Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 4
Temps de recherche: 0.033s

cosmos

L'univers est une vaste et étonnante dynamo bouillonnante qui n'a d'autre but que de continuer à tourbillonner. Des quarks aux quasars, il est vivant avec une puissance incroyable. Mais semble totalement indifférent à toute loi morale. Détruisant aussi aveuglément qu'il nourrit.

Auteur: Haught James A.

Info:

[ impersonnel ]

 

Commentaires: 0

Ajouté à la BD par miguel

science-religion

Celui par exemple qui voudrait se servir de ses certitudes sur la science contre l’Eglise pourrait actuellement se voir opposer cette devinette actuelle : quelle est l’Académie qui comporte en ce moment vingt-quatre prix Nobel ? Réponse : l’Académie pontificale des sciences, la Pontificia Academia Scienciarum ou Academie dei Lincei, fondée par un prince romain qui soutenait Galilée, tombée en sommeil, arrachée à son néant par Pie IX, la bête noire du 19e, restaurée, très active aujourd’hui et réunissait ce qu’il y a de plus compétent dans le monde pour discuter de la formation des galaxies, des neutrinos massifs, des quasars, etc.

Auteur: Muray Philippe

Info: Dans "Le 19e siècle à travers les âges", page 361

[ liens ] [ influence ] [ ironie ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

univers-bloc

Bohm pense que c'est pareil à notre propre niveau d'existence. L'espace n'est pas vide. Il est plein, en opposition à notre idée du vide, et il constitue le fondement de l'existence de tout, y compris de nous-mêmes. L'univers n'est pas séparé de cette mer cosmique d'énergie, il est une ondulation à sa surface, le "modèle d'une dynamique" relativement petit au sein d'un océan inimaginablement vaste. "Ce modèle est relativement autonome et donne lieu à des projections relativement répétitives, stables et distinctes dans un ordre de manifestation tridimensionnel", déclare Bohm. 

En d'autres termes, malgré son apparente matérialité et sa taille gigantesque, l'univers n'existe pas en soi, mais est l'enfant de quelque chose de beaucoup plus vaste et ineffable. Plus encore, il n'est même pas une production majeure de ce quelque chose de plus vaste, mais seulement une ombre passagère, un simple hoquet dans le grand schéma des choses. Cette mer infinie d'énergie n'est pas la totalité de ce qui est enveloppé dans l'ordre implicite. Parce que l'ordre implicite est le fondement qui a donné naissance à tout ce qui existe dans notre univers, il contient aussi, au minimum, chaque particule subatomique qui a été ou sera ; chaque configuration de matière, d'énergie, de vie et de conscience qui est possible, des quasars au cerveau de Shakespeare, de la double hélice aux forces qui contrôlent la taille et la forme des galaxies. Et même cela n'est pas tout ce qu'elle peut contenir. Bohm concède qu'il n'y a aucune raison de croire que l'ordre implicite est la fin des choses. Il peut y avoir d'autres ordres insoupçonnés au-delà, des étapes infinies de développement ultérieur."

Auteur: Talbot Michael Coleman

Info:

[ multivers ] [ niveaux vibratoires ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Mu: une constante fondamentale qui reste constante.
L'idée que les constantes fondamentales ne le soient pas réellement et dépendent de l'espace et du temps perturbe depuis longtemps l'esprit des physiciens. Mais, en observant la façon dont une galaxie lointaine absorbe la lumière d'un quasar, des chercheurs australiens viennent de déterminer une nouvelle limite sur l'évolution de l'une d'entre elles, Mu (µ), ratio entre les masses de l'électron et du proton, en fonction du temps. Leur résultat, qui est 10 fois plus précis que les mesures précédentes, confirme la compréhension scientifique actuelle de la physique.
Les scientifiques ont utilisé la lumière d'un quasar pour montrer qu'une des constantes fondamentales de la physique est très probablement restée constante à travers l'histoire de l'univers
Les constantes principales sont très finement ajustées à notre existence (ou vice-versa !) ; si l'interaction forte était ne serait-ce qu'un pour cent plus intense qu'elle ne l'est aujourd'hui, par exemple, le carbone ne pourrait pas être produit dans les étoiles, et nous ne serions pas là pour en parler. C'est une des raisons pour lesquelles de nombreux physiciens sont désireux de vérifier si certaines constantes fondamentales ont varié au cours de l'histoire de l'univers. L'une d'elles est µ, le ratio entre la masse de l'électron et celle du proton.
Habituellement, cette constante peut être calculée en analysant les données d'un télescope terrestre pointé sur un quasar, le noyau compact mais très lumineux d'une jeune galaxie, sorte de "phare" dans l'espace profond. Le spectre de la lumière des quasars couvre un large intervalle de longueurs d'onde, mais certaines d'entre elles peuvent être absorbées par des molécules situées au sein de galaxies plus anciennes lors du trajet de la lumière à travers le cosmos. Ces longueurs d'onde, apparaissant comme des raies d'absorption, correspondent à des molécules "excitées" à des niveaux plus élevés d'énergie et sont régies par µ. Comme la lumière des quasars peut mettre des milliards d'années pour parvenir sur Terre, la valeur de µ mesurée à partir de ces sources éloignées peut être comparée à sa valeur mesurée dans une expérience de laboratoire. On détermine ainsi si sa valeur s'est modifiée au cours du temps.
Victor Flambaum et Michael Kozlov, de l'université de Nouvelle Galle du Sud en Australie, ont rendu la technique plus précise en y incorporant l'analyse d'un "spectre d'inversion", produit quand les atomes des molécules absorbent la lumière et atteignent un niveau d'énergie plus élevé par effet tunnel. Comme la probabilité de l'effet tunnel dépend plus étroitement de µ que les raies d'absorption dans le spectre habituel, des variations de cette constante peuvent en être déduites plus précisément.
Flambaum et Kozlov ont utilisées des données existantes du radiotélescope d'Effelsberg en Allemagne concernant la lumière issue d'un quasar et traversant la galaxie B0218+357 à 6.5 milliards d'années-lumière de la terre, et ont analysé les deux types de spectres pour des molécules d'ammoniaque et d'autres comme celles d'oxyde de carbone. Ils ont ensuite comparé les spectres à ceux d'expériences actuelles de laboratoire et ont constaté que µ ne pouvait pas avoir diminué de plus de 4e-16, ni ne pouvait pas avoir augmenté de plus de 2e-16 par an ce qui représente une évaluation dix fois plus précise que les meilleures estimations antérieures.
L'année dernière un groupe, conduit par Wim Ubachs de l'université d'Amsterdam, avait trouvé, en utilisant la technique plus ancienne, que µ avait pu diminuer avec le temps. Si cela s'était confirmé, cela aurait signifié que les théories les plus fondamentales de la physique, comme celle de la relativité, auraient dû être reconsidérées. Flambaum a indiqué, cependant, que ses propres résultats, plus précis, prouvaient qu'il était peu probable que µ ait varié au cours du temps, et qu'ainsi notre compréhension actuelle de la physique était bonne. Le scientifique a ajouté que si plus de données pouvaient être rassemblées, sa technique d'analyse devrait permettre aux théoriciens de déterminer encore plus précisément les non-variations de µ.

Auteur: Internet

Info:

[ constantes ]

 

Commentaires: 0