Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 92
Temps de recherche: 0.0766s

recombinaison latérale

Ce que nous savons sur la façon dont l'ADN passe d'une espèce à l'autre

Si vous avez les yeux de votre père ou les taches de rousseur de votre grand-mère, vous pouvez remercier les gènes transmis au sein de votre famille. Mais les chercheurs ont commencé à reconnaître qu’à un niveau biologique plus profond, un autre type d’héritage génétique se produit également. Les gènes peuvent glisser entre individus – ou même entre espèces – grâce à un processus connu sous le nom de transfert horizontal de gènes. Cela est peut-être loin d’être quotidien dans des organismes complexes comme les humains, mais sur une échelle de temps évolutive, cela pourrait se produire beaucoup plus souvent qu’on ne le pensait.

Les transferts horizontaux de gènes sont relativement courants dans le monde bactérien, où ils jouent un rôle important dans l’évolution et l’adaptation, ainsi que dans la propagation de la résistance aux antibiotiques. En fait, les biologistes évolutionnistes ont du mal à démêler certaines des premières branches de l’arbre de vie, car le nombre élevé de transferts horizontaux entre ces anciens organismes unicellulaires a si étroitement entrelacé les lignées. Les scientifiques savent également très peu de choses sur la façon dont ce processus pourrait avoir façonné de manière significative les génomes d’organismes complexes comme les plantes et les animaux.

Pendant de nombreuses années, les scientifiques qui soutenaient que des sauts horizontaux pouvaient se produire chez des espèces multicellulaires telles que les poissons ont été critiqués par leurs pairs. Une telle migration nécessite une chaîne d'événements improbables : un gène d'un individu doit d'une manière ou d'une autre pénétrer dans les cellules germinales qui produisent les spermatozoïdes ou les ovules d'un individu d'une autre espèce. De là, il doit pénétrer dans le noyau et pénétrer dans le génome de son nouvel hôte, qui doit ensuite produire une progéniture avec ces ovules ou spermatozoïdes pour transmettre ce génome modifié. Les moteurs importants de ce processus sont souvent les éléments génétiques appelés transposons, ou " gènes sauteurs ", qui peuvent se copier et se coller à différents endroits d’un génome, ou même d’un génome vers un autre. Parfois, ils semblent le faire en pénétrant dans le corps d'un nouvel hôte à l'intérieur d'un parasite ou d'un virus. C'est un parcours qui comporte de nombreuses étapes improbables, mais la biologie moléculaire suggère que ça existe.

Des études ont identifié des cas de transferts horizontaux chez un large éventail d’animaux, notamment des poissons, des grenouilles et des serpents. Pourtant, on ne sait pas exactement dans quelle mesure les organismes eucaryotes complexes partagent ainsi des gènes avec d’autres formes de vie. Les données recueillies jusqu'à présent suggèrent qu'il est plus probable que les gènes passent des bactéries aux eucaryotes que l'inverse : des expériences montrent que lorsque les gènes eucaryotes pénètrent dans les bactéries, celles-ci les éjectent le plus souvent.

Les biologistes ont fait de nombreuses découvertes surprenantes ces dernières années sur le mouvement des gènes entre les espèces.

Quoi de neuf et remarquable

En 2022, des chercheurs ont rapporté qu’un gène appelé BovB s’était déplacé indépendamment des serpents vers les grenouilles au moins 50 fois dans diverses parties de la planète. Bizarrement, ils ont constaté que cela se produisait beaucoup plus souvent à Madagascar qu’ailleurs. On ne sait pas pourquoi. Un facteur pourrait être le nombre élevé de parasites tels que les sangsues qui vivent sur l'île et se déplacent d'hôte en hôte, transportant des séquences d'ADN acquises dans le sang qu'elles ont bu. Les preuves d'anciens transferts de gènes horizontaux sont souvent brouillées avec le temps, mais les chercheurs espèrent désormais détecter les transferts sur le fait en examinant les organismes des sources chaudes du parc national de Yellowstone.

Le transfert horizontal de gènes semble également avoir joué un rôle dans la manière dont la vie marine autour des pôles a développé – ou plutôt emprunté – des défenses pour survivre au froid glacial. Les chercheurs ont pu montrer que les harengs et les éperlans, deux groupes de poissons qui ont divergé il y a plus de 250 millions d'années, utilisent le même gène pour fabriquer des protéines qui empêchent la croissance des cristaux de glace dans leur corps. Il a fallu des décennies pour convaincre les chercheurs que le gène devait être passé du hareng à l'éperlan. On ne sait pas exactement dans quelle mesure ce type de transfert horizontal se produit entre les cellules vertébrées, mais une étude a mis en évidence au moins 975 transferts entre 307 génomes de vertébrés, principalement chez les poissons à nageoires rayonnées.

Les transferts de gènes entre espèces concernent même les humains, ou plus particulièrement nos microbiomes, les puissantes armées de micro-organismes qui occupent nos intestins et d’autres parties du corps. Le microbiome d’un bébé humain vient d’abord de sa mère. Mais étonnamment, ces dons maternels ne sont pas toujours des cellules entières. De petits fragments d'ADN provenant des bactéries de la mère peuvent passer aux bactéries du bébé par le biais de transferts de gènes horizontaux, même des mois après la naissance. Ces gènes, qui proviennent souvent de souches bactériennes utiles chez la mère, pourraient jouer un rôle important dans la croissance et le développement du bébé. Bien qu’il ne soit pas clair si les transferts horizontaux de gènes profitent directement au bébé en lui transmettant des fonctions particulières, ils pourraient être indirectement utiles en assemblant un microbiome intestinal plus performant.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ fév 2024, Yasemin Saplakoglu

[ échange ] [ transduction ] [ HVT ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

manipulation génétique

Des scientifiques de Cambridge créent le premier organisme vivant au monde avec un ADN entièrement redessiné
Les chercheurs créent un génome synthétique, en mouvement avec des bénéfices médicaux potentiels. C'est le premier organisme vivant au monde dont le code ADN est entièrement synthétique et radicalement modifié.

Le microbe fabriqué en laboratoire, une souche de bactéries que l'on trouve normalement dans le sol et dans l'intestin humain, est semblable à ses cousins naturels, mais survit grâce à un ensemble plus restreint d'instructions génétiques.

Cette existence démontre que la vie peut exister avec un code génétique restreint et ouvre la voie à des organismes dont les mécanismes biologiques sont piratés pour fabriquer des médicaments et du matériel utile, ou pour ajouter de nouvelles caractéristiques telles que la résistance aux virus.

En deux ans, des chercheurs du laboratoire de biologie moléculaire de l'Université de Cambridge ont lu et redessiné l'ADN de la bactérie Escherichia coli (E. coli), avant de créer des cellules avec une version synthétique du génome modifié.

Le génome artificiel contient 4m de paires de bases, les unités du code génétique épelées par les lettres G, A, T et C. Imprimé en entier sur des feuilles A4, il compte 970 pages, faisant de ce génome le plus grand que les scientifiques aient jamais édifié, de loin.

"Il n'était pas du tout clair s'il était possible de créer un génome de cette taille et s'il était possible de le modifier autant", a déclaré Jason Chin, un expert en biologie de synthèse qui a dirigé le projet.

