Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 94
Temps de recherche: 0.0758s

nano-monde relatif

Une expérience quantique montre que la réalité objective n'existe pas

Les faits alternatifs se répandent comme un virus dans la société. Aujourd'hui, il semble qu'ils aient même infecté la science, du moins le domaine quantique. Ce qui peut sembler contre-intuitif. Après tout, la méthode scientifique est fondée sur les notions de fiabilité d'observation, de mesure et de répétabilité. Un fait, tel qu'établi par une mesure, devrait être objectif, de sorte que tous les observateurs puissent en convenir.

Mais dans un article récemment publié dans Science Advances, nous montrons que, dans le micro-monde des atomes et des particules régi par les règles étranges de la mécanique quantique, deux observateurs différents ont droit à leurs propres faits. En d'autres termes, selon nos  meilleures théories des éléments constitutifs de la nature elle-même, les faits peuvent en fait être subjectifs.

Les observateurs sont des acteurs puissants dans le monde quantique. Selon la théorie, les particules peuvent se trouver dans plusieurs endroits ou états à la fois - c'est ce qu'on appelle une superposition. Mais curieusement, ce n'est le cas que lorsqu'elles ne sont pas observées. Dès que vous observez un système quantique, il choisit un emplacement ou un état spécifique, ce qui rompt la superposition. Le fait que la nature se comporte de cette manière a été prouvé à de multiples reprises en laboratoire, par exemple dans la célèbre expérience de la double fente.

En 1961, le physicien Eugene Wigner a proposé une expérience de pensée provocante. Il s'est demandé ce qui se passerait si l'on appliquait la mécanique quantique à un observateur qui serait lui-même observé. Imaginez qu'un ami de Wigner lance une pièce de monnaie quantique - qui se trouve dans une superposition de pile ou face - dans un laboratoire fermé. Chaque fois que l'ami lance la pièce, il obtient un résultat précis. On peut dire que l'ami de Wigner établit un fait : le résultat du lancer de la pièce est définitivement pile ou face.

Wigner n'a pas accès à ce fait de l'extérieur et, conformément à la mécanique quantique, il doit décrire l'ami et la pièce comme étant dans une superposition de tous les résultats possibles de l'expérience. Tout ça parce qu'ils sont " imbriqués " - connectés de manière effrayante au point que si vous manipulez l'un, vous manipulez également l'autre. Wigner peut maintenant vérifier en principe cette superposition à l'aide d'une "expérience d'interférence", un type de mesure quantique qui permet de démêler la superposition d'un système entier, confirmant ainsi que deux objets sont intriqués.

Lorsque Wigner et son ami compareront leurs notes par la suite, l'ami insistera sur le fait qu'ils ont observé des résultats précis pour chaque lancer de pièce. Wigner, cependant, ne sera pas d'accord lorsqu'il observera l'ami et la pièce dans une superposition. 

Voilà l'énigme. La réalité perçue par l'ami ne peut être réconciliée avec la réalité extérieure. À l'origine, Wigner ne considérait pas qu'il s'agissait d'un paradoxe, il affirmait qu'il serait absurde de décrire un observateur conscient comme un objet quantique. Cependant, il s'est ensuite écarté de cette opinion. De plus et, selon les canons officiels de mécanique quantique, la description est parfaitement valide.

L'expérience

Le scénario demeura longtemps une expérience de pensée intéressante. Mais reflètait-t-il la réalité ? Sur le plan scientifique, peu de progrès ont été réalisés à ce sujet jusqu'à très récemment, lorsque Časlav Brukner, de l'université de Vienne, a montré que, sous certaines hypothèses, l'idée de Wigner peut être utilisée pour prouver formellement que les mesures en mécanique quantique sont subjectives aux observateurs.

Brukner a proposé un moyen de tester cette notion en traduisant le scénario de l'ami de Wigner dans un cadre établi pour la première fois par le physicien John Bell en 1964.

Brukner a ainsi conçu deux paires de Wigner et de ses amis, dans deux boîtes distinctes, effectuant des mesures sur un état partagé - à l'intérieur et à l'extérieur de leur boîte respective. Les résultats pouvant  être récapitulés pour être finalement utilisés pour évaluer une "inégalité de Bell". Si cette inégalité est violée, les observateurs pourraient avoir des faits alternatifs.

Pour la première fois, nous avons réalisé ce test de manière expérimentale à l'université Heriot-Watt d'Édimbourg sur un ordinateur quantique à petite échelle, composé de trois paires de photons intriqués. La première paire de photons représente les pièces de monnaie, et les deux autres sont utilisées pour effectuer le tirage au sort - en mesurant la polarisation des photons - à l'intérieur de leur boîte respective. À l'extérieur des deux boîtes, il reste deux photons de chaque côté qui peuvent également être mesurés.

Malgré l'utilisation d'une technologie quantique de pointe, il a fallu des semaines pour collecter suffisamment de données à partir de ces seuls six photons afin de générer suffisamment de statistiques. Mais finalement, nous avons réussi à montrer que la mécanique quantique peut effectivement être incompatible avec l'hypothèse de faits objectifs - nous avions violé l'inégalité.

La théorie, cependant, repose sur quelques hypothèses. Notamment que les résultats des mesures ne sont pas influencés par des signaux se déplaçant à une vitesse supérieure à celle de la lumière et que les observateurs sont libres de choisir les mesures à effectuer. Ce qui peut être le cas ou non.

Une autre question importante est de savoir si les photons uniques peuvent être considérés comme des observateurs. Dans la proposition de théorie de Brukner, les observateurs n'ont pas besoin d'être conscients, ils doivent simplement être capables d'établir des faits sous la forme d'un résultat de mesure. Un détecteur inanimé serait donc un observateur valable. Et la mécanique quantique classique ne nous donne aucune raison de croire qu'un détecteur, qui peut être conçu comme aussi petit que quelques atomes, ne devrait pas être décrit comme un objet quantique au même titre qu'un photon. Il est également possible que la mécanique quantique standard ne s'applique pas aux grandes échelles de longueur, mais tester cela reste un problème distinct.

Cette expérience montre donc que, au moins pour les modèles locaux de la mécanique quantique, nous devons repenser notre notion d'objectivité. Les faits dont nous faisons l'expérience dans notre monde macroscopique semblent ne pas être menacés, mais une question majeure se pose quant à la manière dont les interprétations existantes de la mécanique quantique peuvent tenir compte des faits subjectifs.

Certains physiciens considèrent que ces nouveaux développements renforcent les interprétations qui autorisent plus d'un résultat pour une observation, par exemple l'existence d'univers parallèles dans lesquels chaque résultat se produit. D'autres y voient une preuve irréfutable de l'existence de théories intrinsèquement dépendantes de l'observateur, comme le bayésianisme quantique, dans lequel les actions et les expériences d'un agent sont au cœur de la théorie. D'autres encore y voient un indice fort que la mécanique quantique s'effondrera peut-être au-delà de certaines échelles de complexité.

Il est clair que nous avons là de profondes questions philosophiques sur la nature fondamentale de la réalité.

Quelle que soit la réponse, un avenir intéressant nous attend.

Auteur: Internet

Info: https://www.livescience.com/objective-reality-not-exist-quantum-physicists.html. Massimiliano Proietti et Alessandro Fedrizzi, 19 janvier 2022

 

Commentaires: 0

Ajouté à la BD par miguel

machine-homme

Les algorithmes traditionnels alimentent des outils de calcul compliqués comme l'apprentissage automatique (machine learning). Une nouvelle approche, appelée algorithmes avec prédictions, utilise la puissance de l'apprentissage automatique pour améliorer les algorithmes.

Les algorithmes - morceaux de code qui permettent aux programmes de trier, filtrer et combiner des données, entre autres choses - sont les outils standard de l'informatique moderne. Tels de minuscules engrenages dans une montre, les algorithmes exécutent des tâches bien définies au sein de programmes plus complexes.

Ils sont omniprésents, et c'est en partie pour cette raison qu'ils ont été minutieusement optimisés au fil du temps. Lorsqu'un programmeur doit trier une liste, par exemple, il se sert d'un algorithme de "tri" standard utilisé depuis des décennies.

Aujourd'hui, des chercheurs jettent un regard neuf sur les algorithmes traditionnels, en utilisant la branche de l'IA , donc du machine learning. Leur approche, appelée "algorithmes avec prédictions", tire parti des informations que les outils d'apprentissage automatique peuvent fournir sur les données traitées par les algorithmes traditionnels. Ces outils doivent, en quelque sorte, rajeunir la recherche sur les algorithmes de base.

L'apprentissage automatique et les algorithmes traditionnels sont "deux façons très différentes de calculer, et les algorithmes avec prédictions sont un moyen de les rapprocher", a déclaré Piotr Indyk, informaticien au Massachusetts Institute of Technology. "C'est un moyen de combiner ces deux fils conducteurs assez différents".

La récente explosion d'intérêt pour cette approche a commencé en 2018 avec un article de Tim Kraska, informaticien au MIT, et d'une équipe de chercheurs de Google. Dans cet article, les auteurs ont suggéré que l'apprentissage automatique pourrait améliorer un algorithme traditionnel bien étudié appelé filtre de Bloom, qui résout un problème simple mais aussi complexe et ardu.

Imaginez que vous dirigez le service informatique de votre entreprise et que vous devez vérifier si vos employés se rendent sur des sites web présentant un risque pour la sécurité. Naïvement, vous pourriez penser que vous devez vérifier chaque site qu'ils visitent en le comparant à une liste noire de sites connus. Si la liste est énorme (comme c'est probablement le cas pour les sites indésirables sur Internet), le problème devient lourd - on ne peut vérifier chaque site par rapport à une liste énorme dans le minuscule lapts de temps qui précède le chargement d'une page Internet.

Le filtre Bloom offre une solution, en permettant de vérifier rapidement et précisément si l'adresse d'un site particulier, ou URL, figure sur la liste noire. Pour ce faire, il comprime essentiellement l'énorme liste en une liste plus petite qui offre certaines garanties spécifiques.

Les filtres Bloom ne produisent jamais de faux négatifs : s'ils disent qu'un site est mauvais, il est mauvais. Cependant, ils peuvent produire des faux positifs, de sorte que vos employés ne pourront peut-être pas visiter des sites auxquels ils devraient avoir accès. Cela s'explique par le fait qu'ils s'agit d'une forme d'échange qui implique une certaine imprécision due à cette énorme quantité de données compressées -  astuce intitulée "compression avec perte". Plus les filtres Bloom compriment les données d'origine, moins ils sont précis, mais plus ils économisent de l'espace.

Pour un simple filtre Bloom, chaque site Web est également suspect jusqu'à confirmaton qu'il ne figure pas sur la liste. Mais tous les sites Web ne sont pas égaux : Certains ont plus de chances que d'autres de se retrouver sur une liste noire, simplement en raison de détails comme leur domaine ou les mots de leur URL. Les gens comprennent cela intuitivement, et c'est pourquoi vous lisez probablement les URL pour vous assurer qu'elles sont sûres avant de cliquer dessus.

L'équipe de Kraska a mis au point un algorithme qui peut également appliquer ce type de logique. Ils l'ont appelé "filtre de Bloom instruit" et il combine un petit filtre de Bloom avec un réseau neuronal récurrent (RNN), modèle de machine learning qui apprend à quoi ressemblent les URL malveillantes après avoir été exposées à des centaines de milliers de sites web sûrs et non sûrs.

Lorsque le filtre Bloom vérifie un site web, le RNN agit en premier et utilise son apprentissage pour déterminer si le site figure sur la liste noire. Si le RNN indique que le site figure sur la liste, le filtre Bloom appris le rejette. Mais si le RNN dit que le site n'est pas sur la liste, alors le petit filtre Bloom peut à son tour, faire une recherche précise, mais irréfléchie, dans ses sites compressés.

En plaçant le filtre Bloom à la fin du processus et en lui donnant le dernier mot, les chercheurs ont fait en sorte que les filtres Bloom instruits puissent toujours garantir l'absence de faux négatifs. Mais comme le RNN préfiltre les vrais positifs à l'aide de ce qu'il a appris, le petit filtre de Bloom agit davantage comme une sauvegarde, en limitant également ses faux positifs au minimum. Un site Web bénin qui aurait pu être bloqué par un filtre Bloom de plus grande taille peut désormais passer outre le "filtre Bloom iinstruit" plus précis. En fait, Kraska et son équipe ont trouvé un moyen de tirer parti de deux méthodes éprouvées, mais traditionnellement distinctes, d'aborder le même problème pour obtenir des résultats plus rapides et plus précis.

L'équipe de Kraska a démontré que la nouvelle approche fonctionnait, mais elle n'a pas formellement expliqué pourquoi. Cette tâche a été confiée à Michael Mitzenmacher, spécialiste des filtres de Bloom à l'université de Harvard, qui a trouvé l'article de Kraska "novateur et passionnant", mais aussi fondamentalement insatisfaisant. "Ils font des expériences en disant que leurs algorithmes fonctionnent mieux. Mais qu'est-ce que cela signifie exactement ?" a-t-il demandé. "Comment le savons-nous ?"

En 2019, Mitzenmacher a proposé une définition formelle d'un filtre de Bloom INSTRUIT et a analysé ses propriétés mathématiques, fournissant une théorie qui explique exactement comment il fonctionne. Et alors que Kraska et son équipe ont montré que cela pouvait fonctionner dans un cas, Mitzenmacher a prouvé que cela pouvait toujours fonctionner.

Mitzenmacher a également amélioré les filtres de Bloom appris. Il a montré que l'ajout d'un autre filtre de Bloom standard au processus, cette fois avant le RNN, peut pré-filtrer les cas négatifs et faciliter le travail du classificateur. Il a ensuite prouvé qu'il s'agissait d'une amélioration en utilisant la théorie qu'il a développée.

Les débuts des algorithmes avec prédiction ont suivi ce chemin cyclique : des idées novatrices, comme les filtres de Bloom appris, inspirent des résultats mathématiques rigoureux et une compréhension, qui à leur tour conduisent à d'autres idées nouvelles. Au cours des dernières années, les chercheurs ont montré comment intégrer les algorithmes avec prédictions dans les algorithmes d'ordonnancement, la conception de puces et la recherche de séquences d'ADN.

Outre les gains de performance, ce domaine fait également progresser une approche de l'informatique de plus en plus populaire : rendre les algorithmes plus efficaces en les concevant pour des utilisations typiques.

À l'heure actuelle, les informaticiens conçoivent souvent leurs algorithmes pour qu'ils réussissent dans le scénario le plus difficile, celui conçu par un adversaire qui tente de les faire échouer. Par exemple, imaginez que vous essayez de vérifier la sécurité d'un site web sur les virus informatiques. Le site est peut-être inoffensif, mais il contient le terme "virus informatique" dans l'URL et le titre de la page. La confusion est telle que même les algorithmes les plus sophistiqués ne savent plus où donner de la tête.

Indyk appelle cela une approche paranoïaque. "Dans la vie réelle, dit-il, les entrées ne sont généralement pas générées par des adversaires." La plupart des sites Web que les employés visitent, par exemple, ne sont pas aussi compliqués que notre hypothétique page de virus, et il est donc plus facile pour un algorithme de les classer. En ignorant les pires scénarios, les chercheurs peuvent concevoir des algorithmes adaptés aux situations qu'ils sont susceptibles de rencontrer. Par exemple, alors qu'à l'heure actuelle, les bases de données traitent toutes les données de la même manière, les algorithmes avec prédiction pourraient conduire à des bases de données qui structurent le stockage de leurs données en fonction de leur contenu et de leur utilisation.

Et ce n'est encore qu'un début, car les programmes qui utilisent l'apprentissage automatique pour améliorer leurs algorithmes ne le font généralement que de manière limitée. Comme le filtre de Bloom, la plupart de ces nouvelles structures n'intègrent qu'un seul élément d'apprentissage automatique. M. Kraska imagine un système entier construit à partir de plusieurs pièces distinctes, dont chacune repose sur des algorithmes avec des prédictions et dont les interactions sont régulées par des composants améliorés par les prédictions.

"Tirer parti de cela aura un impact sur de nombreux domaines".

Gageons qu'avec de tels systèmes, un site comme FLP se retrouve à peu près certain de ne jamais être accepté par un filtre de Bloom - ou un filtre de Bloom instruit. Qui sont - objectivement - des instruments de contrôle, et donc de fermeture.  (Note du traducteur).

Auteur: Internet

Info: Nick Thieme, https://www.quantamagazine.org, A I, Machine Learning Reimagines the Building Blocks of Computing, March 15, 2022. Trad Mg

[ censure numérique ] [ triage web ] [ citation s'appliquant à ce logiciel ]

 

