Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 37
Temps de recherche: 0.0566s

nano-monde

Un nouvel état exotique de la matière
En créant des atomes dans des atomes, une recherche marque le début d'une nouvelle ère de la physique quantique.

Essentiels aux propriétés de la matière, les atomes sont largement connus comme les blocs de construction de l'univers. Si vous avez toujours en tête vos cours de sciences du lycée, vous vous souvenez peut-être que les atomes sont constitués de protons chargés positivement, de neutrons neutres et d'électrons chargés négativement. Mais il y a beaucoup d'espace laissé libre entre ces particules subatomiques.

Les électrons évoluent généralement en orbite autour de leur noyau atomique. Puisque ces blocs de construction peuvent être emplis de tant de vide, une équipe de scientifiques de l'Université de Technologie de Vienne et de l'Université d'Harvard a voulu savoir s'il était possible de combler ce vide avec d'autres atomes.

LES ATOMES DE RYDBERG
En physique quantique, les scientifiques peuvent créer des atomes de Rydberg, l'état excité d'un atome, possédant un ou plusieurs électrons en orbite loin du noyau et dont le nombre quantique principal n (numéro de la couche) est très élevé.

"La distance moyenne entre l'électron et son noyau peut être aussi grande que plusieurs centaines de nanomètres, soit plus de 1000 fois le rayon d'un atome d'hydrogène," a indiqué Jochim Burgdörfer, directeur de l'Institut de physique théorique de l'Université de technologie de Vienne.

Dans cette nouvelle étude publiée dans Physical Review Letters, les chercheurs expliquent avoir créé un condensat de Bose-Einstein à partir d'atomes de strontium, refroidissant un gaz dilué de bosons, un type de particules subatomiques, pour se rapprocher autant que possible du zéro absolu. Ensuite, avec un laser, ils ont transféré de l'énergie à l'un de ces atomes, le transformant en un atome de Rydberg avec un grand rayon atomique. Ce rayon était plus grand que la distance normale entre deux atomes dans le condensat.

Les atomes neutres n'ont guère d'impact sur le chemin des électrons de cet atome de Rydberg en raison de leur manque de charge. Mais l'électron capte toujours les atomes neutres dispersés le long de son chemin, ce qui l'empêche de se transformer en un autre état de matière.

Les simulations informatiques montrent que cette interaction est faible, ce qui crée une liaison entre les atomes de Rydberg et les autres atomes.

"C'est une situation très inhabituelle," explique Shuhei Yoshida, professeur de TU Wien qui a également pris part à la recherche. "Normalement, nous avons affaire à des noyaux chargés, à des électrons qui se lient autour d'eux. Ici nous avons un électron et des atomes neutres qui se lient."

Ce nouvel état de matière exotique, appelé polarons de Rydberg, ne peut se produire qu'à basse température. Si les températures se réchauffent, les particules se déplacent plus rapidement et le lien se brise.

"Pour nous, ce nouvel état de matière faiblement lié représente une nouvelle manière passionnante d'étudier la physique des atomes ultrafroids," poursuit M. Burgdörfer. "De cette façon, on peut sonder les propriétés d'un condensat de Bose-Einstein sur de très petites échelles avec une très grande précision."

Auteur: Internet

Info: d'Elaina Zachos, 20 avril 2020, https://www.nationalgeographic.fr

[ physique appliquée ]

 

Commentaires: 0

Ajouté à la BD par miguel

monde subatomique

Des physiciens comprennent enfin pourquoi l’interaction forte est si tenace 

Il existe quatre forces fondamentales : la force de gravité, l’électromagnétisme, l’interaction faible et l’interaction (ou force) forte. Cette dernière est la plus intense. L’interaction forte agit en liant les quarks au sein des protons et des neutrons. Elle maintient ainsi les nucléons ensemble pour former des noyaux atomiques. La force forte est jusqu’à 100 000 milliards de milliards de fois plus intense que la force de gravité. Malgré cette intensité, elle est relativement peu comprise, par rapport aux autres forces. Récemment, des chercheurs ont percé l’un des mystères de l’interaction forte expliquant sa ténacité et sont notamment parvenus à la mesurer de façon plus précise.

L’interaction forte est quantifiée par la constante de couplage (que les auteurs de l’étude choisissent d’appeler simplement " couplage "), notée αs (alpha s). Il s’agit d’un paramètre fondamental dans la théorie de la chromodynamique quantique (QCD).

La difficulté de la mesure de αs réside principalement dans sa nature très variable : plus deux quarks sont éloignés, plus le couplage est élevé, et plus l’attraction entre eux devient forte. À des distances faibles, où αs est encore faible, les physiciens parviennent à appliquer des méthodes de calcul basique pour déterminer le couplage. Cependant, ces techniques deviennent inefficaces à des distances plus importantes. Dans une nouvelle étude, des physiciens ont ainsi réussi à appliquer de nouvelles méthodes pour mieux déterminer αs à des distances plus importantes. 

Un calcul basé sur l’intégrale de Bjorken

Poussé par sa curiosité, l’un des chercheurs a testé l’utilisation de l’intégrale de Bjorken pour prédire αs sur de longues distances. Cette méthode permet de définir des paramètres relatifs à la rotation de la structure des nucléons et ainsi de calculer le couplage de la force forte à courte distance. Le scientifique ne s’attendait donc pas à faire une découverte de ce calibre en faisant cet essai. Pourtant, contre toute attente, ses résultats ont montré qu’à un moment donné, αs cesse d’augmenter pour devenir constant. Il a ainsi partagé ses découvertes avec son mentor qui avait, lui aussi, obtenu des résultats similaires dans des travaux antérieurs.

 "Ce fut une chance, car même si personne ne s’en était encore rendu compte, l’intégrale de Bjorken est particulièrement adaptée aux calculs de αs sur de longues distances ", déclarent les chercheurs dans un article du Scientific American. Les résultats ont été présentés lors de diverses conférences de physique, durant l’une desquelles l’auteur principal a rencontré un autre physicien, Stanley Brodsky, qui aurait appuyé les résultats obtenus.

Une méthode par holographie

En parallèle à cette découverte, d’autres physiciens ont travaillé sur la mise au point d’une autre méthode de calcul de αs sur de longues distances, qu’ils ont appelée " holographie du front lumineux ". L’holographie est une technique mathématique qui a initialement été développée dans le contexte de la théorie des cordes et de la physique des trous noirs.

Cependant, en physique des particules, elle sert à modéliser des phénomènes en quatre dimensions (incluant les trois dimensions spatiales et une dimension temporelle) en se basant sur des calculs effectués dans un espace à cinq dimensions. Dans cette méthode, la cinquième dimension n’est pas nécessairement une dimension physique réelle, mais peut servir d’outil mathématique pour faciliter les calculs. L’idée est que certaines équations complexes en quatre dimensions peuvent devenir plus simples ou plus intuitives quand elles sont envisagées dans un espace à cinq dimensions.

Auteur: Internet

Info: https://trustmyscience.com/ - Miotisoa Randrianarisoa & J. Paiano·15 avril 2024

[ gluons ] [ force de cohésion nucléaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuroscience

On sait enfin pourquoi le cerveau consomme autant d'énergie

La faute a des petites pompes "cachées". 