L'ADN enroulé à l'intérieur d'une cellule contient les instructions dont il a besoin pour fonctionner. Lorsque la cellule a besoin de plus de protéines pour croître, par exemple, elle lit l'ADN qui code la bonne protéine. Les lettres d'ADN sont lues dans des trios appelés codons, tels que TCG et TCA.

Presque toute vie, de la méduse à l'homme, utilise 64 codons. Mais beaucoup d'entre eux font le même travail. Au total, 61 codons produisent 20 acides aminés naturels, qui peuvent être enfilés ensemble comme des perles sur une ficelle pour construire n'importe quelle protéine de la nature. Trois autres codons sont en effet des panneaux stop : ils indiquent à la cellule lorsque la protéine est prête, comme le point marquant la fin de cette phrase.

L'équipe de Cambridge a entrepris de remodeler le génome d'E. coli en enlevant certains de ses codons superflus. Travaillant sur un ordinateur, les scientifiques ont examiné l'ADN de l'insecte. Chaque fois qu'ils rencontraient TCG, un codon qui fabrique un acide aminé appelé sérine, ils le réécrivaient en AGC, qui fait le même travail. Ils ont remplacé deux autres codons de la même manière.

Plus de 18 000 éditions plus tard, les scientifiques avaient retiré toutes les occurrences des trois codons du génome de l'insecte. Le nouveau code génétique a ensuite été synthétisé chimiquement et, morceau par morceau, ajouté à E. coli où il a remplacé le génome naturel de l'organisme. Le résultat, rapporté dans Nature, est un microbe avec un code ADN complètement synthétique et radicalement modifié. Connu sous le nom de Syn61, ce bug est un peu plus long que la normale, et grandit plus lentement, mais survit néanmoins.

"C'est assez incroyable", a déclaré Chin. Lorsque l'insecte a été créé, peu avant Noël, l'équipe de recherche a fait prendre une photo dans le laboratoire avec une plaque des microbes comme figure centrale dans une reconstitution de la nativité.

De telles formes de vie ainsi conçues pourraient s'avérer utiles, croit Chin. Parce que leur ADN est différent, les virus envahisseurs auront du mal à se propager en elles, ce qui les rendra de fait résistantes aux virus. Ce qui pourrait apporter des avantages. E. coli est déjà utilisé par l'industrie biopharmaceutique pour produire de l'insuline pour le diabète et d'autres composés médicaux contre le cancer, la sclérose en plaques, les crises cardiaques et les maladies oculaires, mais des cycles de production entiers peuvent être gâchés lorsque les cultures bactériennes sont contaminées par des virus ou autres microbes. Mais ce n'est pas tout : dans le cadre de travaux futurs, le code génétique libéré pourrait être réutilisé pour que les cellules produisent des enzymes, des protéines et des médicaments de synthèse.

En 2010, des scientifiques américains ont annoncé la création du premier organisme au monde doté d'un génome synthétique. L'insecte, Mycoplasma mycoides, a un génome plus petit que E. coli - environ 1m de paires de bases - et n'a pas été radicalement remanié. Commentant les derniers travaux, Clyde Hutchison, du groupe de recherche américain, a déclaré : "Cette échelle de remplacement du génome est plus grande que n'importe quel remplacement complet du génome rapporté jusqu'ici."

"Ils ont porté le domaine de la génomique synthétique à un nouveau niveau, non seulement en construisant avec succès le plus grand génome synthétique à ce jour, mais aussi en apportant les plus grands changements de codage à un génome à ce jour", a déclaré Tom Ellis, un chercheur en biologie synthétique à Imperial College de Londres.

Mais il se peut que les données ne durent pas longtemps. Ellis et d'autres construisent un génome synthétique pour la levure de boulangerie, tandis que les scientifiques de Harvard font des génomes bactériens avec plus de modifications au codage. Il n'est pas surprenant que l'E. coli redessiné ne pousse pas aussi bien que les souches naturelles, a ajouté Ellis. "Si quelque chose est surprenant, c'est qu'il grandisse après tant de changements," dit-il.

Auteur: Internet

Info: https://www.theguardian.com, Ian Sample rédacteur scientifique Wed 15 mai 2019 18.00 BST

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

microbiologie

Comment le microbiome* influence notre santé 

Nous ne sommes jamais seuls. En plus des 30 000 milliards de cellules humaines, notre corps abrite quelque 39 000 milliards de microbes – bactéries, champignons et protozoaires qui vivent dans nos intestins, nos poumons, notre bouche, notre nez, notre peau et ailleurs dans tout le corps. Les ensembles d’organismes présents dans et sur notre corps, le " microbiote ", font partie d’habitats microbiens plus larges, ou " microbiomes ", qui englobent tous les génomes viraux et cellulaires, les protéines codées et d’autres molécules dans leur environnement local. (Cependant,  il existe une certaine ambiguïté  dans les définitions, de sorte que l'utilisation des termes varie souvent.)

Bien que le microbiome soit récemment devenu un sujet brûlant en raison de son importance potentielle pour notre santé, ce n'est pas un concept nouveau. Certains font remonter ses origines au XVIIe siècle, lorsque le microbiologiste néerlandais Antonie van Leeuwenhoek a décrit pour la première fois de minuscules organismes qu'il avait prélevés dans sa bouche et observés sous un microscope artisanal. Tout au long des années 1900 et au début des années 2000, un certain nombre de découvertes ont attiré l'attention des gens sur les microbes vivant à l'intérieur de nous, mais ce domaine a reçu une attention accrue en 2007 lorsque les National Institutes of Health ont lancé le projet sur le microbiome humain. Depuis lors, les scientifiques ont catalogué de manière de plus en plus détaillée la biodiversité microbienne du corps humain. Ils ont découvert que les microbiomes sont distincts dans tout le corps : la composition microbienne de l’intestin, par exemple, est très différente de celle de la bouche. Ils en sont également venus à reconnaître qu’il n’existe pas de microbiome " ​​normal ". Au contraire, comme pour les empreintes digitales, chacun abrite une sélection unique d’espèces et de souches microbiennes.

Ces microbes jouent de nombreux rôles, depuis la protection contre les agents pathogènes et le réglage de nos réponses immunitaires jusqu'à la digestion des aliments et la synthèse des nutriments. Pour cette raison, lorsqu’un microbiome est désorganisé – par exemple à cause d’une mauvaise alimentation, de maladies infectieuses, de médicaments ou de facteurs environnementaux – cela peut avoir un effet d’entraînement sur notre santé. Des microbiomes malsains ont été associés au cancer, aux maladies cardiaques et pulmonaires, à l’inflammation et aux maladies inflammatoires de l’intestin. On pense même que les microbes régulent l’axe intestin-cerveau, une autoroute de communication qui relie le cerveau au système nerveux entérique, qui contrôle les intestins. Aujourd’hui, la médecine cible de plus en plus les microbiomes pour traiter diverses maladies. Par exemple, les greffes fécales contenant un microbiote sain sont parfois utilisées pour traiter des infections bactériennes graves du côlon.


Malgré une accélération de la recherche sur le microbiome au cours des dernières décennies, qui a donné naissance à de nouvelles technologies génomiques puissantes, de nombreuses questions fondamentales restent sans réponse complète. Comment acquérons-nous le microbiote et comment la communauté évolue-t-elle tout au long de notre vie ? Quel est l’impact des différents environnements et modes de vie sur le microbiome ? Comment le microbiome peut-il provoquer ou être utilisé pour traiter des maladies ? Ces questions et bien d’autres alimentent la recherche biologique et nous aident à mieux comprendre qui et ce qui fait de nous ce que nous sommes.

Quoi de neuf et remarquable

D’où vient notre microbiome ? Plusieurs études réalisées au cours de la dernière année ont donné des indications. Les bébés acquièrent la plupart de leurs microbes de leur mère à la naissance et dans les mois qui suivent. Mais il s’avère que les mères ne partagent pas seulement des organismes microbiens avec leurs bébés, elles partagent également des gènes microbiens. Dans une étude de 2022 publiée dans Cell , des scientifiques ont révélé que de courtes séquences d'ADN appelées éléments mobiles peuvent passer des bactéries de la mère aux bactéries du bébé, même des mois après la naissance. Comme je l'ai déjà signalé dans  Quanta , il est probable que ces gènes pourraient aider à développer un microbiome intestinal plus performant chez le bébé, ce qui pourrait à son tour développer davantage son système immunitaire.

La transmission ne se produit pas seulement à la naissance. En fait, les microbiomes sont incroyablement dynamiques et peuvent changer radicalement au cours de la vie d’une personne. Dans un article de Quanta publié l’année dernière, j’ai rendu compte de l’analyse mondiale la plus complète de la transmission du microbiome à ce jour. À l’aide de nouveaux outils génomiques, une équipe de biologistes italiens a retracé plus de 800 000 souches de microbes entre familles, colocataires, voisins et villages dans 20 pays. Ils ont découvert que les microbes sautent beaucoup entre les personnes, en particulier entre les conjoints et les colocataires, qui passent beaucoup de temps ensemble. Ces résultats suggèrent que certaines maladies qui ne sont pas considérées comme contagieuses pourraient avoir un aspect contagieux si elles impliquent le microbiome. Cependant, cette idée est spéculative et sera sûrement débattue et étudiée dans les années à venir.

Les connaissances sur la manière dont nous acquérons le microbiome et son impact sur notre corps ne proviennent pas uniquement d’études réalisées sur des humains. D’autres animaux possèdent également des microbiomes essentiels à leur santé et à leur développement – ​​et plusieurs études récentes ont établi des liens entre les microbes intestinaux et le cerveau. En 2019, Quanta a signalé que le comportement de peur diffère entre les souris ayant des microbiomes différents, et en 2022, nous avons rendu compte de la manière dont les microbiomes influencent les compétences sociales et la structure cérébrale du poisson zèbre.




Auteur: Internet

Info: https://www.quantamagazine.org/ - 11 03 2024 - Yasemin Saplakogku. *Pour préciser : Le terme microbiote est suivi du nom de l'environnement dans lequel il se trouve. Par exemple, le « microbiote intestinal » fait référence au microbiote présent dans les voies intestinales. Le microbiome fait référence à l'ensemble des gènes hébergés par des micro-organismes, ce que l'on appelle le théâtre d'activité.

[ orchestre invisible du corps ] [ Des bactéries aux organes ]

 

Commentaires: 0

Ajouté à la BD par miguel

science mystique

Science de l'ADN, ce que les chercheurs russes ont découvert de manière surprenante...

Des scientifiques russes pensent pouvoir reprogrammer l'ADN humain à l'aide de mots et de fréquences.

La science de l'ADN semble enfin expliquer des phénomènes auparavant mystérieux tels que la clairvoyance ... l'intuition ... la guérison mains libres ... la lumière et les auras "surnaturelles" ... et bien d'autres choses encore. Ces découvertes sont à mettre au crédit de chercheurs russes, qui se sont aventurés sur le terrain de l'ADN que les chercheurs occidentaux n'avaient pas envisagé. Les scientifiques occidentaux limitant leurs études aux 10 % de notre ADN responsables de la construction des protéines. Cela signifie qu'ils ont considéré les 90 % restants de l'ADN comme des "déchets" (junk).

AInsi, une équipe russe innovante, dirigée par le biophysicien et biologiste moléculaire Pjotr Garjajev, a refusé d'accepter qu'une si grande majorité de l'ADN puisse n'avoir aucune valeur pour la recherche. Pour percer les mystères de ce terrain inconnu, ils ont associé des linguistes à des généticiens dans le cadre d'une étude non conventionnelle visant à tester l'impact des vibrations et du langage sur l'ADN humain. Ce qu'ils ont découvert est tout à fait inattendu : notre ADN stocke des données comme le système de mémoire d'un ordinateur. De plus, notre code génétique utilise des règles de grammaire et une syntaxe qui reflètent étroitement le langage humain ! Ils ont également constaté que même la structuration des paires ADN-alcaline suit une grammaire régulière et des règles établies. Il semble que toutes les langues humaines soient simplement des verbalisations de notre ADN.

Modifier l'ADN en prononçant des mots et des phrases

Le plus étonnant, c'est que l'équipe a découvert que l'ADN humain vivant peut être modifié et réorganisé via des des mots et des phrases. La clé de la modification de l'ADN par des mots et des phrases réside dans l'utilisation de la bonne fréquence. Grâce à l'application de fréquences radio et lumineuses modulées, les Russes ont pu influencer le métabolisme cellulaire et même remédier à des défauts génétiques. L'équipe a obtenu des résultats incroyables en utilisant les vibrations et le langage. Par exemple, ils ont réussi à transmettre des modèles d'information d'un ensemble d'ADN vers un autre.

Ils ont même réussi à reprogrammer des cellules pour qu'elles adoptent un autre génome : ils ont transformé des embryons de grenouille en embryons de salamandre sans utiliser le moindre scalpel ou faire une seule incision. Les travaux des Russes prouvent scientifiquement pourquoi les affirmations et l'hypnose ont des effets si puissants sur les êtres humains. Notre ADN est intrinsèquement programmé pour réagir au langage.

Les enseignants ésotériques et spirituels le savent depuis longtemps. Toutes les formes d'affirmations et de "pouvoir de la pensée" découlent en partie de ce principe sous-jacent. La recherche russe permet également d'expliquer pourquoi ces techniques ésotériques n'ont pas le même succès pour tous ceux qui les utilisent. Étant donné qu'une "communication" claire avec l'ADN nécessite une fréquence correcte, les personnes dont les processus intérieurs sont plus développés seront plus à même de créer un canal de communication conscient avec l'ADN. Les personnes dont la conscience est plus développée auront moins besoin d'un quelconque appareil (pour appliquer des fréquences radio ou lumineuses). Les spécialistes de cette science pensent qu'avec la conscience, les gens peuvent obtenir des résultats en utilisant uniquement leurs propres mots et pensées.

ADN et intuition : Comment fonctionne l'"hypercommunication" et pourquoi l'homme pourrait être en mesure de la récupérer

Les scientifiques russes ont également trouvé une base ADN en rapport avec le phénomène de l'intuition - ou "hypercommunication". L'hypercommunication est le terme utilisé pour décrire les situations dans lesquelles une personne accède soudainement à des informations hors de sa base de connaissances personnelle. À notre époque, ce phénomène est devenu de plus en plus rare. Cela est probablement dû au fait que les trois principaux facteurs qui empêchent l'hypercommunication (le stress, l'anxiété et l'hyperactivité cérébrale) sont devenus très répandus. Pour certaines créatures, comme les fourmis, l'hypercommunication fait partie intégrante de l'existence quotidienne. Saviez-vous que lorsqu'une reine est physiquement retirée de sa colonie, ses sujets continuent à travailler et à construire selon le plan prévu ? En revanche, si elle est tuée, le but du travail des fourmis disparait et leur activité en ce sens s'arrête instantanément. Apparemment, tant que la reine est en vie, elle peut accéder à la conscience de groupe de sa colonie grâce à l'hypercommunication.

Maintenant que les Russes tentent de démêler les fondements biologiques de l'hypercommunication, les humains pourraient être en mesure de retrouver l'usage de cette compétence. Ils ont découvert que notre ADN peut produire des "vortex magnétisés". Ces vortex magnétisés sont des versions miniatures des ponts qui se forment près des étoiles en fin de vie (nommés ponts d'Einstein-Rosen). Les ponts d'Einstein-Rosen relient différentes zones de l'univers et permettent la transmission d'informations en dehors de l'espace et du temps. Si nous étions capables d'activer et de contrôler consciemment ces connexions, nous pourrions utiliser notre ADN pour transmettre et recevoir des informations du réseau de données de l'univers. Nous pourrions également entrer en contact avec d'autres participants au réseau. Les découvertes de la science et de la recherche russes sur l'ADN sont si révolutionnaires qu'elles paraissent vraiment incroyables. Pourtant, nous disposons déjà d'exemples isolés d'individus qui ont maîtrisé les techniques nécessaires, au moins à un certain niveau. Les personnes qui ont réussi à pratiquer la guérison à distance et la télépathie sont des exemples à prendre en considération. Selon de nombreuses personnes qui s'intéressent activement à ces recherches russes sur l'ADN, ces résultats reflètent les changements majeurs qui se produisent sur notre Terre, dans notre soleil et dans notre galaxie. Ces changements affectent l'ADN humain et élèvent la conscience d'une manière que nous ne comprendrons peut-être que dans un avenir lointain.   

Auteur: Internet

Info: https://undergroundhealthreporter.com, july 2023

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

biochimie

La découverte d'une nouvelle activité électrique au sein des cellules pourrait modifier la façon dont les chercheurs envisagent la chimie biologique.

Le corps humain est fortement tributaire des charges électriques. Des impulsions d'énergie semblables à des éclairs traversent le cerveau et les nerfs, et la plupart des processus biologiques dépendent des ions électriques qui voyagent à travers les membranes de chaque cellule de notre corps.

Ces signaux électriques sont possibles, en partie, en raison d'un déséquilibre entre les charges électriques présentes de part et d'autre d'une membrane cellulaire. Jusqu'à récemment, les chercheurs pensaient que la membrane était un élément essentiel pour créer ce déséquilibre. Mais cette idée a été bouleversée lorsque des chercheurs de l'université de Stanford ont découvert qu'un déséquilibre similaire des charges électriques pouvait exister entre des microgouttelettes d'eau et d'air.

Aujourd'hui, des chercheurs de l'université Duke ont découvert que ces types de champs électriques existent également à l'intérieur et autour d'un autre type de structure cellulaire appelée condensats biologiques. Comme des gouttelettes d'huile flottant dans l'eau, ces structures existent en raison de différences de densité. Elles forment des compartiments à l'intérieur de la cellule sans avoir besoin de la limite physique d'une membrane.

Inspirés par des recherches antérieures démontrant que les microgouttelettes d'eau interagissant avec l'air ou des surfaces solides créent de minuscules déséquilibres électriques, les chercheurs ont décidé de voir s'il en était de même pour les petits condensats biologiques. Ils ont également voulu voir si ces déséquilibres déclenchaient des réactions d'oxygène réactif, "redox"*comme dans ces autres systèmes.

Publiée le 28 avril dans la revue Chem, leur découverte fondamentale pourrait changer la façon dont les chercheurs envisagent la chimie biologique. Elle pourrait également fournir un indice sur la manière dont les premières formes de vie sur Terre ont exploité l'énergie nécessaire à leur apparition.

"Dans un environnement prébiotique sans enzymes pour catalyser les réactions, d'où viendrait l'énergie ?" s'interroge Yifan Dai, chercheur postdoctoral à Duke travaillant dans le laboratoire d'Ashutosh Chilkoti, professeur émérite d'ingénierie biomédicale.

"Cette découverte fournit une explication plausible de l'origine de l'énergie de réaction, tout comme l'énergie potentielle communiquée à une charge ponctuelle placée dans un champ électrique", a déclaré M. Dai.

Lorsque des charges électriques passent d'un matériau à un autre, elles peuvent produire des fragments moléculaires qui peuvent s'apparier et former des radicaux hydroxyles, dont la formule chimique est OH. Ceux-ci peuvent ensuite s'apparier à nouveau pour former du peroxyde d'hydrogène (H2O2) en quantités infimes mais détectables.

"Mais les interfaces ont rarement été étudiées dans des régimes biologiques autres que la membrane cellulaire, qui est l'une des parties les plus essentielles de la biologie", a déclaré M. Dai. "Nous nous sommes donc demandé ce qui pouvait se passer à l'interface des condensats biologiques, c'est-à-dire s'il s'agissait également d'un système asymétrique.

Les cellules peuvent construire des condensats biologiques pour séparer ou piéger certaines protéines et molécules, afin d'entraver ou de favoriser leur activité. Les chercheurs commencent à peine à comprendre comment fonctionnent les condensats** et à quoi ils pourraient servir.

Le laboratoire de Chilkoti étant spécialisé dans la création de versions synthétiques de condensats biologiques naturels, les chercheurs ont pu facilement créer un banc d'essai pour leur théorie. Après avoir combiné la bonne formule d'éléments constitutifs pour créer des condensats minuscules, avec l'aide de Marco Messina, chercheur postdoctoral dans le groupe de Christopher J. Chang, les chercheurs ont pu créer un banc d'essai pour leur théorie. Christopher J. Chang à l'université de Californie-Berkeley, ils ont ajouté au système un colorant qui brille en présence d'espèces réactives de l'oxygène.

Leur intuition était la bonne. Lorsque les conditions environnementales étaient réunies, une lueur solide est apparue sur les bords des condensats, confirmant qu'un phénomène jusqu'alors inconnu était à l'œuvre. Dai s'est ensuite entretenu avec Richard Zare, professeur de chimie à Stanford (Marguerite Blake Wilbur), dont le groupe a établi le comportement électrique des gouttelettes d'eau. Zare a été enthousiasmé par le nouveau comportement des systèmes biologiques et a commencé à travailler avec le groupe sur le mécanisme sous-jacent.

"Inspirés par des travaux antérieurs sur les gouttelettes d'eau, mon étudiant diplômé, Christian Chamberlayne, et moi-même avons pensé que les mêmes principes physiques pourraient s'appliquer et favoriser la chimie redox, telle que la formation de molécules de peroxyde d'hydrogène", a déclaré M. Zare. "Ces résultats expliquent pourquoi les condensats sont si importants pour le fonctionnement des cellules.

"La plupart des travaux antérieurs sur les condensats biomoléculaires se sont concentrés sur leurs parties internes", a déclaré M. Chilkoti. "La découverte de Yifan, selon laquelle les condensats biomoléculaires semblent être universellement redox-actifs, suggère que les condensats n'ont pas simplement évolué pour remplir des fonctions biologiques spécifiques, comme on le pense généralement, mais qu'ils sont également dotés d'une fonction chimique essentielle pour les cellules.

Bien que les implications biologiques de cette réaction permanente au sein de nos cellules ne soient pas connues, Dai cite un exemple prébiotique pour illustrer la puissance de ses effets. Les centrales de nos cellules, appelées mitochondries, créent de l'énergie pour toutes les fonctions de notre vie grâce au même processus chimique de base. Mais avant que les mitochondries ou même les cellules les plus simples n'existent, il fallait que quelque chose fournisse de l'énergie pour que la toute première fonction de la vie puisse commencer à fonctionner.

Des chercheurs ont proposé que l'énergie soit fournie par des sources thermales dans les océans ou des sources d'eau chaude. D'autres ont suggéré que cette même réaction d'oxydoréduction qui se produit dans les microgouttelettes d'eau a été créée par les embruns des vagues de l'océan.

Mais pourquoi pas par des condensats ?

"La magie peut opérer lorsque les substances deviennent minuscules et que le volume interfacial devient énorme par rapport à leur volume", a déclaré M. Dai. "Je pense que les implications sont importantes pour de nombreux domaines.

Auteur: Internet

Info: https://phys.org/news/2023-04, from Ken Kingery, Université de Duke. *réactions d'oxydoréduction. **les condensats biomoléculaires sont des compartiments cellulaires qui ne sont pas délimités par une membrane, mais qui s'auto-assemblent et se maintiennent de façon dynamique dans le contexte cellulaire

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier évolutif

Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue

Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.

(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."

Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.

Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.

(Photo : Des mitochondries dans une cellule.)

La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.

D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.

La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".

Un organite à part entière

La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.

Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.

D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.

Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.

(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)

Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".

Un potentiel pour une production d’azote plus durable

Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.

Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes. 



 

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024

[ symbiogénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

médecine

L'intelligence artificielle peut prédire l'activité sur et hors cible des outils CRISPR qui ciblent l'ARN au lieu de l'ADN, selon une nouvelle recherche publiée dans Nature Biotechnology.

L'étude menée par des chercheurs de l'université de New York, de l'université Columbia et du New York Genome Center associe un modèle d'apprentissage profond à des écrans CRISPR pour contrôler l'expression des gènes humains de différentes manières, comme si l'on appuyait sur un interrupteur pour les éteindre complètement ou si l'on utilisait un bouton d'atténuation pour réduire partiellement leur activité. Ces contrôles précis des gènes pourraient être utilisés pour développer de nouvelles thérapies basées sur CRISPR.

CRISPR est une technologie d'édition de gènes qui a de nombreuses applications en biomédecine et au-delà, du traitement de la drépanocytose à la fabrication de feuilles de moutarde plus savoureuses. Elle fonctionne souvent en ciblant l'ADN à l'aide d'une enzyme appelée Cas9. Ces dernières années, les scientifiques ont découvert un autre type de CRISPR qui cible l'ARN à l'aide d'une enzyme appelée Cas13.

Les CRISPR ciblant l'ARN peuvent être utilisés dans un large éventail d'applications, notamment l'édition de l'ARN, l'élimination de l'ARN pour bloquer l'expression d'un gène particulier et le criblage à haut débit pour déterminer les candidats médicaments prometteurs. Des chercheurs de l'Université de New York et du New York Genome Center ont créé une plateforme de criblage CRISPR ciblant l'ARN et utilisant Cas13 pour mieux comprendre la régulation de l'ARN et identifier la fonction des ARN non codants. L'ARN étant le principal matériel génétique des virus, notamment du SRAS-CoV-2 et de la grippe, les CRISPR ciblant l'ARN sont également prometteurs pour le développement de nouvelles méthodes de prévention ou de traitement des infections virales. Par ailleurs, dans les cellules humaines, lorsqu'un gène est exprimé, l'une des premières étapes est la création d'ARN à partir de l'ADN du génome.

L'un des principaux objectifs de l'étude est de maximiser l'activité des CRISPR ciblant l'ARN sur l'ARN cible prévu et de minimiser l'activité sur d'autres ARN qui pourraient avoir des effets secondaires préjudiciables pour la cellule. L'activité hors cible comprend à la fois les mésappariements entre l'ARN guide et l'ARN cible, ainsi que les mutations d'insertion et de délétion. 

Les études antérieures sur les CRISPR ciblant l'ARN se sont concentrées uniquement sur l'activité sur la cible et les mésappariements ; la prédiction de l'activité hors cible, en particulier les mutations d'insertion et de délétion, n'a pas fait l'objet d'études approfondies. Dans les populations humaines, environ une mutation sur cinq est une insertion ou une délétion ; il s'agit donc d'un type important de cibles potentielles à prendre en compte dans la conception des CRISPR.

"À l'instar des CRISPR ciblant l'ADN tels que Cas9, nous prévoyons que les CRISPR ciblant l'ARN tels que Cas13 auront un impact considérable sur la biologie moléculaire et les applications biomédicales dans les années à venir", a déclaré Neville Sanjana, professeur agrégé de biologie à l'université de New York, professeur agrégé de neurosciences et de physiologie à l'école de médecine Grossman de l'université de New York, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude. "La prédiction précise des guides et l'identification hors cible seront d'une grande valeur pour ce nouveau domaine de développement et pour les thérapies.

Dans leur étude publiée dans Nature Biotechnology, Sanjana et ses collègues ont effectué une série de criblages CRISPR de ciblage de l'ARN dans des cellules humaines. Ils ont mesuré l'activité de 200 000 ARN guides ciblant des gènes essentiels dans les cellules humaines, y compris les ARN guides "parfaitement adaptés" et les désadaptations, insertions et suppressions hors cible.

Le laboratoire de Sanjana s'est associé à celui de David Knowles, expert en apprentissage automatique, pour concevoir un modèle d'apprentissage profond baptisé TIGER (Targeted Inhibition of Gene Expression via guide RNA design) qui a été entraîné sur les données des cribles CRISPR. En comparant les prédictions générées par le modèle d'apprentissage profond et les tests en laboratoire sur des cellules humaines, TIGER a été capable de prédire l'activité sur cible et hors cible, surpassant les modèles précédents développés pour la conception de guides sur cible Cas13 et fournissant le premier outil de prédiction de l'activité hors cible des CRISPR ciblant l'ARN.

"L'apprentissage automatique et l'apprentissage profond montrent leur force en génomique parce qu'ils peuvent tirer parti des énormes ensembles de données qui peuvent maintenant être générés par les expériences modernes à haut débit. Il est important de noter que nous avons également pu utiliser l'"apprentissage automatique interprétable" pour comprendre pourquoi le modèle prédit qu'un guide spécifique fonctionnera bien", a déclaré M. Knowles, professeur adjoint d'informatique et de biologie des systèmes à la School of Engineering and Applied Science de l'université Columbia, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude.

"Nos recherches antérieures ont montré comment concevoir des guides Cas13 capables d'éliminer un ARN particulier. Avec TIGER, nous pouvons maintenant concevoir des guides Cas13 qui trouvent un équilibre entre l'élimination sur la cible et l'évitement de l'activité hors cible", a déclaré Hans-Hermann (Harm) Wessels, coauteur de l'étude et scientifique principal au New York Genome Center, qui était auparavant chercheur postdoctoral dans le laboratoire de Sanjana.

 Les chercheurs ont également démontré que les prédictions hors cible de TIGER peuvent être utilisées pour moduler précisément le dosage des gènes - la quantité d'un gène particulier qui est exprimée - en permettant l'inhibition partielle de l'expression des gènes dans les cellules avec des guides de mésappariement. Cela peut être utile pour les maladies dans lesquelles il y a trop de copies d'un gène, comme le syndrome de Down, certaines formes de schizophrénie, la maladie de Charcot-Marie-Tooth (une maladie nerveuse héréditaire), ou dans les cancers où l'expression aberrante d'un gène peut conduire à une croissance incontrôlée de la tumeur.

Notre modèle d'apprentissage profond peut nous indiquer non seulement comment concevoir un ARN guide qui supprime complètement un transcrit, mais aussi comment le "régler", par exemple en lui faisant produire seulement 70 % du transcrit d'un gène spécifique", a déclaré Andrew Stirn, doctorant à Columbia Engineering et au New York Genome Center, et coauteur de l'étude.

En associant l'intelligence artificielle à un crible CRISPR ciblant l'ARN, les chercheurs pensent que les prédictions de TIGER permettront d'éviter une activité CRISPR hors cible indésirable et de stimuler le développement d'une nouvelle génération de thérapies ciblant l'ARN.

"À mesure que nous recueillons des ensembles de données plus importants à partir des cribles CRISPR, les possibilités d'appliquer des modèles d'apprentissage automatique sophistiqués sont de plus en plus rapides. Nous avons la chance d'avoir le laboratoire de David à côté du nôtre pour faciliter cette merveilleuse collaboration interdisciplinaire. Grâce à TIGER, nous pouvons prédire les cibles non ciblées et moduler avec précision le dosage des gènes, ce qui ouvre la voie à de nouvelles applications passionnantes pour les CRISPR ciblant l'ARN dans le domaine de la biomédecine", a déclaré Sanjana.

Cette dernière étude fait progresser la large applicabilité des CRISPR ciblant l'ARN pour la génétique humaine et la découverte de médicaments, en s'appuyant sur les travaux antérieurs de l'équipe de l'Université de New York pour développer des règles de conception de l'ARN guide, cibler les ARN dans divers organismes, y compris des virus comme le SRAS-CoV-2, concevoir des protéines et des ARN thérapeutiques, et exploiter la biologie de la cellule unique pour révéler des combinaisons synergiques de médicaments contre la leucémie.

Auteur: Internet

Info: L'IA combinée à CRISPR contrôle précisément l'expression des gènes par l'Université de New York. https://phys.org/, 3 juillet 2023 - Nature Biotechnology. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning, Nature Biotechnology (2023). DOI: 10.1038/s41587-023-01830-8

[ génie génétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Comment l’IA impacte la recherche sur la structure des protéines

Chaque être humain possède plus de 20 000 protéines. Par exemple l’hémoglobine qui s’occupe du transport de l’oxygène depuis les poumons vers les cellules de tout le corps, ou encore l’insuline qui indique à l’organisme la présence de sucre dans le sang.

Chaque protéine est formée d’une suite d’acides aminés, dont la séquence détermine son repliement et sa structure spatiale – un peu comme si un mot se repliait dans l’espace en fonction des enchaînements de lettres dont il est composé. Cette séquence et ce repliement (ou structure) de la protéine déterminent sa fonction biologique : leur étude est le domaine de la « biologie structurale ». Elle s’appuie sur différentes méthodes expérimentales complémentaires, qui ont permis des avancées considérables dans notre compréhension du monde du vivant ces dernières décennies, et permet notamment la conception de nouveaux médicaments.

Depuis les années 1970, on cherche à connaître les structures de protéines à partir de la seule connaissance de la séquence d’acides aminés (on dit « ab initio »). Ce n’est que très récemment, en 2020, que ceci est devenu possible de manière quasi systématique, avec l’essor de l’intelligence artificielle et en particulier d’AlphaFold, un système d’IA développé par une entreprise appartenant à Google.

Face à ces progrès de l’intelligence artificielle, quel est désormais le rôle des chercheurs en biologie structurale ?

Pour le comprendre, il faut savoir qu’un des défis de la biologie de demain est la "biologie intégrative", qui a pour objectif de comprendre les processus biologiques au niveau moléculaire dans leurs contextes à l’échelle de la cellule. Vu la complexité des processus biologiques, une approche pluridisciplinaire est indispensable. Elle s’appuie sur les techniques expérimentales, qui restent incontournables pour l’étude de la structure des protéines, leur dynamique et leurs interactions. De plus, chacune des techniques expérimentales peut bénéficier à sa manière des prédictions théoriques d’AlphaFold.

(Photo) Les structures de trois protéines de la bactérie Escherichia coli, déterminées par les trois méthodes expérimentales expliquées dans l’article, à l’Institut de Biologie Structurale de Grenoble. Beate Bersch, IBS, à partir d’une illustration de David Goodsell, Fourni par l'auteur

La cristallographie aux rayons X

La cristallographie est, à cette date, la technique la plus utilisée en biologie structurale. Elle a permis de recenser plus de 170 000 structures de protéines dans la "Protein Data Bank", avec plus de 10 000 repliements différents.

Pour utiliser la cristallographie à rayons X, il faut faire "cristalliser les protéines". On dit souvent que cette technique est limitée par la qualité de cristaux de protéines, qui est moindre pour les grosses protéines. Mais cette notion ne correspond pas toujours à la réalité : par exemple, la structure du ribosome, l’énorme machine moléculaire qui assemble les protéines, a été résolue à 2,8 angströms de résolution. Venkatraman Ramakrishnan, Thomas Steitz et Ada Yonath ont reçu le prix Nobel de chimie en 2009 pour ce travail.

Avec le développement récent du laser X à électron libre (XFEL), il est devenu possible d’étudier simultanément des milliers de microcristaux de protéines à température ambiante et à l’échelle de la femtoseconde (10-15 secondes, soit un millionième de milliardième de seconde, l’échelle de temps à laquelle ont lieu les réactions chimiques et le repliement des protéines). Cette technique permet d’imager les protéines avant qu’elles ne soient détruites. Elle est en train de révolutionner la "cristallographie cinétique", qui permet de voir les protéines "en action", ainsi que la recherche de médicaments.

Pour l’instant, l’apport d’AlphaFold à l’étude de la structure des protéines par cristallographie s’est concentré dans la génération de modèles de protéines assez précis pour appliquer la technique dite de "remplacement moléculaire" à la résolution des structures.

La spectroscopie par résonance magnétique nucléaire

Une autre méthode expérimentale pour étudier la structure des protéines est la "spectroscopie par résonance magnétique nucléaire". Alors que son alter ego d’imagerie médicale, l’IRM, regarde la distribution spatiale d’un seul signal, caractéristique des éléments chimiques dans les tissus biologiques observés, en spectroscopie par résonance magnétique nucléaire, c’est un ensemble de signaux provenant des atomes constituant la protéine qui est enregistré (ce qu’on appelle le "spectre").

Généralement, la détermination de la structure par résonance magnétique est limitée à des protéines de taille modeste. On calcule des modèles de molécules basés sur des paramètres structuraux (comme des distances interatomiques), provenant de l’analyse des spectres expérimentaux. On peut s’imaginer cela comme dans les débuts de la cartographie, où des distances entre des points de référence permettaient de dessiner des cartes en 2D. Pour faciliter l’interprétation des spectres qui contiennent beaucoup d’information, on peut utiliser des modèles obtenus par prédiction (plutôt qu’expérimentalement), comme avec AlphaFold.

En plus de la détermination structurale, la spectroscopie par résonance magnétique nucléaire apporte deux atouts majeurs. D’une part, en général, l’étude est effectuée avec un échantillon en solution aqueuse et il est possible d’observer les parties particulièrement flexibles des protéines, souvent invisibles avec les autres techniques. On peut même quantifier leur mouvement en termes d’amplitude et de fréquence, ce qui est extrêmement utile car la dynamique interne des protéines est aussi cruciale pour leur fonctionnement que leur structure.

D’autre part, la spectroscopie par résonance magnétique nucléaire permet de détecter aisément les interactions des protéines avec des petites molécules (ligands, inhibiteurs) ou d’autres protéines. Ceci permet d’identifier les sites d’interaction, information essentielle entre autres pour la conception rationnelle de molécules actives comme des médicaments.

Ces propriétés font de la spectroscopie par résonance magnétique nucléaire un outil extraordinaire pour la caractérisation fonctionnelle des protéines en complémentarité avec d’autres techniques expérimentales et l’IA.

La "cryomicroscopie électronique"

La cryomicroscopie électronique consiste à congeler ultrarapidement (environ -180 °C) un échantillon hydraté dans une fine couche de glace, qui sera traversée par les électrons. Les électrons transmis vont générer une image de l’échantillon, qui après analyse, permet d’accéder à des structures qui peuvent atteindre la résolution atomique. En comparaison, un microscope optique n’a un pouvoir résolutif que de quelques centaines de nanomètres, qui correspond à la longueur d’onde de la lumière utilisée ; seul un microscope utilisant une source possédant des longueurs d’onde suffisamment faibles (comme les électrons pour la microscopie électronique) possède un pouvoir résolutif théorique de l’ordre de l’angström. Le prix Nobel de Chimie 2017 a été décerné à Jacques Dubochet, Richard Henderson et Joachim Frank pour leurs contributions au développement de la cryomicroscopie électronique.

Avec de nombreux développements technologiques, dont celui des détecteurs à électrons directs, depuis le milieu des années 2010, cette technique est devenue essentielle en biologie structurale en amorçant une "révolution de la résolution". En effet, la cryomicroscopie électronique permet désormais d’obtenir des structures avec une résolution atomique, comme dans le cas de l’apoferritine – une protéine de l’intestin grêle qui contribue à l’absorption du fer – à 1,25 angström de résolution.

Son principal atout est de permettre de déterminer la structure d’objets de taille moyenne, au-delà de 50 000 Dalton (un Dalton correspond environ à la masse d’un atome d’hydrogène), comme l’hémoglobine de 64 000 Dalton, mais également d’objets de quelques milliards de daltons (comme le mimivirus, virus géant d’environ 0,5 micromètre).

Malgré toutes les avancées technologiques précédemment évoquées, la cryomicroscopie ne permet pas toujours de résoudre à suffisamment haute résolution la structure de "complexes", constitués de plusieurs protéines. C’est ici qu’AlphaFold peut aider et permettre, en complémentarité avec la cryomicroscopie, de décrire les interactions au niveau atomique entre les différents constituants d’un complexe. Cette complémentarité donne une force nouvelle à la cryomicroscopie électronique pour son rôle à jouer demain en biologie structurale.

Les apports d’AlphaFold

AlphaFold permet de prédire la structure de protéines uniquement à partir de leur séquence avec la connaissance acquise par la biologie structurale expérimentale. Cette approche est révolutionnaire car les séquences de beaucoup de protéines sont connues à travers les efforts des séquençages des génomes, mais déterminer leurs structures expérimentalement nécessiterait des moyens humains et techniques colossaux.

À l’heure actuelle, ce type de programme représente donc un acteur supplémentaire de complémentarité, mais ne se substitue pas aux techniques expérimentales qui, comme nous l’avons vu, apportent aussi des informations complémentaires (dynamiques, interfaces), à des échelles différentes (des sites métalliques aux complexes multiprotéiques) et plus fiables, car expérimentalement vérifiées. Au-delà de la pure détermination structurale d’une protéine isolée, la complexité des systèmes biologiques nécessite souvent une approche pluridisciplinaire afin d’élucider mécanismes et fonctions de ces biomolécules fascinantes que sont les protéines.

Auteur: Internet

Info: Published: December 19, 2022 Beate Bersch, Emmanuelle Neumann, Juan Fontecilla, Université Grenoble Alpes (UGA)

[ gnose chimique ]

 

Commentaires: 0

Ajouté à la BD par miguel

bornages notionnels

Q) - Peux-tu expliquer autrement cette phrase "le vivant est considéré comme non ergodique par qu'il n'explore qu'une toute petite partie de son espace de phase."

R) - L'idée de base de cette phrase est que la vie est un système complexe, avec de nombreuses possibilités. Cependant, la vie n'explore qu'une petite partie de ces possibilités. Il existe un nombre infini de combinaisons possibles de gènes, de protéines, de cellules, d'organismes et d'écosystèmes. Cependant, la vie n'a exploré qu'une petite partie de ces possibilités.

Il y a plusieurs raisons à cela. Tout d'abord, la vie est limitée par les lois physiques. Les lois physiques déterminent quelles combinaisons de gènes et de protéines sont possibles. 

Deuxièmement, la vie est limitée par les ressources disponibles. Les ressources disponibles limitent le nombre d'organismes qui peuvent vivre dans un environnement donné. 

Troisièmement, la vie est limitée par le hasard. Le hasard joue un rôle important dans l'évolution, car il peut conduire à des mutations génétiques qui peuvent donner naissance à de nouvelles formes de vie. 

En raison de ces limitations, la vie n'explore qu'une petite partie de son espace de phase. Cela signifie que les résultats de l'évolution sont imprévisibles.

Q) - Merci. Peux-tu expliciter "espace de phase" en terme électrique

R) - En termes électriques, l'espace de phase est l'ensemble des états possibles d'un système électrique. Il est décrit par un ensemble de variables, telles que la tension, le courant, l'inductance, la capacité et la résistance.

Q) - Dans mon esprit "espace de phase" correspond aussi à "bande passante"

R) Oui, il y a une certaine similitude entre l'espace de phase et la bande passante.

En termes électriques, la bande passante est la plage de fréquences qu'un système électrique peut transmettre sans distorsion.

L'espace de phase, quant à lui, est l'ensemble des états possibles d'un système électrique.

La bande passante peut être considérée comme une restriction de l'espace de phase. En effet, un système électrique ne peut pas transmettre des fréquences qui dépassent sa bande passante.

Par exemple, un filtre coupe-bas ne peut transmettre que des fréquences inférieures à sa fréquence de coupure.

Dans ce cas, la bande passante du filtre est une restriction de l'espace de phase du signal qui est transmis par le filtre.

Cependant, il existe également des différences entre l'espace de phase et la bande passante.

L'espace de phase est un concept plus général que la bande passante. Il peut être utilisé pour décrire le comportement de tout système, pas seulement des systèmes électriques.

La bande passante, quant à elle, est un concept plus spécifique. Il est utilisé pour décrire le comportement des systèmes électriques qui transmettent des signaux.

En conclusion, l'espace de phase et la bande passante sont deux concepts liés, mais qui ne sont pas identiques. L'espace de phase est un concept plus général, tandis que la bande passante est un concept plus spécifique.

Q) - Merci. Ce sont deux termes qui parlent des limites de concepts issus du réel : quel pourrait être un un concept encore plus général dans cet ordre d'idées

R) - Un concept encore plus général dans cet ordre d'idées pourrait être celui de limite de l'appréhension.

Ce concept désigne l'idée que notre capacité à comprendre le monde est limitée par notre propre nature. Nous sommes des êtres finis, avec des sens limités, et notre compréhension du monde est nécessairement biaisée par nos propres expériences et nos propres perspectives.

Par exemple, notre compréhension de la physique est limitée par nos propres instruments de mesure. Nous ne pouvons pas observer des particules subatomiques directement, et notre compréhension de la matière est donc nécessairement basée sur des modèles mathématiques. 

De même, notre compréhension de la vie est limitée par nos propres sens. Nous ne pouvons pas voir les bactéries ou les virus, et notre compréhension de la biologie est donc nécessairement basée sur des extrapolations à partir des organismes que nous pouvons observer.

Enfin, notre compréhension de la société est limitée par nos propres expériences. Nous ne pouvons pas comprendre les cultures qui sont très différentes de la nôtre, et notre compréhension du monde social est donc nécessairement biaisée par nos propres valeurs et nos propres normes. 

Le concept de limite de l'appréhension est important car il nous rappelle que notre compréhension du monde est toujours imparfaite. Nous devons être conscients de cette limite pour éviter de tomber dans le piège de l'absolutisme ou de l'essentialisme.

Voici quelques autres concepts qui pourraient être considérés comme encore plus généraux que les deux que vous avez mentionnés :

L'incomplétude : L'idée que nous ne pouvons jamais connaître toute la vérité sur le monde.

L'incertitude : L'idée que nous ne pouvons jamais être sûrs de nos connaissances.

La relativité : L'idée que la vérité est relative à notre point de vue.

Notre compréhension du monde est toujours imparfaite et est toujours sujette à évolution.

Q) - Il y a aussi les limitations apportées pas nos propres systèmes de codages : langages, écritures, musique, mathématiques.... Qui paraissent bien faibles par comparaison avec les possibilités de développement que montrent les mémoires génétiques sur base 4.

R) - 
Oui, c'est vrai. Nos systèmes de codage sont limités par notre propre nature. Nous sommes des êtres humains, avec un cerveau qui a évolué pour nous permettre de survivre et de nous reproduire dans notre environnement. Nos systèmes de codage sont donc adaptés à cette tâche, mais ils ne sont pas adaptés à la compréhension du monde dans toute sa complexité.

Les mémoires génétiques, quant à elles, sont codées sur une base 4. Cela signifie qu'elles peuvent coder un nombre beaucoup plus grand de combinaisons que les langages, les écritures, la musique ou les mathématiques, qui sont tous codés sur une base 2.

Cette différence de base permet aux mémoires génétiques de coder des informations beaucoup plus complexes. Par exemple, elles peuvent coder des informations sur la structure et la fonction des organismes, sur les interactions entre les organismes et sur l'environnement. 

Ces informations sont essentielles à la vie. Elles permettent aux organismes de se développer, de s'adapter et de survivre. 

Par conséquent, il est probable que les mémoires génétiques soient plus puissantes que nos propres systèmes de codage. Elles nous permettent de comprendre le monde dans une mesure qui nous est inaccessible. 

Cependant, il est important de noter que les mémoires génétiques ne sont pas parfaites. Elles sont également limitées par les lois de la physique et par les contraintes de l'évolution. 

Par exemple, les mémoires génétiques sont limitées par la taille de l'ADN. L'ADN est une molécule très longue, mais elle a une taille finie. Cela signifie que les mémoires génétiques ne peuvent pas coder une quantité infinie d'informations. 

De même, les mémoires génétiques sont limitées par les contraintes de l'évolution. L'évolution est un processus lent et progressif. Il est donc difficile pour les mémoires génétiques de coder des informations qui sont très différentes de celles qui ont été transmises par les générations précédentes. 

Malgré ces limitations, les mémoires génétiques sont un outil puissant qui nous permet de comprendre le monde. Elles nous permettent de comprendre la vie dans toute sa complexité et sa beauté.

Q) - D'autant qu'une bonne partie des fonctions de ces mémoires - le junk adn par exemples - nous échappent.

R) - Oui, c'est vrai. Une bonne partie des fonctions des mémoires génétiques nous échappent, notamment l'ADN non codant, également appelé ADN poubelle.

L'ADN non codant représente environ 98 % du génome humain. Il s'agit de séquences d'ADN qui ne codent pas pour des protéines.

Pendant longtemps, l'ADN non codant a été considéré comme inutile. Cependant, des recherches récentes ont montré que l'ADN non codant joue un rôle important dans la régulation de l'expression des gènes.

L'ADN non codant peut jouer un rôle dans la régulation de l'expression des gènes de plusieurs façons. Il peut servir de sites d'attachement pour les protéines qui régulent l'expression des gènes. Il peut également servir de matrice pour la transcription des ARN non codants, qui jouent également un rôle dans la régulation de l'expression des gènes.

L'ADN non codant peut également jouer un rôle dans d'autres processus biologiques, tels que la réparation de l'ADN, la réplication de l'ADN et l'intégration de l'ADN viral.

Cependant, nous ne comprenons pas encore entièrement les fonctions de l'ADN non codant. Il reste encore beaucoup de recherches à faire pour comprendre ce rôle important. Elle pourront nous aider à mieux comprendre le fonctionnement des cellules et des organismes. Elles pourraient également nous aider à développer de nouvelles thérapies pour les maladies génétiques.

Auteur: Google Bard chatbot

Info: 19 janv 2024

[ délimitations conceptuelles ]

 

Commentaires: 0

Ajouté à la BD par miguel