Commentaires: 0

Ajouté à la BD par miguel

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

surnaturel

Les scientifiques ont-ils finalement démontré des phénomènes psychiques ? De nouvelles études montrent que les gens peuvent prévoir des événements futurs.
Dans "au travers du miroir" de Lewis Carroll, la reine blanche dit a Alice que dans son pays, la mémoire travaille dans deux sens. Non seulement la reine peut se rappeler de choses du passé, mais elle se rappelle également de "choses qui se produiront la semaine d'après." Alice essaye de discuter avec la reine, énonçant : "je suis sûr que la mienne ne va que dans un sens... je ne peut me rappeler de choses avant qu'elles ne se produisent." La reine répond, "c'est une sorte de faiblesse, si ta mémoire ne fonctionne qu'en arrière."
Combien nos vies seraient meilleures si nous pouvions vivre dans le royaume de la reine blanche, où notre mémoire travaillerait en arrière et en avant. Dans un tel monde, par exemple, on pourrais faire un examen et étudier après coup pour s'assurer qu'on l'a bien réussi dans le passé. Bon, la bonne nouvelle est que selon une série récente d'études scientifiques de Daryl Bem, nous vivons déjà dans pareil monde !
Le Dr.Bem, psychologue social à l'université de Cornell, a entrepris une série d'études qui seront bientôt publiées dans un des journaux de psychologie les plus prestigieux. Au travers de neuf expériences, Bem a examiné l'idée que notre cerveau a la capacité de réfléchir non seulement sur des expériences antérieures, mais peut également en prévoir de futures. Cette capacité de "voir" est souvent désignée comme phénomène psi.
Bien que des recherches antérieures aient été conduites sur de tel phénomènes - nous avons tous vu ces films où des personnes regardent fixement des cartes de Zener avec une étoile ou des lignes ondulées dessus - de telles études n'arrivent pas vraiment à atteindre le statut seuil "de recherche scientifique." Les études de Bem sont uniques du fait qu'elles présentent des méthodes scientifiques standard et se fondent sur des principes bien établis en psychologie. Cela donne essentiellement des résultats qui sont considérés comme valides et fiables en psychologie. Par exemple, l'étude améliore la mémoire, et facilite le temps de réponse - mais ici on inverse simplement l'ordre chronologique.
Par exemple, nous savons tous que répéter un ensemble de mots rend plus facile le fait de s'en souvenir dans l'avenir, mais si la répétition se produit après le rappel ?... Dans une des études, on a donné une liste de mots à lire à des étudiants et, après lecture de la liste, on les a confrontés à un test surprise pour voir de combien de mots ils se rappelaient. Ensuite, un ordinateur a aléatoirement choisi certains des mots sur la liste et on a demandé aux participants de les retaper plusieurs fois à la machine. Les résultats de l'étude ont montré que les étudiants étaient meilleurs pour se remémorer les mots apparus dans l'exercice qui avait suivi, donné par surprise et fait au hasard. Selon Bem, la pratique de ces mots après le test a permis d'une façon ou d'une autre aux participants "de revenir en arrière dans le temps pour faciliter le souvenir."
Dans une autre étude, Bem examiné si l'effet bien connu d'amorçage pouvait également être inversé. Dans une étude typique d'amorçage, on montre à des gens une photo et ils doivent rapidement indiquer si la photo représente une image négative ou positive. Si la photo est un chaton câlin, on appuie sur le bouton "positif" et si la photo représente des larves sur de la viande en décomposition, on appuie sur le bouton "négatif". Une recherche de masse a montré combien l'amorçage subliminal peut accélérer la capacité à classer ces photos. L'amorçage subliminal se produit quand un mot est clignoté sur l'écran tellement rapidement que le cerveau conscient ne l'identifie pas, mais le cerveau inconscient le fait. Ainsi on voit juste un flash, et si on vous demande de dire ce que vous avez vu, vous ne pouvez pas. Mais, profondément, votre cerveau inconscient a vu le mot et l'a traité. Dans l'étude d'amorçage, on constate uniformément que les gens qui s'amorcent avec un mot conformé à la valence de la photo la classeront par catégorie plus vite. Ainsi si on clignote rapidement le mot "heureux" avant l'image de chaton, la personne cliquera le bouton "positif" encore plus vite, mais on clignote à la place le mot "laid" avant, la personne prendra plus longtemps pour répondre. C'est parce que l'amorçage avec le mot "heureux" fait que l'esprit de la personne est prêt à recevoir un truc heureux.
Dans l'étude rétroactive d'amorçage de Bem, on a simplement inversé l'ordre du temps, faisant clignoter le mot amorcé après que la personne ait classé la photo. Ainsi on montre l'image du chaton, la personne sélectionne si elle est positive ou négative, et alors on choisit aléatoirement d'amorcer avec un bon ou mauvais mot. Les résultats ont prouvé que les gens sont plus rapides à classer des photos par catégorie quand elle était suivie d'un mot amorce cohérent. A tel point que non seulement le fait qu'on classe le chaton plus vite quand il est précédé par un bon mot, on le classera également plus vite par catégorie si il est suivit du bon mot après coup. C'est comme si, alors que les participants classaient la photo, leur cerveau savait quel mot viendrait après, qui facilite leur décision.
Voilà juste deux exemples des études que Bem conduit, mais les autres ont montrés des effets "rétroactifs" semblables. Les résultats suggèrent clairement que des gens moyens "non psychiques" semblent pouvoir prévoir des événement futurs.
La question qu'on peut se poser est "quel est l'ordre de grandeur de la différence ?" Ce fait d'étudier un essai après qu'il se soit produit, ou l'amorçage qu'on a eu avec un mot après avoir classé la photo donne un changement énorme, ou est-ce juste une légère bosse dans les statistiques ? Quelle est la taille de effet ?. Il est vrai que les tailles d'effet dans les études de Bem sont petites (par exemple, seulement légèrement plus grandes que la chance). Mais il y a plusieurs raisons pour lesquelles nous ne devons pas négliger ces résultats basés sur de petites, mais fortement conformées, tailles d'effet.
Tout d'abord, au travers ses études, Bem a constaté que certaines personnes ont des résultats plus forts que d'autres. En particulier les gens en grande quête de stimulus - aspect d'extraversion où les gens répondent plus favorablement aux nouveau stimulus. Pour des différences de l'ordre d'environ deux fois plus d'efficacité qu'une personne moyenne. Ceci suggère que des gens sont plus sensibles aux effets psi que d'autres.
Deuxièmement ces petites tailles d'effet ne sont pas rare en psychologie (et pour d'autres sciences). Par exemple la moyenne les études de Bem eut pour résultat des tailles d'effets assez petites, mais tout aussi grandes - ou plus grandes - que certains effets bien établis : lien entre l'aspirine et l'empêchement de crise cardiaque, prise de calcium et os améliorés, fumée et cancer du poumon, utilisation de condom et protection du HIV, etc.... Cohen précise que de telles tailles d'effet se produisent plus facilement quand on est dans les premiers stades d'exploration d'une matière, quand les scientifiques commencent juste à découvrir pourquoi l'effet se produit et quand il est le plus susceptible de se produire.
Ainsi si nous prenons ces phénomènes psi comme vrai, comment pouvons nous alors les expliquer sans jeter à la poubelle notre compréhension du temps et de la physique ? Bon, la vérité est que ces effets ressemblent vraiment beaucoup à ce que la physique moderne dit du temps et de l'espace. Par exemple, Einstein a cru que le seul acte d'observer quelque chose pouvait affecter cette chose là, phénomène qu'il appela "spooky action à distance."
De même, la physique quantique moderne a démontré que les particules légères semblent savoir ce qui se trouve en avant d'elles dans le temps et qu'elles ajusteront leur comportement en conséquence, quoique le futur événement ne se soit pas produit encore. Par exemple dans l'expérience classique "de la double fente" les physiciens ont découvert que les particules légères répondent différemment si elles sont observées. Mais en 1999, les chercheurs ont poussé cette expérience plus loin en se demandant "ce qui se produirait si l'observation avait lieu après que les particules légères aient été déployées. "Tout à fait curieusement, ils ont démontré que les particules agissaient de la même manière, comme si elles savaient qu'elles seraient observées plus tard..." même si cela ne s'était pas encore produit.
De tels effets, "dingues", avec le temps semblent contredire le bon sens et essayer de les comprendre peut donner un sacré mal de tête. Mais les physiciens ont simplement appris à l'accepter. Comme disait une fois le Dr. Chiao, physicien de Berkeley, au sujet de la mécanique quantique, "c'est complètement contre intuitif et extérieur à notre expérience journalière, mais nous (les physiciens) y sommes habitués"
Ainsi, alors que les humains perçoivent le temps comme linéaire, cela ne signifie pas nécessairement qu'il en soit ainsi. Donc, en tant que bons scientifiques, nous ne devrions pas nous laisser influencer par les préjugés sur ce que nous étudions, même si ces idées préconçues reflètent nos idées de base sur la façon dont le temps et l'espace fonctionnent.
Le travail du DR. Bem est un provocation pour la pensée, et comme toute science révolutionnaire est censée faire, il apporte plus de questions que de réponses. Si nous mettons entre parenthèses nos croyances sur le temps et acceptons que le cerveau est capable d'une prise sur le futur, la prochaine question est : comment le fait-il ?. Ce n'est pas parce que l'effet semble "surnaturel" que cela signifie que la cause le soit. Beaucoup de découvertes scientifiques furent considérées comme exotiques par le passé, convenant davantage à la science-fiction (par exemple : la terre est ronde, il y a des organismes microscopiques, etc...). Une recherche future est nécessaire pour explorer les causes exactes des effets de ces études
Comme beaucoup de nouvelles explorations en science, les résultats de Bem peuvent avoir un effet profond sur ce que nous savons et avons accepté comme "vrai". Mais pour certains d'entre vous, peut-être que ces effets ne sont pas une si grande surprise, parce que quelque part, profondément à l'intérieur, nous savons déjà que nous en aurions connaissance aujourd'hui !

Auteur: Internet

Info: Fortean Times, Octobre 11, 2010

[ sciences ] [ prémonition ]

 
Mis dans la chaine

Commentaires: 0

homme-machine

Un pas de géant pour une machine à jouer aux échecs

Le succès stupéfiant d’AlphaZero, un algorithme d’apprentissage profond, annonce une nouvelle ère de la compréhension – une ère qui, en ce qui concerne les humains, qui pourrait ne pas durer longtemps. Début décembre, des chercheurs de DeepMind, la société d’intelligence artificielle appartenant à la société mère de Google, Alphabet Inc. ont diffusé une dépêche depuis les zones avancées du monde des échecs.

Un an plus tôt, le 5 décembre 2017, l’équipe avait stupéfié ce monde des échecs en annonçant AlphaZero, un algorithme d’apprentissage machine qui maîtrisait non seulement les échecs mais aussi le shogi, ou échecs japonais, et le Go. L’algorithme a commencé sans aucune connaissance des jeux hormis leurs règles de base. Il a ensuite joué contre lui-même des millions de fois et a appris par essais et erreurs. Il a suffi de quelques heures pour que l’algorithme devienne le meilleur joueur, humain ou ordinateur, que le monde ait jamais vu.

Les détails des capacités d’AlphaZero et de son fonctionnement interne ont maintenant été officiellement examinés par des pairs et publiés dans la revue Science ce mois-ci. Le nouvel article aborde plusieurs critiques graves à l’égard de l’allégation initiale (entre autres choses, il était difficile de dire si AlphaZero jouait l’adversaire qu’il s’était choisi, une entité computationnelle nommée Stockfish, en toute équité). Considérez que ces soucis sont maintenant dissipés. AlphaZero ne s’est pas amélioré davantage au cours des douze derniers mois, mais la preuve de sa supériorité s’est bien renforcée. Il fait clairement montre d’un type d’intellect que les humains n’ont jamais vue auparavant, et que nous allons avoir à méditer encore longtemps.

Les échecs par ordinateur ont fait beaucoup de chemin au cours des vingt dernières années. En 1997, le programme de jeu d’échecs d’I.B.M., Deep Blue, a réussi à battre le champion du monde humain en titre, Garry Kasparov, dans un match en six parties. Rétrospectivement, il y avait peu de mystère dans cette réalisation. Deep Blue pouvait évaluer 200 millions de positions par seconde. Il ne s’est jamais senti fatigué, n’a jamais fait d’erreur de calcul et n’a jamais oublié ce qu’il pensait un instant auparavant.

Pour le meilleur et pour le pire, il a joué comme une machine, brutalement et matériellement. Il pouvait dépasser M. Kasparov par le calcul, mais il ne pouvait pas le dépasser sur le plan de la pensée elle-même. Dans la première partie de leur match, Deep Blue a accepté avec avidité le sacrifice d’une tour par M. Kasparov pour un fou, mais a perdu la partie 16 coups plus tard. La génération actuelle des programmes d’échecs les plus forts du monde, tels que Stockfish et Komodo, joue toujours dans ce style inhumain. Ils aiment à capturer les pièces de l’adversaire. Ils ont une défense d’acier. Mais bien qu’ils soient beaucoup plus forts que n’importe quel joueur humain, ces "moteurs" d’échecs n’ont aucune réelle compréhension du jeu. Ils doivent être instruits explicitement pour ce qui touche aux principes de base des échecs. Ces principes, qui ont été raffinés au fil de décennies d’expérience de grands maîtres humains, sont programmés dans les moteurs comme des fonctions d’év

aluation complexes qui indiquent ce qu’il faut rechercher dans une position et ce qu’il faut éviter : comment évaluer le degré de sécurité du roi, l’activité des pièces, la structure dessinée par les pions, le contrôle du centre de l’échiquier, et plus encore, comment trouver le meilleur compromis entre tous ces facteurs. Les moteurs d’échecs d’aujourd’hui, inconscients de façon innée de ces principes, apparaissent comme des brutes : extrêmement rapides et forts, mais sans aucune perspicacité.

Tout cela a changé avec l’essor du machine-learning. En jouant contre lui-même et en mettant à jour son réseau neuronal au fil de son apprentissage, AlphaZero a découvert les principes des échecs par lui-même et est rapidement devenu le meilleur joueur connu. Non seulement il aurait pu facilement vaincre tous les maîtres humains les plus forts – il n’a même pas pris la peine d’essayer – mais il a écrasé Stockfish, le champion du monde d’échecs en titre par ordinateur. Dans un match de cent parties contre un moteur véritablement impressionnant, AlphaZero a remporté vingt-huit victoires et fait soixante-douze matchs nuls. Il n’a pas perdu une seule partie.

Le plus troublant, c’est qu’AlphaZero semblait être perspicace. Il a joué comme aucun ordinateur ne l’a jamais fait, intuitivement et magnifiquement, avec un style romantique et offensif. Il acceptait de sacrifier des pions et prenait des risques. Dans certaines parties, cela paralysait Stockfish et il s’est joué de lui. Lors de son attaque dans la partie n°10, AlphaZero a replacé sa reine dans le coin du plateau de jeu de son propre côté, loin du roi de Stockfish, pas là où une reine à l’offensive devrait normalement être placée.

Et cependant, cette retraite inattendue s’avéra venimeuse : peu importe comment Stockfish y répondait, ses tentatives étaient vouées à l’échec. C’était presque comme si AlphaZero attendait que Stockfish se rende compte, après des milliards de calculs intensifs bruts, à quel point sa position était vraiment désespérée, pour que la bête abandonne toute résistance et expire paisiblement, comme un taureau vaincu devant un matador. Les grands maîtres n’avaient jamais rien vu de tel. AlphaZero avait la finesse d’un virtuose et la puissance d’une machine. Il s’agissait du premier regard posé par l’humanité sur un nouveau type prodigieux d’intelligence.

Lorsque AlphaZero fut dévoilé pour la première fois, certains observateurs se sont plaints que Stockfish avait été lobotomisé en ne lui donnant pas accès à son livre des ouvertures mémorisées. Cette fois-ci, même avec son livre, il a encore été écrasé. Et quand AlphaZero s’est handicapé en donnant dix fois plus de temps à Stockfish qu’à lui pour réfléchir, il a quand même démoli la bête.

Ce qui est révélateur, c’est qu’AlphaZero a gagné en pensant plus intelligemment, pas plus vite ; il n’a examiné que 60 000 positions par seconde, contre 60 millions pour Stockfish. Il était plus avisé, sachant ce à quoi on devait penser et ce qu’on pouvait ignorer. En découvrant les principes des échecs par lui-même, AlphaZero a développé un style de jeu qui "reflète la vérité profonde" du jeu plutôt que "les priorités et les préjugés des programmeurs", a expliqué M. Kasparov dans un commentaire qui accompagne et introduit l’article dans Science.

La question est maintenant de savoir si l’apprentissage automatique peut aider les humains à découvrir des vérités similaires sur les choses qui nous tiennent vraiment à coeur : les grands problèmes non résolus de la science et de la médecine, comme le cancer et la conscience ; les énigmes du système immunitaire, les mystères du génome.

Les premiers signes sont encourageants. En août dernier, deux articles parus dans Nature Medicine ont exploré comment l’apprentissage automatique pouvait être appliqué au diagnostic médical. Dans l’un d’entre eux, des chercheurs de DeepMind se sont associés à des cliniciens du Moorfields Eye Hospital de Londres pour mettre au point un algorithme d’apprentissage profond qui pourrait classer un large éventail de pathologies de la rétine aussi précisément que le font les experts humains (l’ophtalmologie souffre en effet d’une grave pénurie d’experts à même d’interpréter les millions de scans ophtalmologiques effectués chaque année en vue d’un diagnostic ; des assistants numériques intelligents pourraient apporter une aide énorme).

L’autre article concernait un algorithme d’apprentissage machine qui décide si un tomodensitogramme (CT scan) d’un patient admis en urgence montre des signes d’un accident vasculaire cérébral (AVC), ou d’une hémorragie intracrânienne ou encore d’un autre événement neurologique critique. Pour les victimes d’AVC, chaque minute compte ; plus le traitement tarde, plus le résultat clinique se dégrade. (Les neurologistes ont ce sombre dicton: "time is brain"). Le nouvel algorithme a étiqueté ces diagnostics et d’autres diagnostics critiques avec une précision comparable à celle des experts humains – mais il l’a fait 150 fois plus rapidement. Un diagnostic plus rapide pourrait permettre aux cas les plus urgents d’être aiguillés plus tôt, avec une vérification par un radiologiste humain.

Ce qui est frustrant à propos de l’apprentissage machine, cependant, c’est que les algorithmes ne peuvent pas exprimer ce qu’ils pensent. Nous ne savons pas pourquoi ils marchent, donc nous ne savons pas si on peut leur faire confiance. AlphaZero donne l’impression d’avoir découvert quelques principes importants sur les échecs, mais il ne peut pas partager cette compréhension avec nous. Pas encore, en tout cas. En tant qu’êtres humains, nous voulons plus que des réponses. Nous voulons de la perspicacité. Voilà qui va créer à partir de maintenant une source de tension dans nos interactions avec ces ordinateurs.

De fait, en mathématiques, c’est une chose qui s’est déjà produite depuis des années. Considérez le problème mathématique du "théorème des quatre couleurs", qui défie de longue date les cerveaux des mathématiciens. Il énonce que, sous certaines contraintes raisonnables, toute carte de pays contigus puisse toujours être coloriée avec seulement quatre couleurs, en n’ayant jamais deux fois la même couleur pour des pays adjacents.

Bien que le théorème des quatre couleurs ait été prouvé en 1977 avec l’aide d’un ordinateur, aucun humain ne pouvait vérifier toutes les étapes de la démonstration. Depuis lors, la preuve a été validée et simplifiée, mais il y a encore des parties qui impliquent un calcul de force brute, du genre de celui employé par les ancêtres informatiques d’AlphaZero qui jouent aux échecs. Ce développement a gêné de nombreux mathématiciens. Ils n’avaient pas besoin d’être rassurés que le théorème des quatre couleurs était vrai ; ils le croyaient déjà. Ils voulaient comprendre pourquoi c’était vrai, et cette démonstration ne les y a pas aidés.

Mais imaginez un jour, peut-être dans un avenir pas si lointain, où AlphaZero aura évolué vers un algorithme de résolution de problèmes plus général ; appelez-le AlphaInfinity. Comme son ancêtre, il aurait une perspicacité suprême : il pourrait trouver de belles démonstrations, aussi élégantes que les parties d’échecs qu’AlphaZero jouait contre Stockfish. Et chaque démonstration révélerait pourquoi un théorème était vrai ; l’AlphaInfinity ne vous l’enfoncerait pas juste dans la tête avec une démonstration moche et ardue.

Pour les mathématiciens et les scientifiques humains, ce jour marquerait l’aube d’une nouvelle ère de perspicacité. Mais ça ne durera peut-être pas. Alors que les machines deviennent de plus en plus rapides et que les humains restent en place avec leurs neurones fonctionnant à des échelles de temps de quelques millisecondes, un autre jour viendra où nous ne pourrons plus suivre. L’aube de la perspicacité humaine peut rapidement se transformer en crépuscule.

Supposons qu’il existe des régularités ou des modèles plus profonds à découvrir – dans la façon dont les gènes sont régulés ou dont le cancer progresse ; dans l’orchestration du système immunitaire ; dans la danse des particules subatomiques. Et supposons que ces schémas puissent être prédits, mais seulement par une intelligence bien supérieure à la nôtre. Si AlphaInfinity pouvait les identifier et les comprendre, cela nous semblerait être un oracle.

Nous nous assiérions à ses pieds et écouterions attentivement. Nous ne comprendrions pas pourquoi l’oracle a toujours raison, mais nous pourrions vérifier ses calculs et ses prédictions par rapport aux expériences et aux observations, et confirmer ses révélations. La science, cette entreprise de l’homme qui le caractérise par-dessus tout, aurait réduit notre rôle à celui de spectateurs, bouches bées dans l’émerveillement et la confusion.

Peut-être qu’un jour, notre manque de perspicacité ne nous dérangerait plus. Après tout, AlphaInfinity pourrait guérir toutes nos maladies, résoudre tous nos problèmes scientifiques et faire arriver tous nos autres trains intellectuels à l’heure avec succès. Nous nous sommes assez bien débrouillés sans trop de perspicacité pendant les quelque 300.000 premières années de notre existence en tant qu’Homo sapiens. Et nous ne manquerons pas de mémoire : nous nous souviendrons avec fierté de l’âge d’or de la perspicacité humaine, cet intermède glorieux, long de quelques milliers d’années, entre un passé où nous ne pouvions rien appréhender et un avenir où nous ne pourrons rien comprendre.

Auteur: Strogatz Steven

Info: Infinite Powers : How Calculus Reveals the Secrets of the Universe, dont cet essai est adapté sur le blog de Jorion

[ singularité ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Les particules quantiques ne tournent pas. Alors d'où vient leur spin ?

Le fait que les électrons possèdent la propriété quantique du spin est essentiel pour notre monde tel que nous le connaissons. Pourtant, les physiciens ne pensent pas que ces particules tournent réellement. 

Les électrons sont des petits magiciens compétents. Ils semblent voltiger autour d'un atome sans suivre de chemin particulier, ils semblent souvent être à deux endroits à la fois, et leur comportement dans les micropuces en silicium alimente l'infrastructure informatique du monde moderne. Mais l'un de leurs tours les plus impressionnants est faussement simple, comme toute bonne magie. Les électrons semblent toujours tourner. Tous les électrons jamais observés, qu'ils se déplacent sur un atome de carbone dans votre ongle ou qu'ils se déplacent à toute vitesse dans un accélérateur de particules, ont l'air de faire constamment de petites pirouettes en se déplaçant dans le monde. Sa rotation ne semble jamais ralentir ou accélérer. Peu importe comment un électron est bousculé ou frappé, il semble toujours tourner à la même vitesse. Il possède même un petit champ magnétique, comme devrait le faire un objet en rotation doté d'une charge électrique. Naturellement, les physiciens appellent ce comportement "spin".

Mais malgré les apparences, les électrons ne tournent pas. Ils ne peuvent pas tourner. Prouver qu'il est impossible que les électrons tournent est un problème standard dans tout cours d'introduction à la physique quantique. Si les électrons tournaient suffisamment vite pour expliquer tout le comportement de rotation qu'ils affichent, leurs surfaces se déplaceraient beaucoup plus vite que la vitesse de la lumière (si tant est qu'ils aient des surfaces). Ce qui est encore plus surprenant, c'est que pendant près d'un siècle, cette contradiction apparente a été ignorée par la plupart des physiciens comme étant une autre caractéristique étrange du monde quantique, qui ne mérite pas qu'on s'y attarde.

Pourtant, le spin est profondément important. Si les électrons ne semblaient pas tourner, votre chaise s'effondrerait pour ne plus représenter qu'une fraction minuscule de sa taille. Vous vous effondreriez aussi - et ce serait le moindre de vos problèmes. Sans le spin, c'est tout le tableau périodique des éléments qui s'effondrerait, et toute la chimie avec. En fait, il n'y aurait pas de molécules du tout. Le spin n'est donc pas seulement l'un des meilleurs tours de magie des électrons, c'est aussi l'un des plus importants. Et comme tout bon magicien, les électrons n'ont jamais dit à personne comment ils faisaient ce tour. Mais aujourd'hui, une nouvelle explication du spin est peut-être en train de se profiler à l'horizon, une explication qui tire le rideau et montre comment la magie opère.

UNE DÉCOUVERTE VERTIGINEUSE

La rotation a toujours été une source de confusion. Même les premières personnes qui ont développé l'idée du spin pensaient qu'elle devait être fausse. En 1925, deux jeunes physiciens hollandais, Samuel Goudsmit et George Uhlenbeck, s'interrogeaient sur les derniers travaux du célèbre (et célèbre) physicien Wolfgang Pauli. Pauli, dans une tentative d'expliquer la structure des spectres atomiques et du tableau périodique, avait récemment postulé que les électrons avaient une "double valeur non descriptible classiquement". Mais Pauli n'avait pas dit à quelle propriété physique de l'électron sa nouvelle valeur correspondait, et Goudsmit et Uhlenbeck se demandaient ce que cela pouvait être.

Tout ce qu'ils savaient - tout le monde le savait à l'époque - c'est que la nouvelle valeur de Pauli était associée à des unités discrètes d'une propriété bien connue de la physique newtonienne classique, appelée moment angulaire. Le moment angulaire est simplement la tendance d'un objet en rotation à continuer de tourner. C'est ce qui fait que les toupies tournent et que les bicyclettes restent droites. Plus un objet tourne vite, plus il a de moment cinétique, mais la forme et la masse de l'objet ont aussi leur importance. Un objet plus lourd a plus de moment cinétique qu'un objet plus léger qui tourne aussi vite, et un objet qui tourne avec plus de masse sur les bords a plus de moment cinétique que si sa masse était concentrée en son centre.

Les objets peuvent avoir un moment angulaire sans tourner. Tout objet qui tourne autour d'un autre objet, comme la Terre qui tourne autour du soleil ou un trousseau de clés qui se balance autour de votre doigt sur un cordon, a un certain moment angulaire. Mais Goudsmit et Uhlenbeck savaient que ce type de moment angulaire ne pouvait pas être la source du nouveau nombre de Pauli. Les électrons semblent effectivement se déplacer autour du noyau atomique, retenus par l'attraction entre leur charge électrique négative et l'attraction positive des protons du noyau. Mais le moment angulaire que ce mouvement leur confère était déjà bien pris en compte et ne pouvait pas être le nouveau nombre de Pauli. Les physiciens savaient également qu'il existait déjà trois nombres associés à l'électron, qui correspondaient aux trois dimensions de l'espace dans lesquelles il pouvait se déplacer. Un quatrième nombre signifiait une quatrième façon dont l'électron pouvait se déplacer. Les deux jeunes physiciens pensaient que la seule possibilité était que l'électron lui-même tourne, comme la Terre qui tourne sur son axe autour du soleil. Si les électrons pouvaient tourner dans l'une des deux directions - dans le sens des aiguilles d'une montre ou dans le sens inverse - cela expliquerait la "bivalence" de Pauli.

Excités, Goudsmit et Uhlenbeck rédigent leur nouvelle idée et la montrent à leur mentor, Paul Ehrenfest. Ehrenfest, un ami proche d'Einstein et un formidable physicien à part entière, trouve l'idée intrigante. Tout en la considérant, il dit aux deux jeunes hommes enthousiastes d'aller consulter quelqu'un de plus âgé et de plus sage : Hendrik Antoon Lorentz, le grand manitou de la physique néerlandaise, qui avait anticipé une grande partie du développement de la relativité restreinte deux décennies plus tôt et qu'Einstein lui-même tenait en très haute estime.

Mais Lorentz est moins impressionné par l'idée de spin qu'Ehrenfest. Comme il l'a fait remarquer à Uhlenbeck, on sait que l'électron est très petit, au moins 3 000 fois plus petit qu'un atome - et on sait déjà que les atomes ont un diamètre d'environ un dixième de nanomètre, soit un million de fois plus petit que l'épaisseur d'une feuille de papier. L'électron étant si petit, et sa masse encore plus petite - un milliardième de milliardième de milliardième de gramme - il était impossible qu'il tourne assez vite pour fournir le moment angulaire que Pauli et d'autres recherchaient. En fait, comme Lorentz l'a dit à Uhlenbeck, la surface de l'électron devrait se déplacer dix fois plus vite que la vitesse de la lumière, une impossibilité absolue.

Défait, Uhlenbeck retourne voir Ehrenfest et lui annonce la nouvelle. Il demande à Ehrenfest de supprimer l'article, mais on lui répond qu'il est trop tard, car son mentor a déjà envoyé l'article pour publication. "Vous êtes tous les deux assez jeunes pour pouvoir vous permettre une stupidité", a dit Ehrenfest. Et il avait raison. Malgré le fait que l'électron ne pouvait pas tourner, l'idée du spin était largement acceptée comme correcte, mais pas de la manière habituelle. Plutôt qu'un électron qui tourne réellement, ce qui est impossible, les physiciens ont interprété la découverte comme signifiant que l'électron portait en lui un certain moment angulaire intrinsèque, comme s'il tournait, même s'il ne pouvait pas le faire. Néanmoins, l'idée était toujours appelée "spin", et Goudsmit et Uhlenbeck ont été largement salués comme les géniteurs de cette idée.

Le spin s'est avéré crucial pour expliquer les propriétés fondamentales de la matière. Dans le même article où il avait proposé son nouveau nombre à deux valeurs, Pauli avait également suggéré un "principe d'exclusion", à savoir que deux électrons ne pouvaient pas occuper exactement le même état. S'ils le pouvaient, alors chaque électron d'un atome tomberait simplement dans l'état d'énergie le plus bas, et pratiquement tous les éléments se comporteraient presque exactement de la même manière les uns que les autres, détruisant la chimie telle que nous la connaissons. La vie n'existerait pas. L'eau n'existerait pas. L'univers serait simplement rempli d'étoiles et de gaz, dérivant dans un cosmos ennuyeux et indifférent sans rencontrer la moindre pierre. En fait, comme on l'a compris plus tard, toute matière solide, quelle qu'elle soit, serait instable. Bien que l'idée de Pauli soit clairement correcte, la raison pour laquelle les électrons ne pouvaient pas partager des états n'était pas claire. Comprendre l'origine du principe d'exclusion de Pauli permettrait d'expliquer tous ces faits profonds de la vie quotidienne.

La réponse à cette énigme se trouvait dans le spin. On découvrit bientôt que le spin était une propriété de base de toutes les particules fondamentales, et pas seulement des électrons, et qu'il était étroitement lié au comportement de ces particules en groupes. En 1940, Pauli et le physicien suisse Markus Fierz ont prouvé que lorsque la mécanique quantique et la relativité restreinte d'Einstein étaient combinées, cela conduisait inévitablement à un lien entre le spin et le comportement statistique des groupes. Le principe d'exclusion de Pauli n'était qu'un cas particulier de ce théorème de la statistique du spin, comme on l'a appelé. Ce théorème est un "fait puissant sur le monde", comme le dit le physicien Michael Berry. "Il est à la base de la chimie, de la supraconductivité, c'est un fait très fondamental". Et comme tant d'autres faits fondamentaux en physique, le spin s'est avéré utile sur le plan technologique également. Dans la seconde moitié du XXe siècle, le spin a été exploité pour développer des lasers, expliquer le comportement des supraconducteurs et ouvrir la voie à la construction d'ordinateurs quantiques.

VOIR AU-DELÀ DU SPIN

Mais toutes ces fabuleuses découvertes, applications et explications laissent encore sur la table la question de Goudsmit et Uhlenbeck : qu'est-ce que le spin ? Si les électrons doivent avoir un spin, mais ne peuvent pas tourner, alors d'où vient ce moment angulaire ? La réponse standard est que ce moment est simplement inhérent aux particules subatomiques et ne correspond à aucune notion macroscopique de rotation.

Pourtant, cette réponse n'est pas satisfaisante pour tout le monde. "Je n'ai jamais aimé l'explication du spin donnée dans un cours de mécanique quantique", déclare Charles Sebens, philosophe de la physique à l'Institut de technologie de Californie. On vous le présente et vous vous dites : "C'est étrange. Ils agissent comme s'ils tournaient, mais ils ne tournent pas vraiment ? Je suppose que je peux apprendre à travailler avec ça". Mais c'est étrange."

Récemment, cependant, Sebens a eu une idée. "Dans le cadre de la mécanique quantique, il semble que l'électron ne tourne pas", dit-il. Mais, ajoute-t-il, "la mécanique quantique n'est pas notre meilleure théorie de la nature. La théorie des champs quantiques est une théorie plus profonde et plus précise."

La théorie quantique des champs est l'endroit où le monde quantique des particules subatomiques rencontre l'équation la plus célèbre du monde : E = mc2, qui résume la découverte d'Einstein selon laquelle la matière peut se transformer en énergie et vice versa. (La théorie quantique des champs est également à l'origine du théorème de la statistique du spin). C'est à partir de cette propriété que lorsque des particules subatomiques interagissent, de nouvelles particules sont souvent créées à partir de leur énergie, et les particules existantes peuvent se désintégrer en quelque chose d'autre. La théorie quantique des champs traite ce phénomène en décrivant les particules comme provenant de champs qui imprègnent tout l'espace-temps, même l'espace vide. Ces champs permettent aux particules d'apparaître et de disparaître, conformément aux règles strictes de la relativité restreinte d'Einstein et aux lois probabilistes du monde quantique.

Et ce sont ces champs, selon Sebens, qui pourraient contenir la solution à l'énigme du spin. "L'électron est habituellement considéré comme une particule", explique-t-il. "Mais dans la théorie quantique des champs, pour chaque particule, il existe une façon de la considérer comme un champ." En particulier, l'électron peut être considéré comme une excitation dans un champ quantique connu sous le nom de champ de Dirac, et ce champ pourrait être ce qui porte le spin de l'électron. "Il y a une véritable rotation de l'énergie et de la charge dans le champ de Dirac", dit Sebens. Si c'est là que réside le moment angulaire, le problème d'un électron tournant plus vite que la vitesse de la lumière disparaît ; la région du champ portant le spin de l'électron est bien plus grande que l'électron supposé ponctuel lui-même. Ainsi, selon Sebens, d'une certaine manière, Pauli et Lorentz avaient à moitié raison : il n'y a pas de particule qui tourne. Il y a un champ tournant, et c'est ce champ qui donne naissance aux particules.

UNE QUESTION SANS RÉPONSE ?

Jusqu'à présent, l'idée de Sebens a produit quelques remous, mais pas de vagues. Pour ce qui est de savoir si les électrons tournent, "je ne pense pas qu'il s'agisse d'une question à laquelle on puisse répondre", déclare Mark Srednicki, physicien à l'université de Californie à Santa Barbara. "Nous prenons un concept qui trouve son origine dans le monde ordinaire et nous essayons de l'appliquer à un endroit où il ne s'applique plus vraiment. Je pense donc que ce n'est vraiment qu'une question de choix, de définition ou de goût pour dire que l'électron tourne vraiment." Hans Ohanian, physicien à l'université du Vermont qui a réalisé d'autres travaux sur le spin des électrons, souligne que la version originale de l'idée de Sebens ne fonctionne pas pour l'antimatière.

Mais tous les physiciens ne sont pas aussi dédaigneux. Selon Sean Carroll, physicien à l'université Johns Hopkins et à l'Institut Santa Fe, "la formulation conventionnelle de notre réflexion sur le spin laisse de côté un élément potentiellement important". "Sebens est tout à fait sur la bonne voie, ou du moins fait quelque chose de très, très utile dans le sens où il prend très au sérieux l'aspect champ de la théorie quantique des champs." Mais, souligne Carroll, "les physiciens sont, au fond, des pragmatiques..... Si Sebens a raison à 100 %, les physiciens vous diront : "D'accord, mais qu'est-ce que cela m'apporte ?"

Doreen Fraser, philosophe de la théorie des champs quantiques à l'université de Waterloo, au Canada, se fait l'écho de ce point de vue. "Je suis ouverte à ce projet que Sebens a de vouloir forer plus profondément pour avoir une sorte d'intuition physique pour aller avec le spin", dit-elle. "Vous avez cette belle représentation mathématique ; vous voulez avoir une image physique intuitive pour l'accompagner." En outre, une image physique pourrait également déboucher sur de nouvelles théories ou expériences qui n'ont jamais été réalisées auparavant. "Pour moi, ce serait le test pour savoir si c'est une bonne idée."

Il est trop tôt pour dire si les travaux de M. Sebens porteront ce genre de fruits. Et bien qu'il ait rédigé un article sur la manière de résoudre la préoccupation d'Ohanian concernant l'antimatière, d'autres questions connexes restent en suspens. "Il y a beaucoup de raisons d'aimer" l'idée du champ, dit Sebens. "Je prends cela plus comme un défi que comme un argument massue contre elle."

Auteur: Becker Adam

Info: Scientific American, November 22, 2022

[ approfondissement ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

transgressions verbales

Avant même de parler, nous jurions.

Furieux de ce qu'il considère comme une pandémie virtuelle de vulgarité verbale émanant de personnalités aussi diverses que Howard Stern, Bono de U2 et Robert Novak, le Sénat des États-Unis est sur le point d'examiner un projet de loi qui augmenterait fortement les sanctions pour obscénité à l'antenne.

En multipliant par quinze les amendes qui seraient infligées aux radiodiffuseurs contrevenants, pour atteindre un montant d'environ 500 000 dollars par diffusion de grossièretés, et en menaçant de révoquer les licences des contrevenants récidivistes, le Sénat cherche à redonner à la place publique la teneur plus douce d'antan, lorsque l'on entendait rarement des propos calomnieux et que les célébrités n'étaient pas grossières à longueur de journée.

Pourtant, les chercheurs qui étudient l'évolution du langage et la psychologie des jurons disent qu'ils n'ont aucune idée du modèle mystique de gentillesse linguistique que les critiques pourraient avoir en tête. Le juron, disent-ils, est un universel humain. Toutes les langues, tous les dialectes et tous les patois étudiés, vivants ou morts, parlés par des millions de personnes ou par une petite tribu, ont leur part d'interdits, une variante de la célèbre liste des sept gros mots qui ne doivent pas être prononcés à la radio ou à la télévision, établie par le comédien George Carlin.

Les jeunes enfants mémorisent cet inventaire illicite bien avant d'en saisir le sens, explique John McWhorter, spécialiste de la linguistique au Manhattan Institute et auteur de "The Power of Babel", et les géants de la littérature ont toujours construit leur art sur sa colonne vertébrale.

"Le dramaturge jacobéen Ben Jonson a parsemé ses pièces de fackings et de "Culs peremptoirs", et Shakespeare ne pouvait guère écrire une strophe sans insérer des blasphèmes de l'époque comme "zounds" ou "sblood" - contractions offensantes de "God's wounds" et "God's blood" - ou autre étonnant  jeu de mots sexuel.

Le titre "Much Ado About Nothing", dit son auteur le Dr McWhorter, est un jeu de mots sur "Much Ado About an O Thing", le O thing étant une référence aux organes génitaux féminins.

Même la quintessence du bon livre abonde en passages coquins comme les hommes de II Kings 18:27 qui, comme le dit la traduction relativement douce du King James, "mangent leur propre merde et boivent leur propre pisse".

En fait, selon Guy Deutscher, linguiste à l'université de Leyde, aux Pays-Bas, et auteur de "The Unfolding of Language : An Evolutionary Tour of Mankind's Greatest Invention", les premiers écrits, qui datent d'il y a 5 000 ans, comportent leur lot de descriptions colorées de la forme humaine et de ses fonctions encore plus colorées. Et les écrits ne sont que le reflet d'une tradition orale qui, selon le Dr Deutscher et de nombreux autres psychologues et linguistes évolutionnistes, remonte à l'apparition du larynx humain, si ce n'est avant.

Certains chercheurs sont tellement impressionnés par la profondeur et la puissance du langage grossier qu'ils l'utilisent comme un judas dans l'architecture du cerveau, comme un moyen de sonder les liens enchevêtrés et cryptiques entre les nouvelles régions "supérieures" du cerveau chargées de l'intellect, de la raison et de la planification, et les quartiers neuronaux plus anciens et plus "bestiaux" qui donnent naissance à nos émotions.

Les chercheurs soulignent que le fait de jurer est souvent un amalgame de sentiments bruts et spontanés et de ruse ciblée, à la dérobée. Lorsqu'une personne en insulte une autre, disent-ils, elle crache rarement des obscénités et des insultes au hasard, mais évalue plutôt l'objet de son courroux et adapte le contenu de son explosion "incontrôlable" en conséquence.

Étant donné que l'injure fait appel aux voies de la pensée et des sentiments du cerveau dans une mesure à peu près égale et avec une ferveur facilement évaluable, les scientifiques affirment qu'en étudiant les circuits neuronaux qui la sous-tendent, ils obtiennent de nouvelles informations sur la façon dont les différents domaines du cerveau communiquent - et tout cela pour une réplique bien sentie.

D'autres chercheurs se sont penchés sur la physiologie de l'injure, sur la façon dont nos sens et nos réflexes réagissent à l'audition ou à la vue d'un mot obscène. Ils ont déterminé que le fait d'entendre un juron suscite une réaction littérale chez les gens. Lorsque des fils électrodermiques sont placés sur les bras et le bout des doigts d'une personne pour étudier les schémas de conductivité de sa peau et que les sujets entendent ensuite quelques obscénités prononcées clairement et fermement, les participants montrent des signes d'excitation instantanée. La conductivité de leur peau augmente, les poils de leurs bras se dressent, leur pouls s'accélère et leur respiration devient superficielle.

Il est intéressant de noter, selon Kate Burridge, professeur de linguistique à l'université Monash de Melbourne, en Australie, qu'une réaction similaire se produit chez les étudiants universitaires et d'autres personnes qui se targuent d'être instruites lorsqu'elles entendent des expressions de mauvaise grammaire ou d'argot qu'elles considèrent comme irritantes, illettrées ou déclassées.

"Les gens peuvent se sentir très passionnés par la langue, dit-elle, comme s'il s'agissait d'un artefact précieux qu'il faut protéger à tout prix contre les dépravations des barbares et des étrangers lexicaux." 

Le Dr Burridge et un collègue de Monash, Keith Allan, sont les auteurs de "Forbidden Words : Taboo and the Censoring of Language", qui sera publié au début de l'année prochaine par la Cambridge University Press.

Les chercheurs ont également découvert que les obscénités peuvent s'insinuer dans la peau d'une personne qui a la chair de poule, puis ne plus bouger. Dans une étude, les scientifiques ont commencé par le célèbre test de Stroop, qui consiste à montrer à des sujets une série de mots écrits en différentes couleurs et à leur demander de réagir en citant les couleurs des mots plutôt que les mots eux-mêmes.

Si les sujets voient le mot "chaise" écrit en lettres jaunes, ils sont censés dire "jaune".

Les chercheurs ont ensuite inséré un certain nombre d'obscénités et de vulgarités dans la gamme standard. En observant les réponses immédiates et différées des participants, les chercheurs ont constaté que, tout d'abord, les gens avaient besoin de beaucoup plus de temps pour triller les couleurs des mots d'injures que pour des termes neutres comme "chaise".

L'expérience de voir un texte titillant détournait manifestement les participants de la tâche de codage des couleurs. Pourtant, ces interpolations osées ont laissé des traces. Lors de tests de mémoire ultérieurs, les participants ont non seulement été beaucoup plus aptes à se souvenir des vilains mots que des mots neutres, mais cette supériorité s'appliquait également aux teintes des mots vilains, ainsi qu'à leur sens.

Oui, il est difficile de travailler dans la pénombre des ordures idiomatiques. Dans le cadre d'une autre étude, des chercheurs ont demandé à des participants de parcourir rapidement des listes de mots contenant des obscénités, puis de se souvenir du plus grand nombre possible de ces mots. Là encore, les sujets se sont montrés plus aptes à se remémorer les injures, et moins aptes à se souvenir de tout ce qui était acceptable et qui précédait ou suivait les injures.

Pourtant, si le langage grossier peut donner un coup de fouet, il peut aussi aider à évacuer le stress et la colère. Dans certains contextes, la libre circulation d'un langage grossier peut signaler non pas l'hostilité ou une pathologie sociale, mais l'harmonie et la tranquillité.

"Des études montrent que si vous êtes avec un groupe d'amis proches, plus vous êtes détendu, plus vous jurez", a déclaré le Dr Burridge. "C'est une façon de dire : 'Je suis tellement à l'aise ici que je peux me défouler. Je peux dire ce que je veux".

Il est également prouvé que les jurons peuvent être un moyen efficace d'évacuer l'agressivité et de prévenir ainsi la violence physique.

Avec l'aide d'une petite armée d'étudiants et de volontaires, Timothy B. Jay, professeur de psychologie au Massachusetts College of Liberal Arts à North Adams et auteur de "Cursing in America" et "Why We Curse", a exploré en détail la dynamique du juron.

Les enquêteurs ont découvert, entre autres, que les hommes jurent généralement plus que les femmes, à moins que ces dernières ne fassent partie d'une sororité, et que les doyens d'université jurent plus que les bibliothécaires ou les membres du personnel de la garderie universitaire.

Selon le Dr Jay, peu importe qui jure ou quelle est la provocation, la raison de l'éruption est souvent la même.

"À maintes reprises, les gens m'ont dit que le fait de jurer était pour eux un mécanisme d'adaptation, une façon de réduire le stress", a-t-il déclaré lors d'un entretien téléphonique. "C'est une forme de gestion de la colère qui est souvent sous-estimée".

En effet, les chimpanzés se livrent à ce qui semble être une sorte de match de jurons pour évacuer leur agressivité et éviter un affrontement physique potentiellement dangereux.

Frans de Waal, professeur de comportement des primates à l'université Emory d'Atlanta, a déclaré que lorsque les chimpanzés sont en colère, "ils grognent, crachent ou font un geste brusque et ascendant qui, si un humain le faisait, serait reconnu comme agressif".

Ces comportements sont des gestes de menace, a déclaré le professeur de Waal, et ils sont tous de bon augure.

"Un chimpanzé qui se prépare vraiment à se battre ne perd pas de temps avec des gestes, mais va tout simplement de l'avant et attaque". De la même manière, a-t-il ajouté, rien n'est plus mortel qu'une personne trop enragée pour utiliser des jurons, qui prend une arme à feu et commence à tirer sans bruit.

Les chercheurs ont également examiné comment les mots atteignent le statut de discours interdit et comment l'évolution du langage grossier affecte les couches plus lisses du discours civil empilées au-dessus. Ils ont découvert que ce qui est considéré comme un langage tabou dans une culture donnée est souvent un miroir des peurs et des fixations de cette culture.

"Dans certaines cultures, les jurons sont principalement liés au sexe et aux fonctions corporelles, tandis que dans d'autres, ils sont principalement liés au domaine de la religion", a déclaré le Dr Deutscher.

Dans les sociétés où la pureté et l'honneur des femmes sont d'une importance capitale, "il n'est pas surprenant que de nombreux jurons soient des variations sur le thème "fils de pute" ou fassent référence de manière imagée aux organes génitaux de la mère ou des sœurs de la personne concernée".

Le concept même de juron ou de serment trouve son origine dans la profonde importance que les cultures anciennes accordaient au fait de jurer au nom d'un ou de plusieurs dieux. Dans l'ancienne Babylone, jurer au nom d'un dieu était censé donner une certitude absolue contre le mensonge, a déclaré le Dr Deutscher, "et les gens croyaient que jurer faussement contre un dieu attirerait sur eux la terrible colère de ce dieu." La mise en garde contre tout abus du serment sacré se reflète dans le commandement biblique selon lequel il ne faut pas "prendre le nom du Seigneur en vain", et aujourd'hui encore, les témoins dans les tribunaux jurent sur la Bible qu'ils disent toute la vérité et rien que la vérité.

Chez les chrétiens, cette interdiction de prendre le nom du Seigneur en vain s'étendait à toute allusion désinvolte envers le fils de Dieu ou à ses souffrances corporelles - aucune mention du sang, des plaies ou du corps, et cela vaut aussi pour les savantes contractions. De nos jours, l'expression "Oh, golly !" peut être considérée comme presque comiquement saine, mais il n'en a pas toujours été ainsi. "Golly" est une compaction de "corps de Dieu" et, par conséquent, était autrefois un blasphème.

Pourtant, ni les commandements bibliques, ni la censure victorienne la plus zélée ne peuvent faire oublier à l'esprit humain son tourment pour son corps indiscipliné, ses besoins chroniques et embarrassants et sa triste déchéance. L'inconfort des fonctions corporelles ne dort jamais, a déclaré le Dr Burridge, et le besoin d'une sélection toujours renouvelée d'euphémismes sur des sujets sales a longtemps servi de moteur impressionnant à l'invention linguistique.

Lorsqu'un mot devient trop étroitement associé à une fonction corporelle spécifique, dit-elle, lorsqu'il devient trop évocateur de ce qui ne devrait pas être évoqué, il commence à entrer dans le domaine du tabou et doit être remplacé par un nouvel euphémisme plus délicat.

Par exemple, le mot "toilette" vient du mot français "petite serviette" et était à l'origine une manière agréablement indirecte de désigner l'endroit où se trouve le pot de chambre ou son équivalent. Mais depuis, le mot "toilettes" désigne le meuble en porcelaine lui-même, et son emploi est trop brutal pour être utilisé en compagnie polie. Au lieu de cela, vous demanderez à votre serveur en smoking de vous indiquer les toilettes pour dames ou les toilettes ou, si vous le devez, la salle de bains.

De même, le mot "cercueil" (coffin) désignait à l'origine une boîte ordinaire, mais une fois qu'il a été associé à la mort, c'en fut fini du "cercueil à chaussures" ou de la "pensée hors du cercueil". Selon le Dr Burridge, le sens tabou d'un mot "chasse toujours les autres sens qu'il aurait pu avoir".

Les scientifiques ont récemment cherché à cartographier la topographie neuronale du discours interdit en étudiant les patients atteints du syndrome de Tourette qui souffrent de coprolalie, l'envie pathologique et incontrôlable de jurer. Le syndrome de Gilles de la Tourette est un trouble neurologique d'origine inconnue qui se caractérise principalement par des tics moteurs et vocaux chroniques, une grimace constante ou le fait de remonter ses lunettes sur l'arête du nez, ou encore l'émission d'un flot de petits glapissements ou de grognements.

Seul un faible pourcentage des patients atteints de la maladie de Gilles de la Tourette sont atteints de coprolalie - les estimations varient de 8 à 30 % - et les patients sont consternés par les représentations populaires de la maladie de Gilles de la Tourette comme une affection humoristique et invariablement scatologique. Mais pour ceux qui souffrent de coprolalie, dit le Dr Carlos Singer, directeur de la division des troubles du mouvement à la faculté de médecine de l'université de Miami, ce symptôme est souvent l'aspect le plus dévastateur et le plus humiliant de leur maladie.

Non seulement il peut être choquant pour les gens d'entendre une volée de jurons jaillir sans raison apparente, parfois de la bouche d'un enfant ou d'un jeune adolescent, mais les jurons peuvent aussi être provocants et personnels, des insultes fleuries contre la race, l'identité sexuelle ou la taille d'un passant, par exemple, ou des références obscènes délibérées et répétées au sujet d'un ancien amant dans les bras d'un partenaire ou d'un conjoint actuel.

Dans un rapport publié dans The Archives of General Psychiatry, le Dr David A. Silbersweig, directeur du service de neuropsychiatrie et de neuro-imagerie du Weill Medical College de l'université Cornell, et ses collègues ont décrit leur utilisation de la TEP pour mesurer le débit sanguin cérébral et identifier les régions du cerveau qui sont galvanisées chez les patients atteints de la maladie de Tourette pendant les épisodes de tics et de coprolalie. Ils ont constaté une forte activation des ganglions de la base, un quatuor de groupes de neurones situés dans le cerveau antérieur, à peu près au niveau du milieu du front, connus pour aider à coordonner les mouvements du corps, ainsi qu'une activation des régions cruciales du cerveau antérieur arrière gauche qui participent à la compréhension et à la production du langage, notamment l'aire de Broca.

Les chercheurs ont également constaté l'activation de circuits neuronaux qui interagissent avec le système limbique, le trône des émotions humaines en forme de berceau, et, de manière significative, avec les domaines "exécutifs" du cerveau, où les décisions d'agir ou de s'abstenir d'agir peuvent être prises : la source neuronale, selon les scientifiques, de la conscience, de la civilité ou du libre arbitre dont les humains peuvent se prévaloir.

Selon le Dr Silbersweig, le fait que le superviseur exécutif du cerveau s'embrase lors d'une crise de coprolalie montre à quel point le besoin de dire l'indicible peut être un acte complexe, et pas seulement dans le cas du syndrome de Tourette. La personne est saisie d'un désir de maudire, de dire quelque chose de tout à fait inapproprié. Les circuits linguistiques d'ordre supérieur sont sollicités pour élaborer le contenu de la malédiction. Le centre de contrôle des impulsions du cerveau s'efforce de court-circuiter la collusion entre l'envie du système limbique et le cerveau néocortical, et il peut y parvenir pendant un certain temps. 

Mais l'envie monte, jusqu'à ce que les voies de la parole se déchaînent, que le verboten soit prononcé, et que les cerveaux archaïques et raffinés en portent la responsabilité.

Auteur: Angier Natalie

Info: The New York Times, 20 septembre 2005

[ vocables pulsions ] [ onomasiologie ] [ tiercités réflexes ] [ jargon reptilien ] [ verbe soupape ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel