'assemblage une théorie causale de la physique, car la structure sous-jacente d'un espace d'assemblage - l'ensemble des combinaisons requises - ordonne les choses dans une chaîne de causalité. Chaque étape dépend d'une étape sélectionnée précédemment, et chaque objet dépend d'un objet sélectionné précédemment. Si l'on supprime l'une des étapes d'une chaîne d'assemblage, l'objet final ne sera pas produit. Les mots à la mode souvent associés à la physique de la vie, tels que "théorie", "information", "mémoire", "causalité" et "sélection", sont matériels parce que les objets eux-mêmes encodent les règles qui aident à construire d'autres objets "complexes". Ce pourrait être le cas dans la catalyse mutuelle* où les objets se fabriquent réciproquement. Ainsi, dans la théorie de l'assemblage, le temps est essentiellement identique à l'information, la mémoire, la causalité et la sélection.  Termes qui sont tous rendus physiques parce que nous supposons qu'il impliquent des caractéristiques des objets décrits dans la théorie, et non des lois qui régissent le comportement de ces objets. La théorie de l'assemblage réintroduit dans la physique une notion de temporalité en expansion et en mouvement, en montrant que son passage est la matière même dont sont faits les objets complexes : la complexité augmente simultanément avec la taille de l'avenir..

Cette nouvelle conception du temps pourrait résoudre de nombreux problèmes ouverts en physique fondamentale. Le premier et le plus important est le débat entre déterminisme et contingence. Einstein a dit de façon célèbre que Dieu "ne joue pas aux dés", et de nombreux physiciens sont encore obligés de conclure que le déterminisme s'applique et que notre avenir est fermé. Mais l'idée que les conditions initiales de l'univers, ou de tout autre processus, déterminent l'avenir a toujours posé problème. Dans la théorie de l'assemblage, l'avenir est déterminé, mais pas avant qu'il ne se produise. Si ce qui existe aujourd'hui détermine l'avenir, et que ce qui existe aujourd'hui est plus grand et plus riche en informations qu'il ne l'était dans le passé, alors les futurs possibles deviennent également plus grands au fur et à mesure que les objets deviennent plus complexes. Cela s'explique par le fait qu'il y a plus d'histoire dans le présent à partir de laquelle il est possible d'assembler de nouveaux états futurs. Traiter le temps comme une propriété matérielle des objets qu'il crée permet de générer de la nouveauté dans le futur.

La nouveauté est essentielle à notre compréhension de la vie en tant que phénomène physique. Notre biosphère est un objet vieux d'au moins 3,5 milliards d'années selon la mesure du temps de l'horloge (l'Assemblage mesure le temps différement). Mais comment la vie est-elle apparue ? Qu'est-ce qui a permis aux systèmes vivants de développer l'intelligence et la conscience ? La physique traditionnelle suggère que la vie a "émergé". Le concept d'émergence rend compte de la façon dont de nouvelles structures semblent apparaître à des niveaux supérieurs d'organisation spatiale, sans que l'on puisse les prédire à partir des niveaux inférieurs. Parmi les exemples, on peut citer le caractère humide de l'eau, qui ne peut être prédit à partir des molécules d'eau individuelles, ou la façon dont les cellules vivantes sont constituées d'atomes non vivants individuels. Cependant, les objets que la physique traditionnelle considère comme émergents deviennent fondamentaux dans la théorie de l'assemblage. De ce point de vue, le caractère émergent d'un objet, c'est-à-dire la mesure dans laquelle il s'écarte des attentes d'un physicien concernant ses éléments constitutifs élémentaires, dépend de la profondeur à laquelle il se situe dans le temps. Ce qui nous oriente vers les origines de la vie, mais nous pouvons aussi voyager dans l'autre sens.

Si nous sommes sur la bonne voie, la théorie de l'assemblage suggère que le temps est fondamental. Elle suggère que le changement n'est pas mesuré par des horloges, mais qu'il est encodé dans des chaînes d'événements qui produisent des molécules complexes avec différentes profondeurs dans le temps. Assemblages issus d'une mémoire locale dans l'immensité de l'espace combinatoire, ces objets enregistrent le passé, agissent dans le présent et déterminent l'avenir. Ceci signifie que l'Univers s'étend dans le temps et non dans l'espace - ou peut-être même que l'espace émerge du temps, comme le suggèrent de nombreuses propositions actuelles issues de la gravité quantique. Bien que l'Univers puisse être entièrement déterministe, son expansion dans le temps implique que le futur ne peut être entièrement prédit, même en principe. L'avenir de l'Univers est plus ouvert que nous n'aurions pu le prévoir.

Le temps est peut-être un tissu en perpétuel mouvement à travers lequel nous voyons les choses s'assembler et se séparer. Mais ce tissu fait mieux que se déplacer : il s'étend. Lorsque le temps est un objet, l'avenir a la taille du cosmos.

Auteur: Walker Sara Imari

Info: 19 May 2023. Publié en association avec l'Institut Santa Fe, un partenaire stratégique d'Aeon. *Autostimulation de la croissance d'une culture bactérienne par l'ajout de cellules similaires.

[ non-ergodicité ] [ frontière organique-inorganique ] [ savoir conservé ] [ gnose ] [ monades orthogonales ] [ exobiologie ]

 

Commentaires: 0

Ajouté à la BD par miguel