Les scientifiques le savent: le cerveau humain est une véritable machine insatiable en énergie. Au total, il en engloutit jusqu'à 10 fois plus que le reste du corps. Et même lorsque nous nous reposons, 20% de notre consommation de carburant est directement utilisé pour son fonctionnement. Un phénomène inexpliqué sur lequel nombre de scientifiques se sont cassés les dents. Jusqu'à aujourd'hui.

Publiée dans la revue Science Advances, une nouvelle étude explique l'origine du processus. Un processus qui se déroule dans ce que l'on appelle les vésicules synaptiques.

Entre deux neurones se trouve une synapse, zone qui assure la transmission des informations entre ces deux cellules nerveuses. Quand un signal est envoyé d'un neurone à un autre, un groupe de vésicules aspire les neurotransmetteurs à l'intérieur du premier neurone, au bout de sa queue. Le message est ainsi bien enveloppé, comme une lettre prête à être postée.

L'information est ensuite amenée jusqu'au bord du neurone, où elles fusionne avec la membrane, avant de relâcher les neurotransmetteurs dans la fameuse synapse. Dans cette zone, les neurotransmetteurs finissent leur course en entrant en contact avec les récepteurs du deuxième neurone. Et hop! Le message est passé.

Facile direz-vous. Certes, mais tout ceci nécessite beaucoup d'énergie cérébrale, ont découvert les scientifiques. Et ce, que le cerveau soit pleinement actif ou non.

En effectuant plusieurs expériences sur les terminaisons nerveuses, les membres de l'étude ont observé le comportement de la synapse lorsqu'elle est active ou non. Résultat: même quand les terminaisons nerveuses ne sont pas stimulées, les vésicules synaptiques, elles, ont toujours besoin de carburant. La faute à une sorte de petite pompe "cachée" qui est notamment en charge de pousser les protons hors de la vésicule. Chargée de pousser les protons hors de la vésicule et d'aspirer ainsi les neurotransmetteurs elle ne semble jamais se reposer et a donc besoin d'un flux constant d'énergie. En fait, cette pompe "cachée" est responsable de la moitié de la consommation métabolique de la synapse au repos.

Selon les chercheurs, cela s'explique par le fait que cette pompe a tendance à avoir des fuites. Ainsi, les vésicules synaptiques déversent constamment des protons via leurs pompes, même si elles sont déjà pleines de neurotransmetteurs et si le neurone est inactif.

Étant donné le grand nombre de synapses dans le cerveau humain et la présence de centaines de vésicules synaptiques à chacune de ces terminaisons nerveuses, ce coût métabolique caché, qui consiste à conserver les synapses dans un état de "disponibilité", se fait au prix d'une importante dépense d'énergie présynaptique et de carburant, ce qui contribue probablement de manière significative aux exigences métaboliques du cerveau et à sa vulnérabilité métabolique", concluent les auteurs.

Des recherches supplémentaires sont nécessaires pour déterminer comment les différents types de neurones peuvent être affectés par des charges métaboliques aussi élevées, car ils ne réagissent pas tous de la même manière.

Certains neurones du cerveau, par exemple, peuvent être plus vulnérables à la perte d'énergie, et comprendre pourquoi pourrait nous permettre de préserver ces messagers, même lorsqu'ils sont privés d'oxygène ou de sucre.

"Ces résultats nous aident à mieux comprendre pourquoi le cerveau humain est si vulnérable à l'interruption ou à l'affaiblissement de son approvisionnement en carburant", explique le biochimiste Timothy Ryan, de la clinique Weill Cornell Medicine à New York.

"Si nous avions un moyen de diminuer en toute sécurité cette fuite d'énergie et donc de ralentir le métabolisme cérébral, cela pourrait avoir un impact clinique très important." 

Auteur: Internet

Info: Science Advances, 3 déc 2021

[ cervelle énergivore ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Mu: une constante fondamentale qui reste constante.
L'idée que les constantes fondamentales ne le soient pas réellement et dépendent de l'espace et du temps perturbe depuis longtemps l'esprit des physiciens. Mais, en observant la façon dont une galaxie lointaine absorbe la lumière d'un quasar, des chercheurs australiens viennent de déterminer une nouvelle limite sur l'évolution de l'une d'entre elles, Mu (µ), ratio entre les masses de l'électron et du proton, en fonction du temps. Leur résultat, qui est 10 fois plus précis que les mesures précédentes, confirme la compréhension scientifique actuelle de la physique.
Les scientifiques ont utilisé la lumière d'un quasar pour montrer qu'une des constantes fondamentales de la physique est très probablement restée constante à travers l'histoire de l'univers
Les constantes principales sont très finement ajustées à notre existence (ou vice-versa !) ; si l'interaction forte était ne serait-ce qu'un pour cent plus intense qu'elle ne l'est aujourd'hui, par exemple, le carbone ne pourrait pas être produit dans les étoiles, et nous ne serions pas là pour en parler. C'est une des raisons pour lesquelles de nombreux physiciens sont désireux de vérifier si certaines constantes fondamentales ont varié au cours de l'histoire de l'univers. L'une d'elles est µ, le ratio entre la masse de l'électron et celle du proton.
Habituellement, cette constante peut être calculée en analysant les données d'un télescope terrestre pointé sur un quasar, le noyau compact mais très lumineux d'une jeune galaxie, sorte de "phare" dans l'espace profond. Le spectre de la lumière des quasars couvre un large intervalle de longueurs d'onde, mais certaines d'entre elles peuvent être absorbées par des molécules situées au sein de galaxies plus anciennes lors du trajet de la lumière à travers le cosmos. Ces longueurs d'onde, apparaissant comme des raies d'absorption, correspondent à des molécules "excitées" à des niveaux plus élevés d'énergie et sont régies par µ. Comme la lumière des quasars peut mettre des milliards d'années pour parvenir sur Terre, la valeur de µ mesurée à partir de ces sources éloignées peut être comparée à sa valeur mesurée dans une expérience de laboratoire. On détermine ainsi si sa valeur s'est modifiée au cours du temps.
Victor Flambaum et Michael Kozlov, de l'université de Nouvelle Galle du Sud en Australie, ont rendu la technique plus précise en y incorporant l'analyse d'un "spectre d'inversion", produit quand les atomes des molécules absorbent la lumière et atteignent un niveau d'énergie plus élevé par effet tunnel. Comme la probabilité de l'effet tunnel dépend plus étroitement de µ que les raies d'absorption dans le spectre habituel, des variations de cette constante peuvent en être déduites plus précisément.
Flambaum et Kozlov ont utilisées des données existantes du radiotélescope d'Effelsberg en Allemagne concernant la lumière issue d'un quasar et traversant la galaxie B0218+357 à 6.5 milliards d'années-lumière de la terre, et ont analysé les deux types de spectres pour des molécules d'ammoniaque et d'autres comme celles d'oxyde de carbone. Ils ont ensuite comparé les spectres à ceux d'expériences actuelles de laboratoire et ont constaté que µ ne pouvait pas avoir diminué de plus de 4e-16, ni ne pouvait pas avoir augmenté de plus de 2e-16 par an ce qui représente une évaluation dix fois plus précise que les meilleures estimations antérieures.
L'année dernière un groupe, conduit par Wim Ubachs de l'université d'Amsterdam, avait trouvé, en utilisant la technique plus ancienne, que µ avait pu diminuer avec le temps. Si cela s'était confirmé, cela aurait signifié que les théories les plus fondamentales de la physique, comme celle de la relativité, auraient dû être reconsidérées. Flambaum a indiqué, cependant, que ses propres résultats, plus précis, prouvaient qu'il était peu probable que µ ait varié au cours du temps, et qu'ainsi notre compréhension actuelle de la physique était bonne. Le scientifique a ajouté que si plus de données pouvaient être rassemblées, sa technique d'analyse devrait permettre aux théoriciens de déterminer encore plus précisément les non-variations de µ.

Auteur: Internet

Info:

[ constantes ]

 

Commentaires: 0

particules élémentaires

Les imprévisibles effets de l'interaction forte continuent de surprendre les physiciens

Après plus d'un siècle de collision de particules, les physiciens ont une assez bonne idée de ce qui se passe au cœur de l'atome. Les électrons bourdonnent dans des nuages probabilistes autour d'un noyau de protons et de neutrons, chacun contenant un trio de particules bizarres appelées quarks. La force qui maintient tous les quarks ensemble pour former le noyau est la force forte, la bien nommée. C'est cette interaction forte qui doit être surmontée pour diviser l'atome. Et cette puissante force lie les quarks ensemble si étroitement qu'aucun quark n'a jamais été repéré en solo.

Ces caractéristiques des quarks, dont beaucoup peuvent être expliquées dans un cours de sciences au lycée, ont été établies comme des faits expérimentaux. Et pourtant, d'un point de vue théorique, les physiciens ne peuvent pas vraiment les expliquer.

Il est vrai qu'il existe une théorie de la force forte, et c'est un joyau de la physique moderne. Elle se nomme chromodynamique quantique (QCD), " chromo " faisant référence à un aspect des quarks appelé poétiquement " couleur ". Entre autres choses, la QCD décrit comment la force forte s'intensifie lorsque les quarks se séparent et s'affaiblit lorsqu'ils se rassemblent, un peu comme une bande élastique. Cette propriété est exactement à l'opposé du comportement de forces plus familières comme le magnétisme, et sa découverte dans les années 1970 a valu des prix Nobel. D'un point de vue mathématique, les quarks ont été largement démystifiés.

Cependant, les mathématiques fonctionnent mieux lorsque la force entre les particules est relativement faible, ce qui laisse beaucoup à désirer d'un point de vue expérimental. Les prédictions de la CDQ furent confirmées de manière spectaculaire lors d'expériences menées dans des collisionneurs qui rapprochèrent suffisamment les quarks pour que la force forte entre eux se relâche. Mais lorsque les quarks sont libres d'être eux-mêmes, comme c'est le cas dans le noyau, ils s'éloignent les uns des autres et exercent des pressions sur leurs liens de confinement, et la force forte devient si puissante que les calculs stylo papier sont mis en échec. Dans ces conditions, les quarks forment des protons, des neutrons et une multitude d'autres particules à deux ou trois quarks, généralement appelées hadrons, mais personne ne peut calculer pourquoi cela se produit.

Pour comprendre les bizarreries dont les quarks sont capables, les physiciens ne peuvent que lancer des simulations numériques de force brute (qui ont fait des progrès remarquables ces dernières années) ou regarder les particules ricocher dans de bonnes expériences de collisionnement à l'ancienne. Ainsi, près de 60 ans après que les physiciens aient formalisé le quark, la particule continue de surprendre.

Quoi de neuf et digne de mention

Pas plus tard que l'été dernier, la collaboration du LHCb au Grand collisionneur de hadrons en Europe a repéré des signes de deux variétés jusqu'alors inédites de quarks, les tétraquarks, furtivement observés à travers les tunnels souterrains du collisionneur. Cataloguer la diversité des comportements des quarks aide les physiciens à affiner leurs modèles pour simplifier les complexités de la force forte en fournissant de nouveaux exemples de phénomènes que la théorie doit rendre compte.

Les tétraquarks ont été découverts pour la première fois au LHC à l'été 2014, après plus d'une décennie d'indices selon lesquels les quarks pourraient former ces quatuors, ainsi que des groupes de deux ou trois. Cette découverte a alimenté un débat qui s'est enflammé malgré une question apparemment ésotérique: faut-il considérer quatre quarks comme une "molécule" formée de deux hadrons doubles quarks faiblement attirés connus sous le nom de mésons, ou s'assemblent-ils en paires plus inhabituelles connues sous le nom de diquarks?

Au cours des années qui suivirent, les physiciens des particules accumulèrent des preuves de l'existence d'une petite ménagerie de tétraquarks exotiques et de " pentaquarks " à cinq quarks. Un groupe se détacha en 2021, un tétraquark " à double charme " qui vécut des milliers de fois plus longtemps que ses frères exotiques (à 12 sextillionièmes de seconde comme le Methuselah). Il a prouvé qu'une variété de quark — le quark charme — pouvait former des paires plus résistantes que la plupart des suppositions ou des calculs minutieux l'avaient prédit.

À peu près à la même époque, les chercheurs ont mis au point une nouvelle façon de tamiser le maelström qui suit une collision proton-proton à la recherche d'indices de rencontres fortuites entre des composites de quarks. Ces brefs rendez-vous permettent de déterminer si un couple donné de hadrons attire ou repousse, une prédiction hors de portée du QCD. En 2021, les physiciens ont utilisé cette technique de "femtoscopie" pour apprendre ce qui se passe lorsqu'un proton s'approche d'une paire de quarks " étranges ". Cette découverte pourrait améliorer les théories sur ce qui se passe à l'intérieur des étoiles à neutrons.

L'année dernière, les physiciens ont appris que même les quarks de l'atome d'hélium, très étudié, cachent des secrets. Les atomes d'hélium dénudés ont inauguré le domaine de la physique nucléaire en 1909, lorsque Ernest Rutherford (ou plutôt ses jeunes collaborateurs) les projeta sur une feuille d'or et découvrit le noyau. Aujourd'hui, les atomes d'hélium sont devenus la cible de projectiles encore plus petits. Au début de l'année 2023, une équipe a tiré un flux d'électrons sur des noyaux d'hélium (composés de deux protons et de deux neutrons) et a été déconcertée de constater que les cibles remplies de quarks gonflaient bien plus que ce que la CDQ leur avait laissé supposer.








Auteur: Internet

Info: https://www.quantamagazine.org/, Charlie Wood, 19 fev 2024

[ fermions ] [ bosons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

âme

Panpsychisme, l'esprit des pierres La plupart pense que tous les humains sont conscients, ainsi que beaucoup d'animaux. Certains, comme les grands singes, semblent même être timides comme nous. D'autres, comme les chiens et les chats, les porcs, manquent d'un sens de l'ego mais ils semblent éprouver les états intérieurs de plaisir, etc... Pour les créatures plus petites, comme des moustiques, nous ne sommes pas aussi sûrs et n'avons pas de scrupules pour les massacrer. Quant aux plantes, elles n'ont évidemment pas d'esprit, excepté dans des contes de fées. Et encore moins les choses non vivantes comme les tables et les pierres. Les Atomes Mentaux "Si l'évolution fonctionne en douceur, une certaines forme de conscience doit être présente à l'origine même des choses. On constate que les philosophes évolutionnistes commencent à en poser le principe. Chaque atome de la galaxie, supposent-ils, doit avoir eu un atome original de conscience lié avec lui. Les atomes mentaux... sont alors fondu en de plus grandes consciences : nous-mêmes et peut-être chez nos camarade-animaux." James William, Principes de Psychologie 1890 Tout paraît de bon sens. Mais le bon sens n'a pas toujours été un si bon guide pour comprendre le monde et sa partie la plus récalcitrante à notre compréhension à l'heure actuelle est bien la conscience elle-même. Comment les processus électrochimiques de notre cerveau, peuvent-ils exister et donner ce jeu en technicolor de la conscience, avec ses transports de joie, ses coups d'angoisse et autres moments de contentement doux alternant avec l'ennui ?... Voici peut-être une des dernières frontières des sciences. Elle nourrit les énergies intellectuelles de la communauté scientifique, les psychologues, philosophes, physiciens, informaticiens et aussi, de temps en temps, le Dalai Lama. Ceci amène certains à une hypothèse un peu folle. Peut-être, disent-ils, que l'esprit n'est pas limité aux cerveaux de quelques animaux. Peut-être est-il partout, présent dans chaque atome, des électrons et neutrinos jusqu'aux galaxies, sans exclure les choses de taille moyenne comme un verre de l'eau ou une plante en pot. Il n'aurait donc pas soudainement surgi quand quelques particules physiques sur une certaine planète se sont retrouvées, après évolution, dans la bonne configuration. Mais plutôt : il y a une conscience dans le cosmos depuis toujours. Cette doctrine que la substance du monde est fondamentalement esprit s'appelle panpsychisme. Il y a quelques décennies, le philosophe américain Thomas Nagel a montré que c'était une conséquence logique de quelques faits raisonnables. D'abord, nos cerveaux se composent de particules matérielles. Ensuite ces particules, dans certains arrangements, produisent des pensées et des sentiments subjectifs. Troisièmement, les propriétés physiques ne peuvent expliquer en elles-mêmes la subjectivité. (Comment l'ineffable expérience qui consiste à goûter une fraise pourrait-elle résulter en équations physiques ?) Nagel a donc théorisé que les propriétés d'un système complexe comme le cerveau ne surgissent pas simplement dans l'existence à partir de nulle part. Elles doivent dériver des propriétés des constituants de ce système. Ces constituants doivent par conséquent avoir eux-mêmes des propriétés subjectives - propriétés qui, dans les bonnes combinaisons, s'ajoutent jusqu'à donner nos pensées et sentiments intérieurs. Et comme les électrons, les protons et les neutrons constituant nos cerveaux ne sont pas différent de ceux qui constituent le reste du cosmos l'univers entier doit donc se composer d'infimes morceaux de conscience. Nagel n'est pas allé jusqu'au panpsychisme, mais aujourd'hui il peut constater quelque qui ressemble à une mode. Le philosophe australien David Chalmers et le physicien Roger Penrose d'Oxford ont parlé de lui. Dans le livre récent "La conscience et sa place dans la nature," le philosophe britannique Galen Strawson défend le panpsychisme contre de nombreuses critiques. Comment se pourrait-il, demandent les sceptiques, que des morceaux d'esprit poussière, avec des états mentaux vraisemblablement simples, se combinent-ils pour former le genres d'expériences mentales compliquées que nous autres humains vivons ? Après tout, quand on rassemble un groupe de personnes dans une salle, leurs différents esprits ne forment pas un esprit collectif simple. (Quoique!) Ensuite il y a le fait incommode qu'on ne peut pas scientifiquement tester cette affirmation qui, par exemple, dirait que la lune a un fonctionnement mental. (Et cela s'applique aussi aux gens - comment pourrez-vous démontrer que vos camarades de bureau de ne sont pas des robots sans connaissance, comme le commandant Data sur "Star Trek" ?) Il y a aussi cette idée un peu pernicieuse : si quelque chose comme un photon peut avoir des proto-émotions, proto-croyances et proto-désirs. Que pourrait alors être le contenu du désir d'un photon?.. Devenir un quark, ironise un anti panpsychisme. Il est plus facile de parodier le Panpsychisme que le réfuter. Mais même si cette recherche de compréhension de la conscience s'avère être un cul-de-sac, cela pourra éventuellement nous aider à nous élever au-dessus de nos pensées conventionnelles de la perspective cosmique. Nous sommes des êtres biologiques. Nous existons parce que nous sommes des autos réplications de nous-mêmes. Nous détectons et agissons sur l'information de notre environnement de sorte que nos réplications continuent. En tant que sous-produits, nous avons développé des cerveaux qui, nous voulons voir comme les choses les plus complexes de l'univers. Mais pensons à la matière brute. Prenez un rocher. Il ne semble pas faire grand-chose, en tout cas pour ce qui est d'animer nos perceptions. Mais à un nano niveau il se compose d'un nombre inimaginable d'atomes reliés par des liaisons chimiques flexibles, ondoyantes et s'agitant ensembles à des cadences que même notre ordinateur géant le plus rapide pourra envier pour encore longtemps. Et ils ne 'agitent pas au hasard. Les intestins du rocher "voient" l'univers entier au moyen de signaux gravitationnels et électromagnétiques qu'ils reçoivent sans interruption. Un tel système pourrait être regardé comme un processeur polyvalent d'informations, dont la dynamique intérieure pourrait refléter n'importe quelle séquence des états mentaux que nos cerveaux traversent. Et là où il y a de l'information, dit le panpsychisme, il y a de la conscience. Ainsi le slogan de David Chalmers, "l'expérience est information de l'intérieur; la physique est information de l'extérieur." Mais le rocher ne se démène pas lui-même comme résultat de toute cette "réflexion". Pourquoi le devrait-il ? Son existence, à la différence de la nôtre, ne dépend pas d'une lutte pour la survie et la reproduction. Il est indifférent à la perspective d'être pulvérisé. Etant poète on pourrait voir le rocher comme un être purement contemplatif. Et on pourrait dessiner cette morale que l'univers est, et a toujours été, saturé d'esprit. Même si nous autres snobs darwiniens reproducteurs retardataires sommes trop fermés pour le réaliser.

Auteur: Holt Jim

Info: Fortean Times 18 Nov. 2007

[ matière ] [ monade ] [ minéral ] [ métaphysique ] [ chiasme ]

 

Commentaires: 0

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

recherche fondamentale

Pourquoi nous pouvons cesser de nous inquiéter et aimer les accélérateur de particules

En plongeant dans les mystères de l'Univers, les collisionneurs sont entrés dans l'air du temps et ont exploité  merveilles et  craintes de notre époque.

Le scénario semble être le début d'une mauvaise bande dessinée de Marvel, mais il se trouve qu'il éclaire nos intuitions sur les radiations, la vulnérabilité du corps humain et la nature même de la matière. Grâce aux accélérateurs de particules, les physiciens peuvent étudier les particules subatomiques en les accélérant dans de puissants champs magnétiques, puis en retraçant les interactions qui résultent des collisions. En plongeant dans les mystères de l'Univers, les collisionneurs se sont inscrits dans l'air du temps et ont nourris des émerveillements et des craintes de notre époque.

Dès 2008, le Grand collisionneur de hadrons (LHC), exploité par l'Organisation européenne pour la recherche nucléaire (CERN), a été chargé de créer des trous noirs microscopiques qui permettraient aux physiciens de détecter des dimensions supplémentaires. Pour beaucoup, cela ressemblait à l'intrigue d'un film catastrophe de science-fiction. Il n'est donc pas surprenant que deux personnes aient intenté une action en justice pour empêcher le LHC de fonctionner, de peur qu'il ne produise un trou noir suffisamment puissant pour détruire le monde. Mais les physiciens firent valoir que l'idée était absurde et la plainte fut rejetée.

Puis, en 2012, le LHC détecta le boson de Higgs tant recherché, une particule nécessaire pour expliquer comment les particules acquièrent une masse. Avec cette réalisation majeure, le LHC est entré dans la culture populaire ; il a figuré sur la pochette de l'album Super Collider (2013) du groupe de heavy metal Megadeth, et a été un élément de l'intrigue de la série télévisée américaine The Flash (2014-).

Pourtant, malgré ses réalisations et son prestige, le monde de la physique des particules est si abstrait que peu de gens en comprennent les implications, la signification ou l'utilisation. Contrairement à une sonde de la NASA envoyée sur Mars, les recherches du CERN ne produisent pas d'images étonnantes et tangibles. Au lieu de cela, l'étude de la physique des particules est mieux décrite par des équations au tableau noir et des lignes sinueuses appelées diagrammes de Feynman. Aage Bohr, lauréat du prix Nobel dont le père Niels a inventé le modèle Bohr de l'atome, et son collègue Ole Ulfbeck sont même allés jusqu'à nier l'existence physique des particules subatomiques, qui ne sont rien d'autre que des modèles mathématiques.

Ce qui nous ramène à notre question initiale : que se passe-t-il lorsqu'un faisceau de particules subatomiques se déplaçant à une vitesse proche de celle de la lumière rencontre la chair du corps humain ? Peut-être parce que les domaines de la physique des particules et de la biologie sont conceptuellement très éloignés, ce ne sont pas seulement les profanes qui manquent d'intuition pour répondre à cette question, mais aussi certains physiciens professionnels. Dans une interview réalisée en 2010 sur YouTube avec des membres de la faculté de physique et d'astronomie de l'université de Nottingham, plusieurs experts universitaires ont admis qu'ils n'avaient aucune idée de ce qui se passerait si l'on introduisait une main à l'intérieur du faisceau de protons du LHC. Le professeur Michael Merrifield l'exprima de manière succincte : "C'est une bonne question. Je ne connais pas la réponse. Ce serait probablement néfaste pour la santé". Le professeur Laurence Eaves se montra également prudent avant de tirer des conclusions. "À l'échelle de l'énergie que nous percevons, ce ne serait pas si perceptible que cela, déclara-t-il, sans doute avec un brin d'euphémisme britannique. Est-ce que je mettrais ma main dans le faisceau ? Je n'en suis pas sûr."

De telles expériences de pensée peuvent être des outils utiles pour explorer des situations qui ne peuvent pas être étudiées en laboratoire. Il arrive cependant que des accidents malencontreux donnent lieu à des études de cas : occasions pour les chercheurs d'étudier des scénarios qui ne peuvent pas être induits expérimentalement pour des raisons éthiques. Etude de cas ici avec un échantillon d'une personne et qui ne comporte pas de groupe de contrôle. Mais, comme l'a souligné en son temps le neuroscientifique V S Ramachandran dans Phantoms in the Brain (1998), il suffit d'un seul cochon qui parle pour prouver que les cochons peuvent parler. Le 13 septembre 1848, par exemple, une barre de fer transperça la tête de Phineas Gage, un cheminot américain, et modifia profondément sa personnalité, ce qui constitue une première preuve de l'existence d'une base biologique de la personnalité.

Et puis le 13 juillet 1978, un scientifique soviétique du nom d'Anatoli Bugorski plongea sa tête dans un accélérateur de particules. Ce jour-là, Bugorski vérifiait un équipement défectueux sur le synchrotron U-70 - le plus grand accélérateur de particules d'Union soviétique - lorsqu'un mécanisme de sécurité a lâché et qu'un faisceau de protons se déplaçant à une vitesse proche de celle de la lumière lui a traversé la tête, à la manière de Phineas Gage. Il est possible qu'à ce moment de l'histoire, aucun autre être humain n'ait jamais été confronté à un faisceau de rayonnement concentré à une énergie aussi élevée. Bien que la protonthérapie - un traitement du cancer utilisant des faisceaux de protons pour détruire les tumeurs - ait été mise au point avant l'accident de Bugorski, l'énergie de ces faisceaux ne dépasse généralement pas 250 millions d'électronvolts (une unité d'énergie utilisée pour les petites particules). Bugorski aurait pu subir de plein fouet les effets d'un faisceau d'une énergie plus de 300 fois supérieure, soit 76 milliards d'électrons-volts.

Le rayonnement de protons est en effet très rare. Les protons provenant du vent solaire et des rayons cosmiques sont stoppés par l'atmosphère terrestre, et le rayonnement de protons est si rare dans la désintégration radioactive qu'il n'a été observé qu'en 1970. Les menaces plus familières, telles que les photons ultraviolets et les particules alpha, ne pénètrent pas dans le corps au-delà de la peau, sauf en cas d'ingestion d'une substance radioactive. Le dissident russe Alexandre Litvinenko, par exemple, fut tué par des particules alpha qui ne pénètrent même pas le papier lorsqu'il ingéra à son insu du polonium-210 radioactif livré par un assassin. Mais lorsque les astronautes d'Apollo, protégés par des combinaisons spatiales, furent exposés à des rayons cosmiques contenant des protons et à des formes de rayonnement encore plus exotiques, ils signalèrent des éclairs de lumière visuelle, signe avant-coureur de ce qui allait arriver à Bugorski le jour fatidique de son accident. Selon une interview publiée dans le magazine Wired en 1997, Bugorski a immédiatement vu un flash lumineux intense, mais n'a ressenti aucune douleur. Le jeune scientifique fut transporté dans une clinique de Moscou, la moitié du visage gonflée, et les médecins s'attendaient au pire.

Les particules de rayonnement ionisant, telles que les protons, font des ravages dans l'organisme en brisant les liaisons chimiques de l'ADN. Cette atteinte à la programmation génétique d'une cellule peut tuer la cellule, l'empêcher de se diviser ou induire une mutation cancéreuse. Les cellules qui se divisent rapidement, comme les cellules souches de la moelle osseuse, sont les plus touchées. Les cellules sanguines étant produites dans la moelle osseuse, par exemple, de nombreux cas d'irradiation se traduisent par une infection et une anémie dues à la perte de globules blancs et de globules rouges, respectivement. Mais dans le cas particulier de Bugorski, les radiations étaient concentrées le long d'un faisceau étroit à travers la tête, au lieu d'être largement dispersées lors des retombées nucléaires, comme cela a été le cas pour de nombreuses victimes de la catastrophe de Tchernobyl ou du bombardement d'Hiroshima. Pour Bugorski, les tissus particulièrement vulnérables, tels que la moelle osseuse et le tractus gastro-intestinal, auraient pu être largement épargnés. Mais là où le faisceau a traversé la tête de Bugorski, il a déposé une quantité obscène d'énergie de rayonnement, des centaines de fois supérieure à une dose létale selon certaines estimations.

Et pourtant, Bugorski est toujours en vie aujourd'hui. La moitié de son visage est paralysée, ce qui donne à un hémisphère de sa tête une apparence étrangement jeune. Il serait sourd d'une oreille. Il a souffert d'au moins six crises tonico-cloniques généralisées. Communément appelées crises de grand mal, ce sont les crises les plus fréquemment représentées au cinéma et à la télévision, impliquant des convulsions et une perte de conscience. L'épilepsie de Bugorski est probablement le résultat de la cicatrisation des tissus cérébraux causée par le faisceau de protons. Il souffre également de crises de petit mal ou d'absence, des crises beaucoup moins spectaculaires au cours desquelles la conscience est brièvement interrompue. Aucun cancer n'a été diagnostiqué chez Bugorski, bien qu'il s'agisse souvent d'une conséquence à long terme de l'exposition aux rayonnements.

Bien que son cerveau ait été traversé par rien de moins qu'un faisceau d'accélérateur de particules, l'intellect de Bugorski est resté intact et il a passé son doctorat avec succès après l'accident.  

Auteur: Frohlich Joel

Info: https://bigthink.com/   23 juin  2020

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

théorie du tout

De l'observateur à l'acteur

Les découvertes de la physique quantique ont initié une réflexion importante sur la place de l'observateur et son lien avec la conscience. Jusqu'alors, ce que nous savions de la physique n'avait jamais conduit à ce questionnement. En effet, à notre échelle, les objets classiques se comportent de manière régulière et prédictive, nous donnant par exemple le droit de penser que si nous quittons une pièce, les objets qu'elle contient seront toujours là à notre retour. C'est comme si les choses continuaient, que nous les observions ou non. L'influence de l'observation est donc susceptible du nous échapper.

Par contre, au niveau quantique, on ne peut rien dire de tel. Quand on n'observe pas, il y a méconnaissance ; alors, plusieurs réalités sont possibles. C'est ce qu'on appelle la superposition quantique. À partir du moment où l'on observe, la superposition s'effondre, ne laissant qu'une seule réalité.

Quel est le point commun entre les deux échelles ? La conscience.

L'observateur, au sens métaphysique du terme - le seul qui soit ici valide puisque la conscience est première - a une influence sur l'avancement de la complexité et de la conscience dans l'univers. En retour, l'univers a une influence sur lui.  Dès que la conscience de l'observateur change, il n'observe plus son environnement de la même manière, ce qui influence la conscience avec laquelle il perçoit. Ainsi, son interprétation est directement liée à sa conscience au moment où il observe.

Chaque observateur étant ainsi complètement impliqué dans la construction de la réalité, il serait sans doute plus juste de parler d'acteurs. Les joueurs sont finalement la condition même d'existence de l'aire de jeu, grâce à leur conscience.

Le joueur et ce qui se passe dans l'univers ne font qu'un

Selon la théorie des champs unifiés, la conscience est une rétroaction entre notre monde intérieur et notre monde extérieur.

C'est à partir de la structure du double tore que j'ai commencé à comprendre pourquoi et comment la conscience émerge par rétroaction.

"Pour être conscient de soi, il faut savoir que l'on existe. Cela nécessite une rétroaction. La structure du double tore permet cette rétroaction entre ce qui vient de l'extérieur et ce qui retourne à l'intérieur, informant le vide, puis retournant à l'extérieur. Et lorsqu'il retourne à l'extérieur, le vide nous informe du résultat de l'information qui y est présente. Il s'agit d'un échange entre notre compréhension interne et l'expérience de l'univers, et la relation entre toutes les compréhensions rassemblées dans le vide affecte la nôtre. Nous ne créons donc pas notre réalité, nous la co-créons avec tous les autres." 

L'univers utilise une boucle de rétroaction pour s'observer à toutes les échelles. Il s'observe en fait à travers tous les êtres conscients qui évoluent en son sein. Plus précisément, c'est le niveau fondamental de ce que nous sommes qui rayonne et s'effondre perpétuellement sur lui-même, dans une boucle de rétroaction infinie.

Ainsi, nos observations ne sont pas les nôtres, car nous n'observons pas l'univers d'un point de vue extérieur. Nous faisons partie de son propre processus de prise de conscience. Et nous pouvons utiliser ce processus consciemment pour diriger la création et tracer le chemin que nous souhaitons emprunter, en co-création avec d'autres.

Pour cela, nous utilisons l'énergie.

L'énergie suit la conscience.

" Nous baignons dans une énergie fondamentale qui est à la source de la création du monde physique. Cette énergie est le vide, c'est-à-dire l'espace qui nous entoure. Cet espace n'est cependant pas vide au sens habituel du terme mais plein d'énergie, une énergie qui relie absolument tout. " [10]

Je présente ici la relation entre le vide, l'espace et l'énergie. Du point de vue de la physique, le vide n'existe pas.

Du point de vue de la métaphysique, seules la conscience et l'énergie existent. Ce que l'on appelle " espace " est simplement de l'énergie et des potentiels inexplorés (bien que du point de vue mental, l'espace existe et est perçu comme vide).

L'espace n'est rien d'autre que de l'énergie

Je m'intéresse au vide et surtout à l'énergie qu'il contient car c'est pour moi la source de la matière. Et je découvre que le vide a une structure géométrique, celle de la fleur de vie en 3D.

Cette structure est infinie et couvre ce que l'on appelle communément "l'espace". L'espace relie toutes les échelles, du niveau quantique - où les équations prédisent qu'il y a une énergie infinie en tout point - au niveau cosmologique. Toute l'énergie est déjà là, même si nous n'en sommes pas conscients.

La physique standard laisse volontairement de côté la grande majorité de cette énergie en utilisant un processus de renormalisation, qui attribue une valeur finie à l'énergie du vide quantique.

"(...) Des infinités absurdes à première vue apparaissent dans les autres théories partielles, mais dans tous les cas ces infinités peuvent être annulées par un processus appelé " renormalisation ". Bien que cette technique soit relativement douteuse sur le plan mathématique, elle semble fonctionner dans la pratique et a été appliquée à ces théories pour faire des prédictions qui correspondent aux observations avec un degré de précision extraordinaire. La renormalisation présente toutefois un sérieux inconvénient du point de vue de la recherche d'une théorie complète, car elle signifie que les valeurs réelles des masses et des intensités des forces ne peuvent pas être prédites par la théorie, mais doivent être choisies pour s'adapter aux observations. ""

Stephen Hawking énonce ici ce qui m'a permis de trouver une théorie complète, prenant en compte l'infini sans avoir recours à la renormalisation. J'ai ainsi réussi à prédire la valeur réelle de la masse du proton et des trous noirs en général...

L'énergie est partout équivalente

" Les objets physiques ne sont pas dans l'espace, mais ces objets sont une extension de l'espace. De ce point de vue, le concept d'espace perd toute signification.**

L'espace - ou l'énergie - est une fluctuation à la source de notre réalité. Ainsi, au lieu de nous voir comme un corps, par exemple, nous pouvons nous voir comme étant constitués de billions de cellules. Chacune de ces cellules est composée de milliards d'atomes. À l'intérieur de chacun de ces atomes, des protons circulent les uns autour des autres à la vitesse de la lumière. Ils sont chacun constitués de 1055 minuscules paquets d'énergie, appelés unités sphériques de Planck (PSU) ou voxels par moi-même. Ces voxels constituent l'unité fondamentale de la fabrique de l'espace-temps, assemblés géométriquement selon la structure infinie de la fleur de vie en 3D.

Il n'y a pas d'espace entre les particules, il n'y a que de l'énergie. D'ailleurs si l'on prend en compte l'énergie contenue dans le proton, on peut enfin expliquer la différence de densité d'énergie entre le niveau quantique et le niveau cosmologique. En bref l'énergie est égale, équivalente partout.

Mais si on considère que l'espace n'existe pas, que deviennent les concepts de temps et de dimension ?

Sans espace, qu'est-ce que le temps ?

Depuis la théorie de la relativité restreinte (Einstein, 1905), le concept d'espace est étroitement associé à celui de temps. Ces notions sont devenues inséparables et s'influencent réciproquement. Cependant le temps est simplement un concept humain. Il vaut mieux parler d'espace-mémoire. Ici c'est la mémoire qui est encodée sur le cadre de l'espace, nous donnant la notion du temps qui passe.

Mais qu'il s'agisse de mémoire ou de temps, sans espace, il n'y a pas d'espace, pourrait-on dire à juste titre.  Alors que la mémoire est simplement comme des paquets d'énergie et de conscience qui deviennent disponibles de notre point de vue humain.

Cela correspond à la perspective métaphysique selon laquelle toute manifestation d'énergie est un événement, sans corrélation avec le temps et l'espace, mais en aucun cas sans corrélation avec la conscience. Le temps, comme l'espace, n'existe nulle part ailleurs que dans le mental. Celui-ci peut en percevoir la linéarité et la séparation, là où tout n'est que résonance dans l'instant présent.

Sans espace, qu'est-ce qu'une dimension ?

Une dimension est relative à une mesure. Cependant je considère qu'une dimension se réfère à l'échelle ou à la taille d'une structure plutôt qu'à une orientation dans l'espace. Ainsi il existe un nombre infini de dimensions scalaires, la plus petite et la plus pertinente pour définir notre relation à l'univers étant le voxel (sphère de Planck). 1055 voxels - la masse de l'univers - tiennent dans un seul proton. Comment est-ce possible ? Parce qu'il s'agit de la masse holographique, fondée sur l'information. L'univers est fractal. La nature holo-fractographique de l'univers signifie que tous les protons communiquent entre eux.

Ainsi l'énergie est communication, uniquement.

En pratique l'échelle à laquelle nous observons les objets en physique détermine réellement le niveau d'énergie qu'on peut observer

Ainsi si nous étirons une PSU (voxel) à l'échelle d'un proton, le proton lui-même s'étirera jusqu'à atteindre la taille d'une sphère dont le diamètre correspondrait à la distance entre notre soleil et Alpha du Centaure.

Ou encore :  depuis la Station spatiale internationale, on peut observer l'océan et voir une surface bleue et lisse. Mais si on s'approche suffisamment, on verra des vagues de 15 mètres d'une énergie folle. C'est ce qui se passe avec les fluctuations électromagnétiques à l'échelle quantique. Mais nous ne pouvons pas le voir

Auteur: Haramein Nassim

Info: *Hawking Stephen, A Brief History of Time, Ed.Flammarion, 2018, p.191, free translation **EINSTEIN Albert, The Connected Universe [vidéo], 2015

[ science spéculative ] [ mondes consensuels ] [ solipsismes grégaires ] [ vacuité apparente ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde verrouillé

Comment un tour de passe-passe mathématique a sauvé la physique des particules

La renormalisation est peut-être l'avancée la plus importante de la physique théorique depuis 50 ans. 

Dans les années 1940, certains physiciens avant-gardistes tombèrent sur une nouvelle couche de la réalité. Les particules n'existaient plus et les champs - entités expansives et ondulantes qui remplissent l'espace comme un océan - étaient dedans. Une ondulation dans un champ était un électron, une autre un photon, et leurs interactions semblaient expliquer tous les événements électromagnétiques.

Il n'y avait qu'un seul problème : la théorie était constituée d'espoirs et de prières. Ce n'est qu'en utilisant une technique appelée "renormalisation", qui consiste à occulter soigneusement des quantités infinies, que les chercheurs purent éviter les prédictions erronées. Le processus fonctionnait, mais même ceux qui développaient la théorie soupçonnaient qu'il s'agissait d'un château de cartes reposant sur un tour de passe-passe mathématique tortueux.

"C'est ce que j'appellerais un processus divertissant", écrira plus tard Richard Feynman. "Le fait de devoir recourir à de tels tours de passe-passe nous a empêchés de prouver que la théorie de l'électrodynamique quantique est mathématiquement cohérente.

La justification vint des décennies plus tard, d'une branche de la physique apparemment sans rapport. Les chercheurs qui étudiaient la magnétisation découvrirent que la renormalisation ne concernait aucunement les infinis. Elle évoquait plutôt la séparation de l'univers en domaines de tailles distinctes, point de vue qui guide aujourd'hui de nombreux domaines de la physique.

La renormalisation, écrit David Tong, théoricien à l'université de Cambridge, est "sans doute l'avancée la plus importante de ces 50 dernières années dans le domaine de la physique théorique".

L'histoire de deux charges

Selon certains critères, les théories des champs sont les théories les plus fructueuses de toute la science. La théorie de l'électrodynamique quantique (QED), qui constitue l'un des piliers du modèle standard de la physique des particules, a permis de faire des prédictions théoriques qui correspondent aux résultats expérimentaux avec une précision d'un sur un milliard.

Mais dans les années 1930 et 1940, l'avenir de la théorie était loin d'être assuré. L'approximation du comportement complexe des champs donnait souvent des réponses absurdes et infinies, ce qui amena certains théoriciens à penser que les théories des champs étaient peut-être une impasse.

Feynman et d'autres cherchèrent de toutes nouvelles perspectives - éventuellement même susceptibles de ramener les particules sur le devant de la scène - mais ils finirent par trouver un moyen de contourner l'obstacle. Ils constatèrent que les équations QED  permettaient d'obtenir des prédictions respectables, à condition qu'elles soient corrigées par la procédure impénétrable de renormalisation.

L'exercice est le suivant. Lorsqu'un calcul QED conduit à une somme infinie, il faut l'abréger. Mettez la partie qui tend vers l'infini dans un coefficient - un nombre fixe - placé devant la somme. Remplacez ce coefficient par une mesure finie provenant du laboratoire. Enfin, laissez la somme nouvellement apprivoisée retourner à l'infini.

Pour certains, cette méthode s'apparente à un jeu de dupes. "Ce ne sont tout simplement pas des mathématiques raisonnables", écrivit Paul Dirac, théoricien quantique novateur.

Le cœur du problème - germe de sa solution éventuelle - se trouve dans la manière dont les physiciens ont traité la charge de l'électron.

Dans ce schéma la charge électrique provient du coefficient - la valeur qui engloutit l'infini au cours du brassage mathématique. Pour les théoriciens qui s'interrogeaient sur la signification physique de la renormalisation, la théorie QED laissait entendre que l'électron avait deux charges : une charge théorique, qui était infinie, et la charge mesurée, qui ne l'était pas. Peut-être que le noyau de l'électron contenait une charge infinie. Mais dans la pratique, les effets de champ quantique (qu'on peut visualiser comme un nuage virtuel de particules positives) masquaient l'électron, de sorte que les expérimentateurs ne mesuraient qu'une charge nette modeste.

Deux physiciens, Murray Gell-Mann et Francis Low, concrétisèrent cette idée en 1954. Ils ont relié les deux charges des électrons à une charge "effective" qui varie en fonction de la distance. Plus on se rapproche (et plus on pénètre le manteau positif de l'électron), plus la charge est importante.

Leurs travaux furent les premiers à lier la renormalisation à l'idée d'échelle. Ils laissaient entendre que les physiciens quantiques avaient trouvé la bonne réponse à la mauvaise question. Plutôt que de se préoccuper des infinis, ils auraient dû s'attacher à relier le minuscule à l'énorme.

La renormalisation est "la version mathématique d'un microscope", a déclaré Astrid Eichhorn, physicienne à l'université du Danemark du Sud, qui utilise la renormalisation pour ses recherches en théorie de la gravité quantique. "Et inversement, vous pouvez commencer par le système microscopique et faire un zoom arrière. C'est une combinaison de microscope et de télescope".

La renormalisation capture la tendance de la nature à se subdiviser en mondes essentiellement indépendants.

Les aimants sauvent la mise

Un deuxième indice apparut dans le monde de la matière condensée, ici les physiciens s'interrogeaient sur la manière dont un modèle magnétique grossier parvenait à saisir les détails de certaines transformations. Le modèle d'Ising n'était guère plus qu'une grille de flèches atomiques qui ne pouvaient pointer que vers le haut ou vers le bas, mais il prédisait les comportements d'aimants réels avec une perfection improbable.

À basse température, la plupart des atomes s'alignent, ce qui magnétise le matériau. À haute température, ils deviennent désordonnés et le réseau se démagnétise. Mais à un point de transition critique, des îlots d'atomes alignés de toutes tailles coexistent. Il est essentiel de noter que la manière dont certaines quantités varient autour de ce "point critique" semble identique dans le modèle d'Ising, dans les aimants réels de différents matériaux et même dans des systèmes sans rapport, tels que la transition à haute pression où l'eau devient indiscernable de la vapeur d'eau. La découverte de ce phénomène, que les théoriciens ont appelé universalité, était aussi bizarre que de découvrir que les éléphants et les aigrettes se déplacent exactement à la même vitesse de pointe.

Les physiciens n'ont pas pour habitude de s'occuper d'objets de tailles différentes en même temps. Mais ce comportement universel autour des points critiques les obligea à tenir compte de toutes les échelles de longueur à la fois.

Leo Kadanoff, chercheur dans le domaine de la matière condensée, a compris comment procéder en 1966. Il a mis au point une technique de "spin par blocs", en décomposant une grille d'Ising trop complexe pour être abordée de front, en blocs modestes comportant quelques flèches par côté. Il calcula l'orientation moyenne d'un groupe de flèches et  remplaça tout le bloc par cette valeur. En répétant le processus, il lissa les détails fins du réseau, faisant un zoom arrière pour comprendre le comportement global du système.

Enfin, Ken Wilson -  ancien étudiant de Gell-Mann qui avait les pieds tant dans le monde de la physique des particules et de la matière condensée -  réunit les idées de Gell-Mann et de Low avec celles de Kadanoff. Son "groupe de renormalisation", qu'il décrivit pour la première fois en 1971, justifiait les calculs tortueux de la QED et a fourni une échelle permettant de gravir les échelons des systèmes universels. Ce travail a valu à Wilson un prix Nobel et a changé la physique pour toujours.

Selon Paul Fendley, théoricien de la matière condensée à l'université d'Oxford, la meilleure façon de conceptualiser le groupe de renormalisation de Wilson est de le considérer comme une "théorie des théories" reliant le microscopique au macroscopique.

Considérons la grille magnétique. Au niveau microscopique, il est facile d'écrire une équation reliant deux flèches voisines. Mais extrapoler cette simple formule à des trillions de particules est en fait impossible. Vous raisonnez à la mauvaise échelle.

Le groupe de renormalisation de Wilson décrit la transformation d'une théorie des éléments constitutifs en une théorie des structures. On commence avec une théorie de petits éléments, par exemple les atomes d'une boule de billard. On tourne la manivelle mathématique de Wilson et on obtient une théorie connexe décrivant des groupes de éléments, par exemple les molécules d'une boule de billard. En continuant de tourner la manivelle, on obtient des groupes de plus en plus grands - grappes de molécules de boules de billard, secteurs de boules de billard, et ainsi de suite. Finalement, vous voilà en mesure de calculer quelque chose d'intéressant, comme la trajectoire d'une boule de billard entière.

Telle est la magie du groupe de renormalisation : Il permet d'identifier les quantités à grande échelle qu'il est utile de mesurer et les détails microscopiques alambiqués qui peuvent être ignorés. Un surfeur s'intéresse à la hauteur des vagues, et non à la bousculade des molécules d'eau. De même, en physique subatomique, la renormalisation indique aux physiciens quand ils peuvent s'occuper d'un proton relativement simple plutôt que de son enchevêtrement de quarks intérieurs.

Le groupe de renormalisation de Wilson suggère également que les malheurs de Feynman et de ses contemporains venaient du fait qu'ils essayaient de comprendre l'électron d'infiniment près. "Nous ne nous attendons pas à ce que  ces théories soient valables jusqu'à des échelles [de distance] arbitrairement petites", a déclaré James Fraser, philosophe de la physique à l'université de Durham, au Royaume-Uni. Ajoutant : "La coupure absorbe notre ignorance de ce qui se passe aux niveaux inférieurs".

En d'autres termes, la QED et le modèle standard ne peuvent tout simplement pas dire quelle est la charge nue de l'électron à une distance de zéro nanomètre. Il s'agit de ce que les physiciens appellent des théories "effectives". Elles fonctionnent mieux sur des distances bien définies. L'un des principaux objectifs de la physique des hautes énergies étant de découvrir ce qui se passe exactement lorsque les particules deviennent encore plus proches.

Du grand au petit

Aujourd'hui, le "dippy process" de Feynman est devenu aussi omniprésent en physique que le calcul, et ses mécanismes révèlent les raisons de certains des plus grands succès de la discipline et de ses défis actuels. Avec la renormalisation, les câpres submicroscopiques compliqués ont tendance à disparaître. Ils sont peut-être réels, mais ils n'ont pas d'incidence sur le tableau d'ensemble. "La simplicité est une vertu", a déclaré M. Fendley. "Il y a un dieu là-dedans.

Ce fait mathématique illustre la tendance de la nature à se diviser en mondes essentiellement indépendants. Lorsque les ingénieurs conçoivent un gratte-ciel, ils ignorent les molécules individuelles de l'acier. Les chimistes analysent les liaisons moléculaires mais ignorent superbement les quarks et les gluons. La séparation des phénomènes par longueur, quantifiée par le groupe de renormalisation, a permis aux scientifiques de passer progressivement du grand au petit au cours des siècles, plutôt que briser toutes les échelles en même temps.

En même temps, l'hostilité de la renormalisation à l'égard des détails microscopiques va à l'encontre des efforts des physiciens modernes, avides de signes du domaine immédiatement inférieur. La séparation des échelles suggère qu'ils devront creuser en profondeur pour surmonter le penchant de la nature à dissimuler ses points les plus fins à des géants curieux comme nous.

"La renormalisation nous aide à simplifier le problème", explique Nathan Seiberg, physicien théoricien à l'Institute for Advanced Study de Princeton, dans le New Jersey. Mais "elle cache aussi ce qui se passe à très courte distance. On ne peut pas avoir le beurre et l'argent du beurre".


Auteur: Internet

Info: https://www.quantamagazine.org/. Charlie Wood, september 17, 2020

 

Commentaires: 0

Ajouté à la BD par miguel