Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 37
Temps de recherche: 0.0508s

onanisme

Je dirais que la masturbation est l'adaptation la plus importante de l'animal humain. La pierre angulaire de notre civilisation technologique. Nos mains étant devenues des outils de préhension, y compris les nôtres. Vous voyez, les penseurs, inventeurs et autres scientifiques sont généralement des geeks, et les geeks ont plus de mal à s'envoyer en l'air que quiconque. Sans cette valve de libération sexuelle intégrée fournie par la masturbation, il est douteux que les premiers humains aient jamais maîtrisé les secrets du feu ou inventé la roue. Et vous pouvez parier que Galilée, Newton et Einstein n'auraient jamais fait leurs découvertes s'ils n'avaient pas d'abord été capables de se vider la tête en s'astiquant le salami (ou "en faisant tomber quelques protons de l'ancien atome d'hydrogène"). Il en va de même pour Marie Curie. Avant de découvrir le radium, vous pouvez être certain qu'elle a d'abord découvert le petit homme dans le canoë."

Auteur: Cline Ernest

Info: Ready Player One

[ historique ] [ soupape ] [ création ] [ exutoire ] [ défouloir ] [ auto-érotisme féminin ]

 

Commentaires: 0

évolution

Les microbes, en raison de leur petite taille et de leur nombre gigantesque, réagissent relativement vite à des changements d'environnements majeurs. Ils se reproduisent sans hésitation s'ils disposent de nourriture et d'énergie. Des bactéries rapides se divisent environ toutes les vingt minutes, ce qui donne en principe 2 puissance 144 d'individus en deux jours. Un nombre largement supérieur à celui de tous les êtres humains ayant jamais vécus sur Terre. En 4 jours de croissance sans borne il y aura donc environ 2 puissance 286 de bactéries. Ce nombre est largement supérieur au nombre de protons ou de quarks dans l'univers tel qu'estimé par les physiciens (environ 2 puissance 266), il ne sert qu'à rappeler au lecteur la nature de la croissance exponentielle. Environ une division sur un million donne un descendant différent de son parent. (Comme les bactéries se reproduisent de manière asexuée par simple division, elles n'ont qu'un seul parent) la plupart des mutants sont moins bien pourvus que leurs parents et meurent. Mais un seul mutant survivant avec succès peut rapidement s'étendre dans tout son habitat.

Auteur: Margulis Lynn

Info: L'univers bactériel. Le microcosme fait son entrée, p. 75. Ecrit avec Dorion Sagan

[ nanomonde ] [ hétérogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

mathématiques

En physique nucléaire, un nombre magique (correspondant à la saturation d'une couche nucléaire) est un nombre de protons ou de neutrons pour lequel un noyau atomique est particulièrement stable ; dans le modèle en couches décrivant la structure nucléaire, cela correspond à un arrangement en couches complètes. Les sept nombres magiques vérifiés expérimentalement sont : 2, 8, 20, 28, 50, 82, 126 Les nombres magiques jouent un rôle déterminant dans les stratégies suivies par les différentes équipes en quête de l'îlot de stabilité, un ensemble hypothétique de nucléides super lourds (Z≫100 et N≫250) qui seraient remarquablement stables malgré leur masse élevée (...) Si la situation est relativement claire pour les six premiers nombres magiques ainsi que pour le septième, il semble que ce dernier nombre magique de protons soit peut-être différent de 126 en raison de l'effet du grand nombre de neutrons dans de tels noyaux, ce qui déplace d'autant l'hypothétique îlot de stabilité : La théorie MM (pour Microscopic-Macroscopic) suggère de rechercher un îlot de stabilité concentré autour du flérovium 298, dont le noyau à 114 protons et 184 neutrons serait "doublement sphérique", à la suite du plomb 208

Auteur: wikipedia

Info: Les nombres magiques jouent un rôle déterminant dans les stratégies suivies par les différentes équipes en quête de l'îlot de stabilité, un ensemble hypothétique de nucléides superlourds (Z≫100 et N≫250) qui seraient remarquablement stables malgré leur masse élevée, avec des périodes radioactives excédant peut-être la minute. La tentation première serait de cibler un noyau doublement magique constitué de 126 protons et 184 neutrons, c'est-à-dire l'unbihexium 310, mais les choses ne sont pas si simples. En effet, si la situation est relativement claire pour les six premiers nombres magiques ainsi que pour le septième (et à moindre mesure le huitième) nombre magique de neutrons5, il semble que le septième nombre magique de protons soit peut-être différent de 126 en raison de l'effet du grand nombre de neutrons dans de tels noyaux6, ce qui déplace d'autant l'hypothétique îlot de stabilité : la théorie MM (pour Microscopic-Macroscopic) suggère de rechercher un îlot de stabilité concentré autour du flérovium 298, dont le noyau à 114 protons et 184 neutrons serait "doublement sphérique", à la suite du plomb 208 la théorie de champ moyen relativiste (RMF, pour Relativistic Mean-Field Theory) suggère plutôt un îlot de stabilité diffus autour des noyaux 304Ubn, 306Ubb ou 310Ubh selon les paramètres retenus, c'est-à-dire avec 184 neutrons mais respectivement 120 protons, 122 protons ou 126 protons. Cependant, des calculs fondés sur l'effet tunnel montrent que, si des noyaux doublement magiques ou sphériques seraient, dans ces régions, probablement stables du point de vue de la fission spontanée, ils devraient cependant subir des désintégrations α avec une période radioactive de quelques microsecondes7,8,9. C'est la raison pour laquelle on se concentre plutôt aujourd'hui sur la recherche d'un îlot de relative stabilité centré autour du darmstadtium 293 et défini par Z ∈ [104 ; 116] et N ∈ [176 ; 186].

[ sciences ] [ sept ]

 

Commentaires: 0

biologie

La découverte d'une interaction entre les quatre hèmes a rendu évident le fait qu'ils devaient se toucher, mais en science, ce qui est évident n'est pas nécessairement vrai. Lorsque la structure de l'hémoglobine fut finalement été résolue, on a découvert que les hèmes se trouvaient dans des poches isolées à la surface des sous-unités. Sans contact entre eux, comment l'un d'entre eux pourrait-il savoir si les autres se sont combinés à l'oxygène ? Et comment un ensemble aussi hétérogène d'agents chimiques que les protons, les ions chlorure, le dioxyde de carbone et le diphosphoglycérate pouvait-il influencer la courbe d'équilibre de l'oxygène de la même manière ? Il ne semblait pas plausible que l'un d'entre eux puisse se lier directement aux hèmes ou qu'ils puissent tous se lier à un autre site commun, mais là encore, il s'est avéré que nous nous trompions. Pour ajouter au mystère, aucun de ces agents n'affectait l'équilibre en oxygène de la myoglobine ou de sous-unités isolées d'hémoglobine. Nous savons maintenant que tous les effets coopératifs disparaissent si la molécule d'hémoglobine est simplement divisée en deux, mais cet indice vital nous a échappé. Comme Agatha Christie, la nature a gardé cet indice jusqu'à la fin pour rendre l'histoire plus excitante. En science, il y a deux façons de sortir d'une impasse : expérimenter ou réfléchir. Par tempérament, peut-être, j'expérimente, alors que Jacques Monod pense.

Auteur: Perutz Max Ferdinand

Info: In l'essai "Le deuxième secret de la vie", recueilli dans I Wish I'd Made You Angry Earlier (1998), 263-5.

[ métalloprotéines ] [ macromolécules ] [ théorie-pratique ]

 

Commentaires: 0

Ajouté à la BD par miguel

horizon anthropique

Les scientifiques se rendent lentement compte d'une vérité dérangeante : l'univers ressemble étrangement à un piège. Le problème concerne les lois de la nature elles-mêmes. Depuis 40 ans, les physiciens et les cosmologistes rassemblent tranquillement des exemples de "coïncidences" bien trop commodes et de caractéristiques spéciales dans les lois sous-jacentes de l'univers qui semblent nécessaires à l'existence de la vie, et donc d'êtres conscients. Modifiez l'une d'entre elles et les conséquences seraient léthales. Fred Hoyle, l'éminent cosmologiste, a dit un jour que c'était comme si "un super-intellect s'était amusé avec la physique.

Pour comprendre le problème, imaginez que vous êtes Dieu et jouez avec le cosmos. Devant vous se trouve une machine de synthèse qui permet de bricoler les bases de la physique. En tournant ce bouton, vous rendez tous les électrons un peu plus légers, en tournant celui-ci, vous rendez la gravité un peu plus forte, et ainsi de suite. Il se trouve qu'il faut une trentaine de boutons pour régler et décrire complètement le monde qui nous entoure. Le point crucial est que certains de ces boutons métaphoriques doivent être réglés très précisément, sinon l'univers serait stérile.

Exemple : les neutrons sont juste un peu plus lourds que les protons. Si c'était l'inverse, les atomes ne pourraient pas exister, car tous les protons de l'univers se seraient désintégrés en neutrons peu après le big bang. Pas de protons, donc pas de noyaux atomiques et pas d'atomes. Pas d'atomes, pas de chimie, pas de vie. Comme la bouillie de l'ourson dans l'histoire de Boucle d'or, l'univers semble être parfait pour la vie.


Auteur: Davies Paul

Info:

[ projectionnistes ] [ Deus ex machina ] [ coincidence ] [ hasard ] [ déterminisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

constantes fondamentales

Les scientifiques se rendent peu à peu compte d'une vérité dérangeante : l'univers ressemble étrangement à un montage. Le problème concerne les lois de la nature elles-mêmes. Depuis 40 ans, les physiciens et les cosmologistes recueillent discrètement des exemples de "coïncidences" trop commodes et de caractéristiques spéciales dans les lois sous-jacentes de l'univers qui semblent nécessaires pour que la vie, et donc les êtres conscients, puissent exister. Si l'on modifiait l'une d'entre elles, les conséquences seraient fatales. Fred Hoyle, l'éminent cosmologiste, a dit un jour que c'était comme si "un super-intellect avait bricolé avec la physique".

Pour comprendre le problème, imaginez que vous jouez à Dieu avec le cosmos. Vous avez devant vous une machine de conception qui vous permet de bricoler avec les bases de la physique. Tournez ce bouton et vous rendrez tous les électrons un peu plus légers, tournez celui-là et vous rendrez la gravité un peu plus forte, et ainsi de suite. Il se trouve qu'il faut régler une trentaine de boutons pour décrire complètement le monde qui nous entoure. Le point crucial est que certains de ces boutons métaphoriques doivent être réglés très précisément, sinon l'univers serait stérile.

Exemple : les neutrons sont à peine plus lourds que les protons. Si c'était l'inverse, les atomes ne pourraient pas exister, car tous les protons de l'univers se seraient désintégrés en neutrons peu après le big bang. Pas de protons, donc pas de noyaux atomiques et pas d'atomes. Pas d'atomes, pas de chimie, pas de vie. Comme la bouillie du bébé ours dans l'histoire de Boucle d'or, l'univers apparait comme tout à fait propice à la vie.

Auteur: Davies Paul Charles William

Info:

[ réglage fin ] [ théisme ] [ sérendipité ] [ Éternel ] [ anthropique limitation ]

 

Commentaires: 0

Ajouté à la BD par miguel

perception

Le motif de la forme surgit bien entendu au cours d'une discussion sur l'individualité des "objets réels". Schrödinger donne l'exemple d'un presse-papier métallique en forme de chien danois, qu'il a dû abandonner en Autriche en 1938 et qu'il a seulement récupéré en 1947 en Irlande. "Je suis tout-à-fait sûr que c'est le même chien, affirme-t-il (...) mais pourquoi en suis-je si sûr ?". Ce ne peut être, répond Schrödinger, qu'en raison de la permanence de sa forme qui le rend re-connaissable. L'assimilation du principe d'individuation à la forme est cependant associée à une difficulté majeure que Schrödinger effleure à peine dans le passage sur le chien danois, mais sur laquelle nous serons forcés de revenir à propos du cas des particules élémentaires. Une forme ne définit jamais, en première instance, qu'une espèce : par exemple, celle des chiens danois métalliques de même "modèle". Sur le seul critère de sa forme, le chien danois retrouvé par Schrödinger pourrait parfaitement ne pas être le même exemplaire que celui qu'il a laissé en Autriche neuf ans auparavant, mais un autre exemplaire du même "type". La solution bien connue à ce problème consiste à apposer sur la forme une détermination ultimement individuante, une "haeccéité" selon le vocabulaire de Duns Scot. Telle rayure, tel défaut, telle patine reconnaissable entre toutes, pourraient suffire à faire identifier un exemplaire de chien danois parmi beaucoup d'autres copies. Ce n'est pourtant pas cette issue que choisit Schrödinger, et nous pouvons deviner pourquoi, par référence au problème physique dont il cherche la solution : aucune détermination additionnelle par rapport à la forme générale ne peut être invoquée pour distinguer un proton d'un autre proton, un électron d'un autre électron.

Auteur: Bitbol Michel

Info: "Esquisses, forme et totalité (Schrödinger et le concept d'objet)", in "Erwin Schrödinger, philosophy and the birth of quantum mechanics", éd. Frontières, p.58

[ philosophie ] [ singularité matérielle ] [ microcosme-macrocosme ] [ choix d'un argument ] [ apparences ] [ analogies ] [ précision ]

 
Commentaires: 3
Ajouté à la BD par Benslama

H

Cette lettre symbolise l'hydrogène, de numéro atomique 1, qui est l'élément chimique le plus simple et le plus abondant de l'univers.

Les étoiles brillent parce qu'elles transforment d'immenses quantités d'hydrogène en hélium. Notre Soleil, à lui seul, consomme 600 millions de tonnes d'hydrogène par seconde, qu'il convertit en 596 millions de tonnes d'hélium. Imaginez un peu : 600 millions de tonnes par seconde! Et même la nuit !

Mais où partent les quatre millions de tonnes de différence par seconde ? Ils sont convertis en énergie, selon la célèbre formule d'Einstein : E = mc2. Un peu plus de mille cinq cent quatre-vingt-sept grammes par seconde partent vers la Terre où ils vont créer la lumière de l‘aube, la chaleur d'un après-midi d'été ou le flamboiement du crépuscule.

La consommation effrénée d'hydrogène par le Soleil nous fait tous vivre, mais l'importance de cet élément pour la vie telle que nous la connaissons commence plus près de chez nous. L'hydrogène s'allie en effet à l'oxygène pour former les nuages, les océans, les lacs et les rivières. Il se combine au carbone, à l'azote et à l'oxygène pour former la chair et le sang de tous les êtres vivants.

L'hydrogène est le plus léger de tous les gaz - plus léger même que l'hélium - et il coûte beaucoup moins cher, d'où son emploi malencontreux dans les premiers aéronefs comme le Hindenburg. Vous avez sans doute entendu parler de cette tragédie - bien que, dans les faits, les passagers soient morts des suites de leur chute et non brûlés par l'hydrogène, moins dangereux à transporter dans un véhicule que de l'essence.

L'hydrogène est l'élément le plus abondant, le plus léger et le plus apprécié des physiciens parce qu'avec un seul proton et un seul électron, leurs formules de mécanique quantique fonctionnent à merveille. Dès que l'on passe à l'hélium (avec deux protons et deux électrons), les physiciens abandonnent le terrain aux chimistes.

Auteur: Gray Theodore

Info: Atomes : Une exploration visuelle de tous les éléments connus dans l'univers

[ nanomonde ] [ science fondamentale ] [ résumé ] [ abrégé ] [ source ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

En résumé, nous avons réexaminé les aspects quantiques de la récolte de lumière dans la photosynthèse. Il est apparu clairement, à partir de considérations de base, qu'il n'y a pas d'équivalence entre la quanticité des processus et les cohérences observées dans les expériences de spectroscopie femtoseconde. Même la question très fondamentale de savoir si les cohérences non stationnaires des systèmes photosynthétiques peuvent être excitées par la lumière du soleil n'a pas encore été totalement clarifiée. Quelle que soit la configuration la préparation de l'état, la dynamique sera régie par les couplages associés du système et son interaction avec son environnement (bath)*. En outre, les affirmations concernant la persistance de ces cohérences dans les expériences femtoseconde ont été réévaluées de manière critique. En particulier, l'analyse détaillée d'un système  exemplaire utilisée en biologie quantique - le complexe FMO** - montre sans ambiguïté l'absence de cohérence interexcitonnelle de longue durée sur les échelles de temps pertinentes dans ce système, à la fois aux températures cryogéniques et physiologiques. Au contraire, il est devenu évident que les signaux oscillants à longue durée de vie proviennent de modes vibratoires principalement issu de l'état électronique fondamental. Des analyses de données plus avancées et des traitements théoriques utilisant une paramétrisation réaliste de l'environnement modélisé (bath) sont nécessaires pour identifier clairement les signaux de cohérence. La discussion approfondie sur l'attribution antérieure de ces signatures spectrales, qui se développe dans la communauté depuis une décennie, souligne cette nécessité.

Le principal résultat positif de ce travail est l'amélioration des méthodes théoriques et expérimentales qui ont conduit à une meilleure compréhension des interactions système-bath responsables de la décohérence et de la dissipation dans les structures biologiques. La nature ne produit pas le bain (bath) pour éviter la décohérence des processus fonctionnels directs ; une telle approche ne serait certainement pas robuste. La nature, plutôt qu'essayer d'éviter la dissipation, l'exploite spécifiquement avec l'ingénierie des énergies sur site via le couplage excitonique* pour le transport direct de l'énergie. Le rôle des paramètres thermodynamiques dans le pilotage des fonctions biologiques est bien apprécié à d'autres niveaux. Ici, nous voyons que ce principe s'applique même aux processus de transfert d'énergie impliqués dans la photosynthèse qui se produisent sur des échelles de temps probablement plus rapides. La physique de base de la thermalisation étant utilisée pour imprimer une direction. Ce concept simple, maîtrisé par la nature dans toutes les dimensions temporelles et spatiales pertinentes, est une véritable merveille de la biologie. 

Auteur: Internet

Info: https://advances.sciencemag.org, 3 avril 2020. "Quantum biology revisited. Conclusions". By Jianshu Cao, Richard J. Cogdell, David F. Coker, Hong-Guang Duan, Jürgen Hauer, Ulrich Kleinekathöfer, Thomas L. C. Jansen, Tomáš Mančal, R. J. Dwayne Miller, Jennifer P. Ogilvie, Valentyn I. Prokhorenko, Thomas Renger, Howe-Siang Tan, Roel Tempelaar, Michael Thorwart, Sebastian Westenhof, Donatas Zigmantas. *En physique, un système quantique ouvert est un système de quantique qui interagit avec un système quantique externe (bath). En général, ces interactions modifient considérablement la dynamique du système et entraînent une dissipation quantique, de sorte que les informations contenues dans le système sont perdues pour son environnement. Comme aucun système quantique n'est complètement isolé de son environnement, il est important de développer un tel cadre théorique pour traiter ces interactions afin d'améliorer la compréhension des systèmes quantiques. **Complexe Fenna-Matthews-Olson : complexe hydrosoluble, a été le premier complexe pigment-protéine à être analysé par spectroscopie aux rayons X ***Un exciton est une quasi-particule que l'on peut voir comme une paire électron-trou liée par des forces de Coulomb. Une analogie consiste à comparer l'électron et le trou respectivement à l'électron et au proton d'un atome d'hydrogène. Ce phénomène se produit dans les semi-conducteurs et les isolants. Mise en forme Mg

[ anabolisme ] [ épigénétique ] [ hyper-complexité ]

 

Commentaires: 0

Ajouté à la BD par miguel

nano-monde

Quelle est cette physique inconnue soulevée par le LHC ?

Une équipe internationale de chercheurs a observé pour la première fois une forme de désintégration inédite du boson de Higgs, jetant un éclairage nouveau sur les mystères de l'Univers et suggérant l'existence de phénomènes physiques encore inexplorés. Cette découverte, fruit de l'analyse de données recueillies lors des collisions de protons au Grand Collisionneur de Hadrons (LHC) du CERN, marque un pas de géant dans notre compréhension du monde subatomique.

Le boson de Higgs, une particule élémentaire prédite dans les années 1960 et découverte avec certitude en 2012, joue un rôle crucial dans le Modèle standard de la physique des particules. Il est associé à un champ, omniprésent dans l'Univers, qui confère leur masse aux autres particules. Sa capacité à interagir avec diverses particules et champs avait été mesurée avec précision, confirmant les prédictions jusqu'à présent.

L'observation récente concerne une désintégration du boson de Higgs en un photon, ou quantum de lumière, et un boson Z, une particule sans charge électrique impliquée dans la transmission de la force faible, l'une des quatre forces fondamentales de l'Univers. Selon la théorie, ce processus est extrêmement rare, survenant environ 15 fois sur 10 000 désintégrations. Toutefois, les données recueillies par les collaborations ATLAS et CMS montrent un taux de désintégration supérieur, à 34 occurrences pour 10 000, ce qui soulève des questions sur la possibilité de nouvelles particules ou forces au-delà du Modèle standard.

Cette différence notable par rapport aux prédictions théoriques, bien qu'encore insuffisante pour exclure une fluctuation statistique, suggère la possibilité d'une nouvelle physique. Elle ouvre notamment la porte à des théories telles que la supersymétrie, qui propose une relation entre les particules de demi-spin et de spin entier, offrant des réponses potentielles à certaines des grandes énigmes de la physique, comme la nature de la matière noire et l'énorme écart entre les forces faible et gravitationnelle.

La détection de cette désintégration a nécessité une analyse minutieuse des résultats des collisions de protons au LHC, où les scientifiques ont dû compenser l'incapacité à observer directement le boson Z en mesurant l'énergie des électrons ou des muons produits lors de sa désintégration. Cette prouesse technique souligne l'extraordinaire précision avec laquelle les physiciens peuvent aujourd'hui tester les fondements de notre compréhension de l'Univers.

Les chercheurs se tournent désormais vers l'avenir, avec l'anticipation de données encore plus précises provenant de la prochaine phase du LHC et du futur Grand Collisionneur de Hadrons à haute luminosité, promettant des découvertes sur la structure fondamentale de la matière.

 

Auteur: Internet

Info: https://www.techno-science.net/,  Adrien le 18/02/2024, Source: Physical Review Letters

[ physique fondamentale ] [ infra-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste