Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 7
Temps de recherche: 0.0307s

exoplanète

Je veux que vous déterminiez s’ils sont vivants. Et, si oui, comment ils fonctionnent.

Ce ne sera pas une mince affaire.

Pourquoi ? Les biologistes ont bien compris comment fonctionnent les bactéries. Appliquez la même méthode avec ces choses.

Des milliers de scientifiques ont travaillé pendant deux siècles pour parvenir à ce résultat !

Eh bien ! Tâchez d’être plus rapide.

Auteur: Weir Andy

Info: Projet dernière chance

[ découverte ] [ injonction ] [ extraterrestre ] [ rencontre ] [ protistes ] [ vie inconnue ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

école

Je l’avoue volontiers : toute petite, déjà, je n’aimais pas trop les activités sportives… Mais il se trouve que j’étais toujours la plus grande (j’ai arrêté de grandir à l’âge de 12 ans), et qu’en plus de grimper volontiers à de très hauts arbres pour attraper des insectes, j’aimais battre la campagne. Résultat : j’avais une force physique plutôt démesurée. Et à chaque compétition sportive, pour mon plus grand malheur, c’est moi qu’on envoyait défendre "nos" couleurs. Saut en longueur et en hauteur, 100 mètres, basket, j’ai tout fait. Bien entendu, vivant à Hokkaidô, au nord du Japon, j’ai également été vivement encouragée à représenter mon école en patinage de vitesse. On louait mes aptitudes physiques alors que je voulais qu’une chose : qu’on me félicite pour mes dessins ou mes rédactions. Est-ce par haine viscérale de tout classement fondé sur les capacités physiques ou par dégoût de la tension propre à toute compétition ? Toujours est-il qu’à compter du collège, j’ai pris mes distances avec le sport.

Auteur: Yamazaki Mari

Info:

[ intérêt commun ] [ enfant poussé ] [ question ] [ capitalisme sociologique ] [ libération individuelle ]

 

Commentaires: 0

Ajouté à la BD par miguel

science-fiction

Au-delà de la banalité du mécanisme observé, cette race était étonnante.Vraiment.

En quelques générations les cerveaux-nez des spyrlouins avaient perdu trois quart de leur volume.

Un engrenage perdant-gagnant puisque cette régression physiologique - résultat  de leurs raffinées annexes technos destinées à fuir la réalité - mena petit à petit vers un abrutissement qui apporta une amélioration imprévue. Cette décroissance du nombre de neurones - due à des stimuli artificiels beaucoup trop étriqués par rapport à ceux de leur réalité source - facilita justement l'accès à cette dernière.

Dans ces univers vibratoires moyens-inférieurs, le temps, interminable, pèse lourd. Ainsi toute vitesse excessive des idées et des réflexions des secondéités locales - par rapport à leur monde décor - augmente leur souffrance. Tel était le cas des spyrlouins .

Le surprenant était de constater ce processus avec des êtres vivants : par la diminution du différentiel entre efficacité/vitesse de la pensée personnelle des indigènes avec la rapidité des interactions standards du réel d'où ils étaient issus, se produisait cet inattendu ré-équilibrage.

Qui amena une grosse diminution des déprimes et des maladie psycho-somatiques. 

Ces bestiaux fonctionnaient comme des robots.

Auteur: Mg

Info: 4 février 2021

[ monde astral ] [ psycho-sociologie ]

 
Commentaires: 13
Ajouté à la BD par miguel

nom-du-père

[Totem et tabou de Freud] n’est rien d’autre qu’un mythe moderne, un mythe construit pour expliquer ce qui restait béant dans sa doctrine, à savoir – Où est le père ?

[...] Totem et tabou est fait pour nous dire que, pour qu’il subsiste des pères, il faut que le vrai père, le seul père, le père unique, soit avant l’entrée dans l’histoire, et que ce soit le père mort. Bien plus – que ce soit le père tué. Et vraiment, comment cela serait-il même pensé en dehors de la valeur mythique ? Car, que je sache, le père dont il s’agit n’est pas conçu par Freud, ni par personne, comme un être immortel. Pourquoi faut-il que les fils aient en quelque sorte avancé sa mort ? Et tout cela, pour quel résultat ? Pour en fin de compte s’interdire à eux-mêmes ce qu’il s’agissait de lui ravir. On ne l’a tué que pour montrer qu’il est intuable.

L’essence du drame majeur que Freud introduit repose sur une notion strictement mythique, en tant qu’elle est la catégorisation même d’une forme de l’impossible, voire de l’impensable, à savoir l’éternisation d’un seul père à l’origine, dont les caractéristiques sont qu’il aura été tué. Et pourquoi, sinon pour le conserver ?

Auteur: Lacan Jacques

Info: dans le "Séminaire, Livre IV", "La relation d'objet", éditions du Seuil, 1994, page 291-292

[ clé de lecture ] [ explication ] [ signification ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

Éternel

Dieu est une maladie du cœur. Notre besoin de trouver de l'aide a conçu ce soutien incertain qui conforte les êtres faibles et impuissants dans leur faiblesse. Les forts — ceux qui portent sur leur dos leurs incertitudes, ceux qui ont du courage dans leur absence de fondement — se trouvent toujours en dehors de Lui ; ils vivent sans la superstition d'aucune majuscule. […] La diversité des formules par lesquelles nous exprimons le bien suprême reflète sous sa véracité apparente un même élan, en profondeur. Dieu ou les dieux ; l'État ou la civilisation ; l'autorité ou le progrès ; une nation, une classe ou bien un individu ; l'immortalité ou le paradis terrestre — autant de visage de l'éternel Veau d'or. Le désir d'isoler un concept hors d'une suite abstraite, ou bien un objet hors du monde concret, et de le couronner d'une majuscule, est le fruit d'une soif profonde ; son résultat : l'Histoire. De la chaîne universelle des êtres et des choses, quelqu'un ou quelque chose doit s'extraire et s'élever à l'indépendance ; il faut qu'un chaînon ne soit plus attaché aux autres. Ainsi le cœur proteste-t-il contre le déterminisme. Il crée un symbole de liberté dont tout dépend. De la sorte, il assure son confort dans le cosmos et trompe sa faiblesse. […] En Dieu nous ne faisons que fuir la lumière incurable et stérile de ce monde, nous nous réfugions dans une obscurité chaude et germinative, productive à l'infini et inaccessible, nous nous défendons contre les tentations qui nous mangent et nous rongent, qui nous révéleraient une vérité irrespirable et un ciel sans consolation. La force nous manque pour endurer l'épreuve des visions lucides. La santé parfaite de la raison qui en toute chose contemple le rien, l'esprit qui fraternise avec le vide à l'entour — sont fatals à l'âme. Aussi enfante-t-elle Dieu et tous ses succédanés terrestres, pour garder son équilibre, lequel n'est, à la lumière de la raison, que déficience et construction démente.

Auteur: Cioran Emil Michel

Info: Divagations

[ refuge ] [ réconfort ] [ illusion ] [ inutile ]

 

Commentaires: 0

Ajouté à la BD par miguel

humaine syntonisation

À la suite de Bernard d’Espagnat qui a proposé une interprétation permettant de résoudre les problèmes soulevés par la théorie des états relatifs d’Everett, j’ai développé une position, le solipsisme convivial, qui s’intègre dans le cadre de la théorie de la décohérence. Cette position suppose qu’on refuse de se placer dans le cadre du réalisme empirique pragmatique. Bien que défendant par ailleurs une position différente qu’il serait trop long de détailler ici, je me placerai ici dans le cadre du réalisme métaphysique.

La décohérence est alors le mécanisme qui explique l’apparence classique pour nous d’une réalité qui demeure essentiellement quantique, c’est-à-dire enchevêtrée. Le solipsisme convivial fait entrer l’observateur lui-même dans le grand système. Le raisonnement que nous avons décrit conduit alors à considérer que l’observateur est aussi dans un état enchevêtré avec le système, l’appareil et l’environnement. Du point de vue de la réalité profonde (et non de l’apparence de cette réalité pour nous), seule une fonction d’ondes globale superposée "existe". Dans cette fonction d’ondes, les différents résultats possibles de mesure sont présents et sont corrélés ainsi que tous les états correspondants de l’observateur. La décohérence intervient et permet de régler un certain nombre de problèmes que nous n’avons pas eu la possibilité d'évoquer : quelle est la grandeur mesurée par exemple, ce qui a pour effet de résoudre la difficulté que nous avons signalée à propos de l’interprétation d’Everett. Le solipsisme convivial consiste alors à considérer que la conscience de l’observateur est "accrochée" à l’une des branches de la fonction d’ondes ne lui permettant d’observer que la partie classique correspondante. La conscience joue en quelque sorte le rôle d’un filtre ne permettant de voir qu’une partie de la fonction d’ondes globale.

Une définition précise de ce processus permet de montrer que les prédictions habituelles de la mécanique quantique sont respectées malgré le fait que la fonction d’ondes n’est jamais rigoureusement réduite. Le point surprenant est alors que rien n’oblige deux observateurs différents à être accrochés à la même branche. Pour une mesure donnée, un observateur peut être accroché à la branche donnant le résultat A alors qu’un autre le sera à la branche donnant le résultat B. Comment peut-il en être ainsi alors qu’on sait que deux observateurs de la même expérience sont ”en général” d’accord sur le résultat ? La raison en est que la communication entre observateurs est elle-même un processus de mesure et que le mécanisme d’accrochage garantit la cohérence des observations pour un observateur.

Supposons qu’André a observé le résultat A et Bernard le résultat B. Les deux observations ne sont que l’accrochage de la conscience d’André et de Bernard à leur branche propre de la fonction d’ondes globale qui contient les deux possibilités. Si André demande à Bernard ce qu’il a vu, l’interaction entre André et Bernard qui en résulte contient la totalité des possibilités, donc à la fois une branche où Bernard répond A et une branche où Bernard répond B. La fonction d’ondes d’André sera après l’interaction avec Bernard dans un état enchevêtré contenant les deux réponses mais la conscience d’André s’accrochera à la branche correspondant à la réponse cohérente avec son observation précédente, il entendra donc Bernard répondre A conformément à son attente. C’est la raison pour laquelle cette interprétation porte le nom de solipsisme convivial : chaque observateur vit dans son monde qui peut être totalement différent de celui des autres, mais il n’existe aucun moyen de se rendre compte des désaccords et les observateurs sont en parfait accord. Ceci fournit une nouvelle explication de l’intersubjectivité : il n’y a aucun moyen de constater un désaccord.

Signalons pour terminer une conséquence étrange sur l’indéterminisme de la mécanique quantique. La fonction d’ondes de l’Univers évolue de manière parfaitement déterministe par l'équation de Schrödinger, seul le mécanisme d’accrochage tire au sort la branche à laquelle chaque observateur s’accroche. Ce n’est donc plus Dieu qui joue aux dés, c’est l’homme, mais avec le constat étrange que deux joueurs peuvent voir le même dé tomber sur une face différente. 

Auteur: Zwirn Hervé

Info: Mécanique quantique et connaissance du réel.

[ prospective scientifique ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel