Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 337
Temps de recherche: 0.0629s

legos protéiques

De nouveaux outils d’IA prédisent comment les blocs de construction de la vie s’assemblent

AlphaFold3 de Google DeepMind et d'autres algorithmes d'apprentissage profond peuvent désormais prédire la forme des complexes en interaction de protéines, d'ADN, d'ARN et d'autres molécules, capturant ainsi mieux les paysages biologiques des cellules.

Les protéines sont les machines moléculaires qui soutiennent chaque cellule et chaque organisme, et savoir à quoi elles ressemblent sera essentiel pour comprendre comment elles fonctionnent normalement et fonctionnent mal en cas de maladie. Aujourd’hui, les chercheurs ont fait un grand pas en avant vers cet objectif grâce au développement de nouveaux algorithmes d’apprentissage automatique capables de prédire les formes rdéployées et repliées non seulement des protéines mais aussi d’autres biomolécules avec une précision sans précédent.

Dans un article publié aujourd'hui dans Nature , Google DeepMind et sa société dérivée Isomorphic Labs ont annoncé la dernière itération de leur programme AlphaFold, AlphaFold3, capable de prédire les structures des protéines, de l'ADN, de l'ARN, des ligands et d'autres biomolécules, seuls ou liés ensemble dans différentes configurations. Les résultats font suite à une mise à jour similaire d'un autre algorithme de prédiction de structure d'apprentissage profond, appelé RoseTTAFold All-Atom, publié en mars dans Science .

Même si les versions précédentes de ces algorithmes pouvaient prédire la structure des protéines – une réussite remarquable en soi – elles ne sont pas allées assez loin pour dissiper les mystères des processus biologiques, car les protéines agissent rarement seules. "Chaque fois que je donnais une conférence AlphaFold2, je pouvais presque deviner quelles seraient les questions", a déclaré John Jumper, qui dirige l'équipe AlphaFold chez Google DeepMind. "Quelqu'un allait lever la main et dire : 'Oui, mais ma protéine interagit avec l'ADN.' Pouvez-vous me dire comment ?' " Jumper devrait bien admettre qu'AlphaFold2 ne connaissait pas la réponse.

Mais AlphaFold3 pourrait le faire. Avec d’autres algorithmes d’apprentissage profond émergents, il va au-delà des protéines et s’étend sur un paysage biologique plus complexe et plus pertinent qui comprend une bien plus grande diversité de molécules interagissant dans les cellules.

" On découvre désormais toutes les interactions complexes qui comptent en biologie ", a déclaré Brenda Rubenstein , professeure agrégée de chimie et de physique à l'Université Brown, qui n'a participé à aucune des deux études. " On commence à avoir une vision plus large."

Comprendre ces interactions est " fondamental pour la fonction biologique ", a déclaré Paul Adams , biophysicien moléculaire au Lawrence Berkeley National Laboratory qui n’a également participé à aucune des deux études. " Les deux groupes ont fait des progrès significatifs pour résoudre ce problème. "

Les deux algorithmes ont leurs limites, mais ils ont le potentiel d’évoluer vers des outils de prédiction encore plus puissants. Dans les mois à venir, les scientifiques commenceront à les tester et, ce faisant, ils révéleront à quel point ces algorithmes pourraient être utiles.

Progrès de l’IA en biologie

L’apprentissage profond est une variante de l’apprentissage automatique vaguement inspirée du cerveau humain. Ces algorithmes informatiques sont construits à l’aide de réseaux complexes de nœuds d’information (appelés neurones) qui forment des connexions en couches les unes avec les autres. Les chercheurs fournissent au réseau d’apprentissage profond des données d’entraînement, que l’algorithme utilise pour ajuster les forces relatives des connexions entre les neurones afin de produire des résultats toujours plus proches des exemples d’entraînement. Dans le cas des systèmes d'intelligence artificielle protéique, ce processus amène le réseau à produire de meilleures prédictions des formes des protéines sur la base de leurs données de séquence d'acides aminés.

AlphaFold2, sorti en 2021, a constitué une avancée majeure dans l’apprentissage profond en biologie. Il a ouvert la voie à un monde immense de structures protéiques jusque-là inconnues et est déjà devenu un outil utile pour les chercheurs qui cherchent à tout comprendre, depuis les structures cellulaires jusqu'à la tuberculose. Cela a également inspiré le développement d’outils supplémentaires d’apprentissage biologique profond. Plus particulièrement, le biochimiste David Baker et son équipe de l’Université de Washington ont développé en 2021 un algorithme concurrent appelé RoseTTAFold , qui, comme AlphaFold2, prédit les structures protéiques à partir de séquences de données.

Depuis, les deux algorithmes ont été mis à jour avec de nouvelles fonctionnalités. RoseTTAFold Diffusion pourrait être utilisé pour concevoir de nouvelles protéines qui n’existent pas dans la nature. AlphaFold Multimer pourrait étudier l’interaction de plusieurs protéines. " Mais ce que nous avons laissé sans réponse ", a déclaré Jumper, " était : comment les protéines communiquent-elles avec le reste de la cellule ? "

Le succès des premières itérations d'algorithmes d'apprentissage profond de prédiction des protéines reposait sur la disponibilité de bonnes données d'entraînement : environ 140 000 structures protéiques validées qui avaient été déposées pendant 50 ans dans la banque de données sur les protéines. De plus en plus, les biologistes ont également déposé les structures de petites molécules, d'ADN, d'ARN et leurs combinaisons. Dans cette expansion de l'algorithme d'AlphaFold pour inclure davantage de biomolécules, " la plus grande inconnue ", a déclaré Jumper, "est de savoir s'il y aurait suffisamment de données pour permettre à l'algorithme de prédire avec précision les complexes de protéines avec ces autres molécules."

Apparemment oui. Fin 2023, Baker puis Jumper ont publié les versions préliminaires de leurs nouveaux outils d’IA, et depuis, ils soumettent leurs algorithmes à un examen par les pairs.

Les deux systèmes d'IA répondent à la même question, mais les architectures sous-jacentes de leurs méthodes d'apprentissage profond diffèrent, a déclaré Mohammed AlQuraishi , biologiste des systèmes à l'Université de Columbia qui n'est impliqué dans aucun des deux systèmes. L'équipe de Jumper a utilisé un processus appelé diffusion – technologie qui alimente la plupart des systèmes d'IA génératifs non basés sur du texte, tels que Midjourney et DALL·E, qui génèrent des œuvres d'art basées sur des invites textuelles, a expliqué AlQuraishi. Au lieu de prédire directement la structure moléculaire puis de l’améliorer, ce type de modèle produit d’abord une image floue et l’affine de manière itérative.

D'un point de vue technique, il n'y a pas de grand saut entre RoseTTAFold et RoseTTAFold All-Atom, a déclaré AlQuraishi. Baker n'a pas modifié massivement l'architecture sous-jacente de RoseTTAFold, mais l'a mise à jour pour inclure les règles connues des interactions biochimiques. L'algorithme n'utilise pas la diffusion pour prédire les structures biomoléculaires. Cependant, l'IA de Baker pour la conception de protéines le fait. La dernière itération de ce programme, connue sous le nom de RoseTTAFold Diffusion All-Atom, permet de concevoir de nouvelles biomolécules en plus des protéines.

" Le type de dividendes qui pourraient découler de la possibilité d'appliquer les technologies d'IA générative aux biomolécules n'est que partiellement réalisé grâce à la conception de protéines", a déclaré AlQuraishi. "Si nous pouvions faire aussi bien avec de petites molécules, ce serait incroyable." 

Évaluer la concurrence

Côte à côte, AlphaFold3 semble être plus précis que RoseTTAFold All-Atom. Par exemple, dans leur analyse dans Nature , l'équipe de Google a constaté que leur outil est précis à environ 76 % pour prédire les structures des protéines interagissant avec de petites molécules appelées ligands, contre une précision d'environ 42 % pour RoseTTAFold All-Atom et 52 % pour le meilleur. outils alternatifs disponibles.

Les performances de prédiction de structure d'AlphaFold3 sont " très impressionnantes ", a déclaré Baker, " et meilleures que celles de RoseTTAFold All-Atom ".

Toutefois, ces chiffres sont basés sur un ensemble de données limité qui n'est pas très performant, a expliqué AlQuraishi. Il ne s’attend pas à ce que toutes les prédictions concernant les complexes protéiques obtiennent un score aussi élevé. Et il est certain que les nouveaux outils d’IA ne sont pas encore assez puissants pour soutenir à eux seuls un programme robuste de découverte de médicaments, car cela nécessite que les chercheurs comprennent des interactions biomoléculaires complexes. Pourtant, " c'est vraiment prometteur ", a-t-il déclaré, et nettement meilleur que ce qui existait auparavant.

Adams est d'accord. "Si quelqu'un prétend pouvoir utiliser cela demain pour développer des médicaments avec précision, je n'y crois pas", a-t-il déclaré. " Les deux méthodes sont encore limitées dans leur précision, [mais] les deux constituent des améliorations spectaculaires par rapport à ce qui était possible. "

(Image gif, tournante, en 3D : AlphaFold3 peut prédire la forme de complexes biomoléculaires, comme cette protéine de pointe provenant d'un virus du rhume. Les structures prédites de deux protéines sont visualisées en bleu et vert, tandis que les petites molécules (ligands) liées aux protéines sont représentées en jaune. La structure expérimentale connue de la protéine est encadrée en gris.)

Ils seront particulièrement utiles pour créer des prédictions approximatives qui pourront ensuite être testées informatiquement ou expérimentalement. Le biochimiste Frank Uhlmann a eu l'occasion de pré-tester AlphaFold3 après avoir croisé un employé de Google dans un couloir du Francis Crick Institute de Londres, où il travaille. Il a décidé de rechercher une interaction protéine-ADN qui était " vraiment déroutante pour nous ", a-t-il déclaré. AlphaFold3 a craché une prédiction qu'ils testent actuellement expérimentalement en laboratoire. "Nous avons déjà de nouvelles idées qui pourraient vraiment fonctionner", a déclaré Uhlmann. " C'est un formidable outil de découverte. "

Il reste néanmoins beaucoup à améliorer. Lorsque RoseTTAFold All-Atom prédit les structures de complexes de protéines et de petites molécules, il place parfois les molécules dans la bonne poche d'une protéine mais pas dans la bonne orientation. AlphaFold3 prédit parfois de manière incorrecte la chiralité d'une molécule – l'orientation géométrique distincte " gauche " ou " droite " de sa structure. Parfois, il hallucine ou crée des structures inexactes.

Et les deux algorithmes produisent toujours des images statiques des protéines et de leurs complexes. Dans une cellule, les protéines sont dynamiques et peuvent changer en fonction de leur environnement : elles se déplacent, tournent et passent par différentes conformations. Il sera difficile de résoudre ce problème, a déclaré Adams, principalement en raison du manque de données de formation. " Ce serait formidable de déployer des efforts concertés pour collecter des données expérimentales conçues pour éclairer ces défis ", a-t-il déclaré.

Un changement majeur dans le nouveau produit de Google est qu'il ne sera pas open source. Lorsque l’équipe a publié AlphaFold2, elle a publié le code sous-jacent, qui a permis aux biologistes de reproduire et de jouer avec l’algorithme dans leurs propres laboratoires. Mais le code d'AlphaFold3 ne sera pas accessible au public.

 " Ils semblent décrire la méthode en détail. Mais pour le moment, au moins, personne ne peut l’exécuter et l’utiliser comme il l’a fait avec [AlphaFold2] ", a déclaré AlQuraishi. C’est " un grand pas en arrière. Nous essaierons bien sûr de le reproduire."

Google a cependant annoncé qu'il prenait des mesures pour rendre le produit accessible en proposant un nouveau serveur AlphaFold aux biologistes exécutant AlphaFold3. Prédire les structures biomoléculaires nécessite une tonne de puissance de calcul : même dans un laboratoire comme Francis Crick, qui héberge des clusters informatiques hautes performances, il faut environ une semaine pour produire un résultat, a déclaré Uhlmann. En comparaison, les serveurs plus puissants de Google peuvent faire une prédiction en 10 minutes, a-t-il déclaré, et les scientifiques du monde entier pourront les utiliser. "Cela va démocratiser complètement la recherche sur la prédiction des protéines", a déclaré Uhlmann.

Le véritable impact de ces outils ne sera pas connu avant des mois ou des années, alors que les biologistes commenceront à les tester et à les utiliser dans la recherche. Et ils continueront à évoluer. La prochaine étape de l'apprentissage profond en biologie moléculaire consiste à " gravir l'échelle de la complexité biologique ", a déclaré Baker, au-delà même des complexes biomoléculaires prédits par AlphaFold3 et RoseTTAFold All-Atom. Mais si l’histoire de l’IA en matière de structure protéique peut prédire l’avenir, alors ces modèles d’apprentissage profond de nouvelle génération continueront d’aider les scientifiques à révéler les interactions complexes qui font que la vie se réalise.

" Il y a tellement plus à comprendre ", a déclaré Jumper. "C'est juste le début."

Auteur: Internet

Info: https://www.quantamagazine.org/new-ai-tools-predict-how-lifes-building-blocks-assemble-20240508/ - Yasemin Saplakoglu, 8 mai 2024

[ briques du vivant ] [ texte-image ] [ modélisation mobiles ] [ nano mécanismes du vivant ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

La conscience du Dauphin
Bien entendu, les modèles du monde ne manqueront pas de différer selon le degré où les systèmes sensoriels périphériques diffèrent.
Le travail du cerveau est en effet, au moins en partie, de construire une réalité cohérente à partir de données sensorielles spécifiques, réalité qui constitue d’ailleurs la seule connue par celui qui l’expérimente au détriment de toutes les autres.
Dans le cas du dauphin, le système nerveux est celui d’un herbivore retourné à la mer, il y a quelques millions d’années, et ne diffère donc pas fondamentalement de celui de n’importe quel autre grand mammifère.
Le monde physique en revanche, au sein duquel il évolue, nous poserait à nous, humains, d’impossibles défis. C’est pourquoi les cétacés ont développé tout à la fois des formes physiques mieux adaptées au milieu marin mais surtout tout un outillage sensoriel susceptible des les aider à survivre dans un monde humide, froid et obscur, où règnent de fortes pressions.
Faire l’expérience d’une telle subjectivité est par définition une tâche impossible. Même entre époux, entre amis, entre enfants et parents, cette connaissance ne peut s’acquérir que par le biais maladroit du discours mais jamais nous ne pourrons accéder au "goût du monde" d’une autre espèce que la nôtre.
Il se fait heureusement que nos organes sensoriels et nos structures cérébrales sont des outils communs à tous les êtres humains, ce qui nous permet de fonder l’illusion d’un univers de formes stables et tangibles, dont l’existence fait l’unanimité mais que nous sommes les seuls à percevoir comme telles.
En revanche, nous sommes génétiquement incapables de nous figurer un monde filtré par d’autres sens que les nôtres, de la même manière qu’il nous est impossible de visualiser un cube en quatre dimensions ou simplement le monde des abeilles….
"Pouvez-vous imaginer l’expérience que représente le fait d’être sans cesse corrélé à une boussole solaire ?" nous demande le neurologue H.Jerison à ce propos "L’information consiste en la triangulation des objets externes relativement à un observateur (le je) et au soleil comme point de référence. Si cette réaction devait être représentée en terme de perception, on pourrait dire que l’abeille ou la fourmi ressent de manière constante l’existence des points cardinaux au sein d’un monde tridimensionnel de type euclidien. Si notre système sensoriel était celui des hyménoptères, c’est cela la seule réalité que nous pourrions percevoir.
L’intégration de deux points de référence, le soi et le soleil, plutôt qu’un seul soi unitaire en tant qu’origine et centre d’un monde périphérique, doit certainement mener à d’autres perspectives sur les dimensions fondamentales de la réalité. Il est intéressant d’imaginer les catégories additionnelles que Kant aurait pu reconnaître en tant qu’à priori si nous avions été équipés d’un tel système de navigation!"
Les expériences de Louis Herman nous apprennent que les dauphins partagent tout de même les mêmes dimensions que nous : le haut, le bas, la gauche la droite, devant, derrière, tout cela existe chez eux mais il semble qu’ils ignorent la nuance entre les adjectifs "grand" et "petit" et qu’ils construisent leurs phrases selon un mode syntaxique particulier. Ces expériences, profondément anthropocentristes, n’offrent qu’un pâle reflet d’un monde mental autrement plus riche et foisonnant en liberté, comme le montre avec bien plus d’éclat le très étrange langage delphinien mis à jour par le chercheur russe Vladimir Markov, mais elles sont à tout le moins significatives de la nature d’une conscience "autre" qui ne s’appuie pas sur nos paramètres.
Les sens et l’Umwelt
Imaginons un instant ce que pourrait être "l’Umwelt" d’un dauphin.
Au centre d’un réseau d’informations sensorielles qu’il ré-organise sans cesse en tant qu’images du monde, pulse un noyau de conscience conscient de lui-même.
La vision
Le monde visuel du dauphin peut être comparé à celui des espèces-proies, non prédatrices, comme le lapin ou le chevreuil, en ce sens que les champs visuels de ses yeux latéraux couvrent ensemble 360° mais qu’ils ne se chevauchent pas ou très peu.
L’absence de fibres non-croisées dans le chiasma optique suggère une plus large indépendance dans le contrôle des yeux et dans l’usage de l’information qu’ils fournissent, par rapport à ce que l’on observe chez les autres mammifères. Chacun des yeux est capable de mouvements propres, indépendants de ceux de l’autre œil et une certaine focalisation frontale peut donc être obtenue.
On peine cependant à imaginer un monde dans lequel le Soi se trouve ainsi de manière constante au centre d’un champ visuel circulaire de 360°.
Le nôtre, comme on le sait, se réduit à un cône de 120°.
Notre Soi se place juste derrière le front et les yeux, en vis-à-vis de l’objet focalisé par notre regard binoculaire et dans la ligne de fuite du cône, c’est-à-dire à peu près sur la glande pinéale. On comprend mieux dès lors la fausse intuition de René Descartes.
Incapables de distinguer le vert du rouge, les yeux des dauphins n’en sont pas moins d’une sensibilité extrême à l’instar des yeux de chat, percent l’obscurité et peuvent, d’une simple torsion de la rétine, adapter leur vision aux fonds marins ou à l’air libre. Par contre, le sens du relief leur est impossible, puisqu’ils ne sont pas binoculaires.
La "quasi-olfaction"
Le goût et l’odorat sont absents en tant que tels, remplacés par la "quasi-olfaction" qui consiste à filtrer une certaine quantité d’eau au travers de l’évent et à en goûter le parfum. Un tel sens est fondamental : le dauphin s’en sert pour repérer les femelles en rut autant que pour sentir les fèces de son groupe, nuage diffus de couleur foncée expulsé de manière régulière et qui donne à l’ensemble social une "odeur" propre.
Le toucher et le sens proprioceptif
Quiconque a jamais caressé la peau satinée d’un tursiops sait à quel point ce tissu est sensible, doux et fragile. Le sens du toucher joue lui aussi un rôle essentiel dans la vie de ces mammifères nus, qui n’aiment rien tant que de rester collés les uns contre les autres et d’échanger les caresses les plus voluptueuses.
Au niveau plus profond du sens proprioceptif, la différence avec nos perceptions s’accroît cependant encore davantage : "L’Umwelt des dauphins se fonde comme tout autre sur les caractéristiques de leur environnement" déclare Jerison, "et cet univers mental représente très certainement une adaptation cognitive optimale aux exigences environnementales du monde aquatique. A cet égard, l’un des traits principaux de cet univers marin – considéré depuis notre point de vue – est notamment l’absence d’une plate-forme stable tel que les mammifères l’éprouvent en se tenant sur la terre ferme".
Ce point est important, car le sol sur lequel nous nous tenons, le rôle essentiel de la gravité dans les adaptations anatomiques de la plupart des mammifères occupe une place centrale au plan biologique mais ne sont que rarement notées au niveau de la conscience vigile. Notre intuition s’épuise en revanche lorsque nous tentons d’imaginer les adaptations perceptuelles chez certaines espèces dont les données sensorielles sont profondément différentes des nôtres, et cela d’autant plus que nous ne sommes même pas conscients de notre propre spécificité sensorielle. Les informations relatives aux forces gravitationnelles qui s’exercent sur nos corps jouent également un rôle-clé chez le dauphin, mais d’une autre manière.
Celui-ci s’oriente en effet en "s’informant" régulièrement de la position de son corps par rapport aux fonds marins, à la surface de l’eau ou à la place du soleil au moment de l’observation.
Bien que les dauphins ne disposent d’aucun sol référentiel en guise de plate-forme fixe, mais qu’ils possèdent en revanche un degré de liberté dans les trois dimensions plus important que le nôtre, le sens de l’orientation spatiale est certainement fondamental pour eux. On peut imaginer ce que les cétacés ressentent en pensant à ces appareils d’entraînement destinés aux astronautes afin de les préparer à l’apesanteur.
Ces instruments sont de gigantesques balançoires, disposant de six degrés de liberté et permettant aux candidats pour l’espace de contrôler au mieux les diverses rotations possibles de leur axe corporel aussi bien que les mouvements de propulsion linéaire.
Si nous étions dauphins, nous nous trouverions dans un monde un peu semblable à celui d’un vol spatial à gravité zéro. Il est intéressant de noter à ce propos que l’expérience de l’apesanteur a crée chez les astronautes divers problèmes liés à cet environnement, telles que nausées, vertiges, migraines, etc. mais qu’elles n’ont cependant jamais altéré leur perception "juste" des choses.
Rappelons aussi, sans nous y étendre, à quel point la gestuelle constitue un mode de communication privilégié chez les dauphins : les degrés de liberté dont leur corps dispose leur a permis d’élaborer un véritable vocabulaire d’attitudes : ventre en l’air, en oblique, corps groupés par faisceaux, rostre au sol, caudale haute, inclinée, etc., le tout agrémenté ou non d’émissions de bulles et de vocalisations.
L’audition
Mais de tous les sens dont dispose le dauphin, c’est certainement l’audition qui est le plus développé et qui atteint des capacités discriminatoires sans aucun équivalent connu. Ce système sensoriel s’est transformé au cours des millénaires en écholocation, tout à la fois outil de connaissance (le monde externe "vu" par le son) et moyen de communication (le monde interne transmis par le langage). Cette convergence fonctionnelle ne manque pas d’entraîner des conséquences étonnantes !
D’après Harry J. Jerison : "Si le spectre auditif des dauphins est plus large que le nôtre de plusieurs octaves dans les fréquences les plus élevées, la caractéristique principale de ce système auditif est bien évidemment l’écholocation. Celle-ci pourrait contribuer à conférer au monde des dauphins une dimension inhabituelle, dépassant largement les perceptions élémentaires relatives aux événements survenant à distance. En tant qu’adaptation sensori-motrice, l’écholocation partage en effet certaines caractéristiques similaires à celles du langage humain".
Rappelons brièvement en quoi consiste cette vision acoustique d’un type inusité. Le dauphin émet en permanence – dès lors qu’il se déplace et cherche sa route activement – une série de "sons explosés" extrêmement brefs (moins d’une seconde d’émission continue). Ces "clicks" ne sont pas des sons purs mais des "bruits", d’inextricables petits paquets d’ondes situés sur des fréquences de 120 à 130 Khz et d’une puissance frisant parfois les 220 décibels. Ils retentissent sous l’eau comme une grêle de minuscules coups secs et nets enchaînés l’un à l’autre en de courtes séquences.
Les clicks sont émis sous forme d’un large faisceau, qui balaie par intermittence le sol sablonneux à la façon d’un projecteur. On peut donc dire que la nuit ou sous une certaine profondeur, le dauphin ne voit que lorsqu’il éclaire le paysage de ses éclairs sonores. Les informations reçues, assez grossières, concernent l’aspect du fond marin ou une masse importante, bateau ou autre cétacé.
Supposons à présent qu’un poisson soit repéré dans ce champ de vision "stroboscopique". Puisqu’il fait nuit, l’œil ne peut confirmer l’image en mode visuel.
Lorsque la chasse commence, le dauphin resserre alors le rayon de son biosonar et le dédouble en deux faisceaux.
Plus précis, mieux ciblés les trains de click bombardent le poisson sous tous ses angles et peuvent même pénétrer dans son corps en renvoyant l’image de ses organes internes.
Les deux trains de clicks sont produits presque simultanément, l’un à 20° à gauche de la ligne du rostre et l’autre à 20° sur la droite. Les deux rayons se chevauchent au point focal (0°) et fournissent une "visiaudition" de type, cette fois, binoculaire.
Un intervalle de 80 millièmes de seconde sépare l’émission de chacun des faisceaux, de sorte qu’en calculant le léger retard d’un écho par rapport à l’autre, le dauphin peut estimer la profondeur de champ et la distance qui le sépare de chaque élément de l’objet observé.
Se rapprochant de sa proie à toute vitesse, le dauphin n’a de cesse que de conserver le contact avec elle et multiplie la fréquence et l’intensité de ses trains de clicks, comme pour maintenir le "projecteur" allumé presque en continu.
Les ondes à haute fréquence ont une portée plus courte mais fournissent en revanche une bien meilleure définition des détails. En nageant, le dauphin opère un mouvement de balayage avec la tête avant d’obtenir une image complète de sa cible, que ses organes visuels conforteront par ailleurs.
S’il veut obtenir davantage de détails encore sur son contenu, le dauphin la bombardera alors sa cible à bout portant, d’un faisceau de clicks aussi fin et précis qu’un rayon laser.
Celui-ci pénètre la matière et en estime la densité avec une incroyable précision : la nature d’un métal (zinc plutôt que cuivre) ou des variations de l’épaisseur d’un tube de l’ordre d’un millième de millimètres sont alors parfaitement perçus par cette échographie biologique.
Une telle "vision acoustique" nous sera à tout jamais inimaginable, comme la couleur rouge l’est pour l’aveugle. Néanmoins, au prix d’une comparaison grossière, on peut mettre en parallèle la pluie d’échos que perçoivent les cétacés avec les pixels que l’œil humain perçoit sur un écran de télévision. Les pixels dessinent très rapidement une image en se succédant l’un à l’autre et laissent sur la rétine du téléspectateur une série de rémanences qui figurent le mouvement et les formes. Une scène visuelle est ainsi décodée à partir d’une séquence de taches ultra rapides surgissant sur l’écran. De la même manière, une expérience éidétique similaire est sans doute générée par les données discrètes de l’écholocation (clicks).
L’information pourrait être alors parfaitement comparable à celle que l’on obtient grâce au bombardement de photons dans le système visuel, à ceci près qu’elle parviendrait par un autre canal, en l’occurrence le canal auditif.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

biophysique

Lorsque le biologiste Tibor Gánti est décédé le 15 avril 2009, à l'âge de 75 ans, il était loin d'être connu. Une grande partie de sa carrière s'est déroulée derrière le rideau de fer qui a divisé l'Europe pendant des décennies, entravant les échanges d'idées.

Mais si les théories de Gánti avaient été plus largement connues à l'époque communiste, il pourrait aujourd'hui être acclamé comme l'un des biologistes les plus novateurs du XXe siècle. En effet, il a conçu un modèle d'organisme vivant le plus simple possible, qu'il a appelé le chimiotone ( Chemoton ) , et qui permet d'expliquer l'apparition de la vie sur Terre.

Pour les astrobiologistes qui s'intéressent à la vie au-delà de notre planète, le chimiotactisme offre une définition universelle de la vie, qui n'est pas liée à des substances chimiques spécifiques comme l'ADN, mais plutôt à un modèle d'organisation global.

"Il semble que Ganti a réfléchi aux fondements de la vie plus profondément que quiconque", déclare le biologiste Eörs Szathmáry, du Centre de recherche écologique de Tihany, en Hongrie.

Les débuts de la vie

Il n'existe pas de définition scientifique commune de la vie, mais ce n'est pas faute d'avoir essayé : Un article de 2012 a recensé 123 définitions publiées. Il est difficile d'en rédiger une qui englobe toute la vie tout en excluant tout ce qui n'est pas vivant et qui possède des attributs semblables à ceux de la vie, comme le feu et les voitures. De nombreuses définitions indiquent que les êtres vivants peuvent se reproduire. Mais un lapin, un être humain ou une baleine ne peuvent se reproduire seuls.

En 1994, un comité de la NASA a décrit la vie comme "un système chimique autonome capable d'une évolution darwinienne". Le mot "système" peut désigner un organisme individuel, une population ou un écosystème. Cela permet de contourner le problème de la reproduction, mais à un prix : l'imprécision.

(Photo : un cercle cellule contenant un autre cercle cellule en train de se dédoubler) 

Fonctionnement du chimiotactisme. Ce modèle théorique de la forme de vie la plus simple nécessite trois mécanismes interdépendants :

a) un cycle métabolique, pour transformer la nourriture en énergie

b)  la réplication des gabarits, pour la reproduction du modèle ;

c) une membrane, pour délimiter l'organisme.

Avec ce processus en 5 phases

1 Les molécules sont absorbées de l'environnement par le métabolisme

2 Le cycle métabolique produit d'abord des éléments pour renforcer sa menbrane

3  Le cylce métabolique use des molécules pour constituer sa réplique

4  La réplique produit une substance chimique qui est un composant clé de la membrane.

5 Les parties non utilisées des molécules sont éjectée à l'extérieur de la menbrane principale

Mais Tibor Ganti avait proposé une autre voie deux décennies plus tôt.

Il était né en 1933 dans la petite ville de Vác, dans le centre de la Hongrie. Ses débuts ayant été marqués par des conflits. La Hongrie s'est alliée à l'Allemagne nazie pendant la Seconde Guerre mondiale, mais en 1945, son armée a été vaincue par l'Union soviétique. Le régime totalitaire dominera l'Eurasie orientale pendant des décennies, la Hongrie devenant un État satellite, comme la plupart des autres pays d'Europe de l'Est.

Fasciné par la nature des êtres vivants, Gánti a étudié l'ingénierie chimique avant de devenir biochimiste industriel. En 1966, il a publié un livre sur la biologie moléculaire intitulé Forradalom az Élet Kutatásában, ou Révolution dans la recherche sur la vie, qui est resté pendant des années un manuel universitaire dominant, en partie parce qu'il n'y en avait pas beaucoup d'autres. L'ouvrage posait la question de savoir si la science comprenait comment la vie était organisée et concluait que ce n'était pas le cas.

En 1971, Gánti aborda le problème de front dans un nouveau livre, Az Élet Princípiuma, ou Les principes de la vie. Publié uniquement en hongrois, ce livre contient la première version de son modèle de chimiotactisme, qui décrit ce qu'il considère comme l'unité fondamentale de la vie. Toutefois, ce premier modèle d'organisme était incomplet et il lui a fallu trois années supplémentaires pour publier ce qui est aujourd'hui considéré comme la version définitive, toujours en hongrois, dans un document qui n'est pas disponible en ligne.

L'année du miracle

Globalement, 1971 a été une année faste pour la recherche sur l'origine de la vie. Outre les travaux de Gánti, la science a proposé deux autres modèles théoriques importants.

Le premier est celui du biologiste théoricien américain Stuart Kauffman, qui soutient que les organismes vivants doivent être capables de se copier eux-mêmes. En spéculant sur la manière dont cela aurait pu fonctionner avant la formation des cellules, il s'est concentré sur les mélanges de produits chimiques.

Supposons que le produit chimique A entraîne la formation du produit chimique B, qui entraîne à son tour la formation du produit chimique C, et ainsi de suite, jusqu'à ce qu'un élément de la chaîne produise une nouvelle version du produit chimique A. Après un cycle, il existera deux copies de chaque ensemble de produits chimiques. Si les matières premières sont suffisantes, un autre cycle produira quatre copies et continuera de manière exponentielle.

Kauffman a appelé un tel groupe un "ensemble autocatalytique" et il a soutenu que de tels groupes de produits chimiques auraient pu constituer la base de la première vie, les ensembles devenant plus complexes jusqu'à ce qu'ils produisent et utilisent une série de molécules complexes, telles que l'ADN.

Dans la seconde idée, le chimiste allemand Manfred Eigen a décrit ce qu'il a appelé un "hypercycle", dans lequel plusieurs ensembles autocatalytiques se combinent pour en former un seul plus grand. La variante d'Eigen introduit une distinction cruciale : Dans un hypercycle, certains des produits chimiques sont des gènes et sont donc constitués d'ADN ou d'un autre acide nucléique, tandis que d'autres sont des protéines fabriquées sur mesure en fonction des informations contenues dans les gènes. Ce système pourrait évoluer en fonction des changements - mutations - dans les gènes, une fonction qui manquait au modèle de Kauffman.

Gánti était arrivé indépendamment à une notion similaire, mais il l'a poussée encore plus loin. Selon lui, deux processus clés doivent se dérouler dans chaque organisme vivant. Premièrement, il doit construire et entretenir son corps, c'est-à-dire qu'il a besoin d'un métabolisme. Deuxièmement, il doit disposer d'une sorte de système de stockage de l'information, tel qu'un ou plusieurs gènes, qui peuvent être copiés et transmis à la descendance.

La première version du modèle de Gánti consistait essentiellement en deux ensembles autocatalytiques aux fonctions distinctes qui se combinaient pour former un ensemble autocatalytique plus important, ce qui n'est pas si différent de l'hypercycle d'Eigen. Cependant, l'année suivante, Gánti a été interrogé par un journaliste qui a mis en évidence une faille importante. Gánti supposait que les deux systèmes étaient basés sur des produits chimiques flottant dans l'eau. Or, laissés à eux-mêmes, ils s'éloigneraient les uns des autres et le chimiotone "mourrait".

La seule solution était d'ajouter un troisième système : une barrière extérieure pour les contenir. Dans les cellules vivantes, cette barrière est une membrane composée de substances chimiques ressemblant à des graisses, appelées lipides. Le chimiotone devait posséder une telle barrière pour se maintenir, et Gánti en a conclu qu'il devait également être autocatalytique pour pouvoir se maintenir et croître.

Voici enfin le chimiotone complet, le concept de Gánti de l'organisme vivant le plus simple possible : gènes, métabolisme et membrane, tous liés. Le métabolisme produit des éléments de construction pour les gènes et la membrane, et les gènes exercent une influence sur la membrane. Ensemble, ils forment une unité autoreproductible : une cellule si simple qu'elle pourrait non seulement apparaître avec une relative facilité sur Terre, mais qu'elle pourrait même rendre compte de biochimies alternatives sur des mondes extraterrestres.

Un modèle oublié

"Gánti a très bien saisi la vie", déclare le biologiste synthétique Nediljko Budisa, de l'université du Manitoba à Winnipeg, au Canada. "Sa lecture a été une révélation. Cependant, Budisa n'a découvert le travail de Gánti que vers 2005. En dehors de l'Europe de l'Est, l'ouvrage est resté obscur pendant des décennies, avec seulement quelques traductions anglaises sur le marché.

Le chimiotactisme est apparu en anglais en 1987, dans un livre de poche avec une traduction assez approximative, explique James Griesemer, de l'université de Californie, à Davis. Peu de gens l'ont remarqué. Szathmáry a ensuite donné au chimiotone une place de choix dans son livre de 1995, The Major Transitions in Evolution, coécrit avec John Maynard Smith. Cela a conduit à une nouvelle traduction anglaise du livre de Gánti de 1971, avec du matériel supplémentaire, publiée en 2003. Mais le chimiotone est resté dans une niche, et six ans plus tard, Gánti est mort.

Dans une certaine mesure, Gánti n'a pas aidé son modèle à s'imposer : il était connu pour être un collègue difficile. Selon Szathmáry, Gánti était obstinément attaché à son modèle, et paranoïaque de surcroît, ce qui le rendait "impossible à travailler".

Mais le plus gros problème du modèle chimiotactique est peut-être que, dans les dernières décennies du XXe siècle, la tendance de la recherche était de supprimer la complexité de la vie au profit d'approches de plus en plus minimalistes.

Par exemple, l'une des hypothèses les plus en vogue aujourd'hui est que la vie a commencé uniquement avec l'ARN, un proche cousin de l'ADN.

Comme son parent moléculaire plus célèbre, l'ARN peut porter des gènes. Mais l'ARN peut aussi agir comme une enzyme et accélérer les réactions chimiques, ce qui a conduit de nombreux experts à affirmer que la première vie n'avait besoin que d'ARN pour démarrer. Cependant, cette hypothèse du monde de l'ARN a été repoussée, notamment parce que la science n'a pas trouvé de type d'ARN capable de se copier sans aide - pensons aux virus à ARN comme le coronavirus, qui ont besoin de cellules humaines pour se reproduire.

D'autres chercheurs ont soutenu que la vie a commencé avec des protéines et rien d'autre, ou des lipides et rien d'autre. Ces idées sont très éloignées de l'approche intégrée de Gánti.

Un véritable chimiotactisme ?

Cependant, les scientifiques de ce siècle ont inversé la tendance. Les chercheurs ont désormais tendance à mettre l'accent sur la façon dont les substances chimiques de la vie fonctionnent ensemble et sur la manière dont ces réseaux coopératifs ont pu émerger.

Depuis 2003, Jack Szostak, de la Harvard Medical School, et ses collègues ont construit des protocellules de plus en plus réalistes : des versions simples de cellules contenant une série de substances chimiques. Ces protocellules peuvent croître et se diviser, ce qui signifie qu'elles peuvent s'autoreproduire.

En 2013, Szostak et Kate Adamala, alors étudiante, ont persuadé l'ARN de se copier à l'intérieur d'une protocellule. De plus, les gènes et la membrane peuvent être couplés : lorsque l'ARN s'accumule à l'intérieur, il exerce une pression sur la membrane extérieure, ce qui encourage la protocellule à s'agrandir.

Les recherches de Szostak "ressemblent beaucoup à celles de Gánti", déclare Petra Schwille, biologiste synthétique à l'Institut Max Planck de biochimie de Martinsried, en Allemagne. Elle souligne également les travaux de Taro Toyota, de l'université de Tokyo au Japon, qui a fabriqué des lipides à l'intérieur d'une protocellule, de sorte que celle-ci puisse développer sa propre membrane.

L'un des arguments avancés contre l'idée d'un chimiotone comme première forme de vie est qu'il nécessite un grand nombre de composants chimiques, notamment des acides nucléiques, des protéines et des lipides. De nombreux experts ont estimé qu'il était peu probable que ces substances chimiques soient toutes issues des mêmes matériaux de départ au même endroit, d'où l'attrait d'idées simples comme celle du monde de l'ARN.

Mais des biochimistes ont récemment trouvé des preuves que toutes les substances chimiques clés de la vie peuvent se former à partir des mêmes matériaux de départ simples. Dans une étude publiée en septembre, des chercheurs dirigés par Sara Szymkuć, alors à l'Académie polonaise des sciences à Varsovie, ont compilé une base de données à partir de décennies d'expériences visant à fabriquer les éléments chimiques de base de la vie. En partant de six produits chimiques simples, comme l'eau et le méthane, Szymkuć a découvert qu'il était possible de fabriquer des dizaines de milliers d'ingrédients clés, y compris les composants de base des protéines et de l'ARN.

Aucune de ces expériences n'a encore permis de construire un chimiotone fonctionnel. C'est peut-être simplement parce que c'est difficile, ou parce que la formulation exacte de Gánti ne correspond pas tout à fait à la façon dont la première vie a fonctionné. Quoi qu'il en soit, le chimiotone nous permet de réfléchir à la manière dont les composants de la vie fonctionnent ensemble, ce qui oriente de plus en plus les approches actuelles visant à comprendre comment la vie est apparue.

Il est révélateur, ajoute Szathmáry, que les citations des travaux de Gánti s'accumulent rapidement. Même si les détails exacts diffèrent, les approches actuelles de l'origine de la vie sont beaucoup plus proches de ce qu'il avait à l'esprit - une approche intégrée qui ne se concentre pas sur un seul des systèmes clés de la vie.

"La vie n'est pas une protéine, la vie n'est pas un ARN, la vie n'est pas une bicouche lipidique", explique M. Griesemer. "Qu'est-ce que c'est ? C'est l'ensemble de ces éléments reliés entre eux selon la bonne organisation.


Auteur: Internet

Info: https://www.nationalgeographic.com, 14 déc. 2020, par Michael Marshall

[ origine du vivant ] [ mécanisme ] [ matérialisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Dauphins : cerveau, conscience et intelligence

Les scientifiques rassemblés à San Diego, Californie, à l'occasion du Congrès annuel de l'Association Américaine pour l'Avancement de la Science, en ce mois de février 2010, ont conclu que le dauphin était un mammifère aussi évolué et intelligent que l’humain. Pour confirmer leurs assertions, ils se fondent notamment sur le développement phénoménal de son lobe frontal, siège de la pensée consciente et sur sa capacité que partagent seulement les grands singes et les éléphants de se reconnaître dans un miroir.

Ils insistent aussi sur le fait que le dauphin Tursiops Truncatus, (mais que sait-on des autres cétacés, de leur langage, de leurs cultures si riches et si variées?.) dispose du plus gros cerveau du monde, après celui de l’Homme, selon la théorie du coefficient encéphalique. Méfiance : celle-ci ne tient cependant pas compte des circonvolutions du cortex, largement plus nombreuses chez le cachalot ou d'autres cétacés que chez l'Homme. A la seule aune de ce coefficient, le singe Saïmiri nous dépasserait tous !

Par ailleurs, le carburant du cerveau, c’est le glucose, et à ce niveau, Dauphins et Humains partagent un métabolisme quasiment identique. De telles capacités cognitives, selon les scientifiques de San Diego où, rappelons-le, se trouve également le principal centre de dressage des dauphins militaires aux USA – pose un grave problème éthique quant à la détention forcée en delphinarium de ces remarquables cétacés. Ce point a été évoqué.

Notons que la sur-évolution des cétacés, un espèce née trente millions d'années avant JC, alors que nous ne totalisons au compteur que 160.000 ans en tant qu'Homo Sapiens, selon les dernières données de Pascal Picq, ne se situe pas seulement au niveau de la pensée consciente.

I. L’INTELLIGENCE DES DAUPHINS EN QUESTION

A quel niveau, la barre ?

De vigoureux débats ont régulièrement lieu à propos de l’intelligence du dauphin, où se retrouvent et s’opposent globalement trois opinions : Il y a ceux qui mettent la barre très haut. Ils pensent - peut-être à raison – que les dauphins sont dotés de pouvoirs paranormaux, et transcendent de très loin toutes nos possibilités mentales. Par exemple, pour Jim Nollman, la pensée cachalot étant produite par un cerveau cinq fois plus puissant que le nôtre est forcément cinq fois plus complexe et donc inaccessible à notre compréhension.

Sur un mode nettement moins rationnel et plus égoïste, la mouvance New Age tend à considérer les dauphins comme des extraterrestres arrivant de Sirius pour apporter un message au Monde et servir aux progrès des Hommes. C’est de cette mouvance, malheureusement, qu’est issue la mode des Dolphin Assisted Therapy (DAT) et l’on peut donc craindre que ces idéologies ne servent avant tout à favoriser l’expansion de ce marché.

Il y a ceux qui mettent la barre très bas. Et ceux-là très clairement, ont reçu pour mission de justifier les captures pour les delphinariums ou les massacres des baleines. On lira ainsi avec stupéfaction certaines études réductrices qui ramènent le cerveau du cétacé aux dimensions de celui du hérisson ou tendent à prétendre que les baleines ne sont finalement que de gros "bovidés de la mer", stupides, indolentes et presque insensibles. De même, toute la galaxie de chercheurs et vétérinaires vendus à l’industrie du delphinarium déclarera d’une seule voix que l’intelligence du dauphin ne dépasse guère celle du chien.

Et il y a ceux qui tentent de faire la part des choses... Et notamment d’aborder de manière objective une série de d’études scientifiques ou d’observations de terrain convergentes. En regroupant ces recherches, en les collationnant, en les mettant en perspectives, il devient alors très difficile de croire que les cétacés puissent n’être que des "toutous marins"…

Le frein de l’anthropocentrisme

La disqualification systématique des compétences cognitives des cétacés n’est pourtant pas le fait de seuls baleiniers ou des "dolphin trainers". Certains cétologues et associations (Anne Collet, Greenpeace) adoptent cette position, affirment-ils, par souci d’objectivité. En fait, il semble surtout qu’une sorte de terreur sacrée les saisisse devant l’effondrement de l’un des derniers dogmes inexpugnables du canon scientifique : "l’Homme, mesure de toutes choses, image de Dieu sur terre, est seul doté de conscience et de langage".

"En traçant une limite stricte entre l’Homme et la Bête" ajoute Keith Thomas, "le but principal de nos théoriciens modernes était surtout de justifier la chasse, la domestication, l’ingestion de la chair d’un animal mort, la vivisection – qui devint une pratique scientifique courante dès le 19 ème siècle - et l’extermination à large échelle de la vermine et des prédateurs".

On trouve un peu partout – mais surtout dans le monde de l’édition francophone – de pitoyables gesticulations mentales visant à dénigrer, chaque fois que faire se peut, toute contestation de cette vérité première, aussi évidente que la course du soleil autour de la terre. Innombrables sont les études qui nient que la guenon Washoe, le bonobo Kanzi ou le perroquet Alex puissent parlent de vrais langages. Un article récent allait même jusqu’à contester la notion de "conscience de soi" chez l’animal non-humain et le fait que les expériences de reconnaissance face au miroir puissent avoir valeur de preuve en ce domaine.

Bref, pour beaucoup d’humanistes de la vieille école, la prééminence de l’être humain sur le plan de l’intellect est un dogme, une conviction d’ordre affectif presque désespérée, et non pas une certitude scientifique. L’anthropocentrisme qui fonde toute notre vision du monde nous rend, semble-t-il, incapable d’appréhender la possibilité d’une conscience autre, "exotique" selon le mot de H.Jerison, mais parfaitement complète, aboutie et auto-réflexive.

Pourtant, insiste Donald Griffin : "Il n’est pas plus anthropomorphique, au sens strict du terme, de postuler l’existence d’expériences mentales chez d’autres espèces animales, que de comparer leurs structures osseuses, leurs systèmes nerveux ou leurs anticorps avec ceux des humains".

TECHNOLOGIE ET INTELLIGENCE

Cerveau vaste et puissant que celui du dauphin, certes. Mais encore ? Qu’en fait-il ? C’est là l’ultime argument massue de notre dernier carré d’humanistes qui, très expressément, maintient la confusion entre Intelligence et Technologie. Or nous savons – nous ne pouvons plus nier – que d’autres types d’intelligences existent. On se reportera notamment au passionnant ouvrage de Marc Hauser "Wild Minds : what animals really think" (Allen Lane éditions, Penguin Press, London 2000) qui définit en termes clairs la notion "d’outillage mental". Même si de grands paramètres restent communs à la plupart des espèces psychiquement évoluées, dit en substance l’auteur (règle de la conservation des objets, cartes mentales pour s’orienter, capacité de numériser les choses, etc.), à chaque environnement correspond néanmoins une vision du monde, un mode de pensée propre, qui permet à l’individu de survivre au mieux.

Les écureuils sont capables de garder à l’esprit des cartes mentales d’une précision hallucinante, fondée sur des images géométriques. Les baleines chassent avec des rideaux de bulles, dont le réglage demande une grande concentration et une puissance de calcul peu commune. Les orques et les dauphins ne produisent rien, c’est vrai mais ils sont là depuis des millions d’années, ne détruisent pas leur biotope, vivent en belle harmonie, n’abandonnent pas leurs blessés, ne se font pas la guerre entre eux et dominaient tous les océans jusqu’à ce que l’Homme vienne pour les détruire. Toutes vertus généralement qualifiées de "sens moral" et qui révèlent un très haut degré de compréhension du monde.

Il en est de même pour l’être humain : technicien jusqu’au bout des doigts, champion incontesté de la manipulation d’objets et de chaînes de pensées, adepte des lignes droites, de la course et de la vitesse, il vit dans un monde à gravité forte qui le maintient au sol et lui donne de l’environnement une vision bidimensionnelle.

L’imprégnation génétique de nos modes de conscience est forte : nous avons gardé de nos ancêtres la structure sociale fission-fusion mâtinée de monogamie, la protection de nos "frontières" est toujours assurée, comme chez les autres chimpanzés, par des groupes de jeunes mâles familialement associés (frères, cousins puis soldats se battant pour la Mère Patrie), notre goût pour la science, le savoir et les découvertes n’est qu’une forme sublimée de la néophilie presque maladive que partagent tous les grands primates, et notre passion pour les jardins, les parcs, les pelouses bien dégagés et les "beaux paysages" vient de ce que ceux-ci évoquent la savane primitive, dont les grands espaces partiellement arborés nous permettaient autrefois de nous cacher aisément puis de courir sur la proie...

Mais bien sûr, l’homme est incapable de bondir de branche en branche en calculant son saut au plus juste, il est incapable de rassembler un banc de poissons diffus rien qu’en usant de sons, incapable de tuer un buffle à l’affût en ne se servant que de son corps comme arme, etc.

Ce n’est certes pas pour nous un titre de gloire que d’être les plus violents, les plus cruels, les plus astucieux, les plus carnivores, mais surtout les plus habiles et donc les plus polluants de tous les grands hominoïdes ayant jamais vécu sur cette planète, et cela du seul fait que nous n’avons pas su ou pas voulu renoncer à nos outils mentaux primordiaux ni à nos règles primitives.

Au-delà de nos chefs-d’oeuvre intellectuels – dont nous sommes les seuls à percevoir la beauté – et de nos créations architecturales si calamiteuses au niveau de l’environnement, la fureur primitive des chimpanzés est toujours bien en nous, chevillée dans nos moindres gestes et dans tous nos désirs : plus que jamais, le pouvoir et le sexe restent au centre des rêves de tous les mâles de la tribu...

De la Relativité Restreinte d’Einstein à la Bombe d’Hiroshima

Une dernière question se pose souvent à propos de l’intelligence des cétacés : représente-t-elle ou non un enjeu important dans le cadre de leur protection ?

Là encore, certaines associations s’indignent que l’on puisse faire une différence entre la tortue luth, le tamarin doré, le cachalot ou le panda. Toutes ces espèces ne sont-elles pas également menacées et leur situation dramatique ne justifie-t-elle pas une action de conservation d’intensité égale ? Ne sont-elles pas toutes des "animaux" qu’il convient de protéger ? Cette vision spéciste met une fois encore tous les animaux dans le même sac, et le primate humain dans un autre…

Par ailleurs, force est de reconnaître que l’intelligence prodigieuse des cétacés met un autre argument dans la balance : en préservant les dauphins et baleines, nous nous donnons une dernière chance d’entrer en communication avec une autre espèce intelligente. Il est de même pour les éléphants ou les grands singes mais le développement cognitif des cétacés semblent avoir atteint un tel degré que les contacts avec eux pourraient atteindre au niveau de vrais échanges culturels.

Les seuls animaux à disposer d’un outil de communication relativement similaire au nôtre c’est à dire transmis sur un mode syntaxique de nature vocale – sont en effet les cétacés. On pourrait certainement communiquer par certains signes et infra-sons avec les éléphants, par certains gestes-symboles et mimiques avec les chimpanzés libres, mais ces échanges ne fourniraient sans doute que des informations simples, du fait de notre incapacité à nous immerger complètement dans la subtilité de ces comportements non-verbaux. Tout autre serait un dialogue avec des dauphins libres qui sont, comme nous, de grands adeptes du "vocal labeling", de la désignation des choses par des sons, de l’organisation de ces sons en chaînes grammaticalement organisées et de la création de sons nouveaux pour désigner de nouveaux objets.

Cette possibilité, inouïe et jamais advenue dans l’histoire humaine, est pour nous l’un des principaux enjeux de la conservation des "peuples de la mer" véritables nations cétacéennes dont nous ne devinerons sans doute que très lentement les limites du prodigieux univers mental. Une telle révolution risque bien d’amener d’extraordinaires changements dans notre vision du monde.

Il n’est d’ailleurs pas impossible que notre pensée technologique nous rende irrémédiablement aveugle à certaines formes de réalité ou fermé à certains modes de fonctionnement de la conscience. Comme l’affirme Jim Nollman, il se peut en effet que les cachalots soient capables d’opérations mentales inaccessibles à notre compréhension.

Il se peut que leur cerveau prodigieusement développé les rende à même de percevoir, mettons, cinq ou six des onze dimensions fondamentales de l’univers (Lire à ce propos : "L’Univers élégant" de Brian Greene, Robert Laffont éditeur) plutôt que les quatre que nous percevons ? Quel aspect peut avoir l’océan et le ciel sous un regard de cette sorte ?

Si nous ne leur parlons pas, impossible à savoir.

On imagine la piètre idée qu’ont pu se faire les premiers colons anglais de ces yogis immobiles qu’ils découvraient au fond d’une grotte en train de méditer... Se doutaient-ils seulement à quoi ces vieux anachorètes pouvaient passer leur temps ? Avaient-ils la moindre idée du contenu des Upanishads ou des Shiva Sutras, la moindre idée de ce que pouvait signifier le verbe "méditer" pour ces gens et pour cette culture ?

Les baleines bleues, les cachalots, les cétacés les plus secrets des grands fonds (zyphius, mésoplodon) sont-ils, de la même manière, des sages aux pensées insondables nageant aux frontières d’autres réalités… et que nous chassons pour leur viande ?

On se souvient aussi du mépris profond que l’Occident manifestait jusqu’il y a peu aux peuples primitifs. Les Aborigènes d’Australie vivaient nus, n’avaient que peu d’outils et se contentaient de chasser. Stupides ? Eh bien non ! La surprise fut totale lorsque enfin, on pris la peine de pénétrer la complexité inouïe de leurs mythes, de leurs traditions non-écrites et de leur univers mental... notions quasi inaccessible à la compréhension cartésienne d’un homme "civilisé".

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ Umwelt ] [ hiérarchie ] [ sociologie ] [ xénocommunication ] [ fermeture anthropienne ]

 

Commentaires: 0

univers protonique

À l’intérieur du Proton, " la chose la plus complexe qu'on puisse imaginer "

La particule chargée positivement au cœur de l’atome est un objet d’une complexité indescriptible, qui change d’apparence en fonction de la manière dont elle est sondée. Nous avons tenté de relier les nombreuses faces du proton pour former l'image la plus complète à ce jour.

(image : Des chercheurs ont récemment découvert que le proton comprend parfois un quark charmé et un antiquark charmé, particules colossales puisqeu chacune est plus lourde que le proton lui-même.)

Plus d’un siècle après qu’Ernest Rutherford ait découvert la particule chargée positivement au cœur de chaque atome, les physiciens ont encore du mal à comprendre pleinement le proton.

Les professeurs de physique des lycées les décrivent comme des boules sans relief contenant chacune une unité de charge électrique positive – des feuilles parfaites pour les électrons chargés négativement qui bourdonnent autour d’elles. Les étudiants apprennent que la boule est en réalité un ensemble de trois particules élémentaires appelées quarks. Mais des décennies de recherche ont révélé une vérité plus profonde, trop bizarre pour être pleinement saisie avec des mots ou des images.

"C'est la chose la plus compliquée que l'on puisse imaginer", a déclaré Mike Williams, physicien au Massachusetts Institute of Technology. "En fait, on ne peut même pas imaginer à quel point c'est compliqué."

Le proton est un objet de mécanique quantique qui existe sous la forme d’un brouillard de probabilités jusqu’à ce qu’une expérience l’oblige à prendre une forme concrète. Et ses formes diffèrent radicalement selon la manière dont les chercheurs mettent en place leur expérience. Relier les nombreux visages de la particule a été l’œuvre de plusieurs générations. "Nous commençons tout juste à comprendre ce système de manière complète", a déclaré Richard Milner , physicien nucléaire au MIT.

Alors que la poursuite se poursuit, les secrets du proton ne cessent de se dévoiler. Plus récemment, une analyse monumentale de données publiée en août a révélé que le proton contient des traces de particules appelées quarks charmés, plus lourdes que le proton lui-même.

Le proton " a été une leçon d’humilité pour les humains ", a déclaré Williams. " Chaque fois qu'on pense pouvoir maîtriser le sujet, il nous envoie des balles à trajectoires courbées (en référence aux Pitchers du baseball)

Récemment, Milner, en collaboration avec Rolf Ent du Jefferson Lab, les cinéastes du MIT Chris Boebel et Joe McMaster et l'animateur James LaPlante, ont entrepris de transformer un ensemble d'intrigues obscures qui compilent les résultats de centaines d'expériences en une série d'animations de la forme -changement de proton. Nous avons intégré leurs animations dans notre propre tentative de dévoiler ses secrets.

Ouvrir le proton

La preuve que le proton contient de telles multitudes est venue du Stanford Linear Accelerator Center (SLAC) en 1967. Dans des expériences antérieures, les chercheurs l'avaient bombardé d'électrons et les avaient regardés ricocher comme des boules de billard. Mais le SLAC pouvait projeter des électrons avec plus de force, et les chercheurs ont constaté qu'ils rebondissaient différemment. Les électrons frappaient le proton assez fort pour le briser – un processus appelé diffusion inélastique profonde – et rebondissaient sur des fragments ponctuels du proton appelés quarks. "Ce fut la première preuve de l'existence réelle des quarks", a déclaré Xiaochao Zheng , physicien à l'Université de Virginie.

Après la découverte du SLAC, qui remporta le prix Nobel de physique en 1990, l'examen minutieux du proton s'est intensifié. Les physiciens ont réalisé à ce jour des centaines d’expériences de diffusion. Ils déduisent divers aspects de l'intérieur de l'objet en ajustant la force avec laquelle ils le bombardent et en choisissant les particules dispersées qu'ils collectent par la suite.

En utilisant des électrons de plus haute énergie, les physiciens peuvent découvrir des caractéristiques plus fines du proton cible. De cette manière, l’énergie électronique définit le pouvoir de résolution maximal d’une expérience de diffusion profondément inélastique. Des collisionneurs de particules plus puissants offrent une vision plus nette du proton.

Les collisionneurs à plus haute énergie produisent également un plus large éventail de résultats de collision, permettant aux chercheurs de choisir différents sous-ensembles d'électrons sortants à analyser. Cette flexibilité s'est avérée essentielle pour comprendre les quarks, qui se déplacent à l'intérieur du proton avec différentes impulsions.

En mesurant l'énergie et la trajectoire de chaque électron diffusé, les chercheurs peuvent déterminer s'il a heurté un quark transportant une grande partie de l'impulsion totale du proton ou juste une infime partie. Grâce à des collisions répétées, ils peuvent effectuer quelque chose comme un recensement, déterminant si l'impulsion du proton est principalement liée à quelques quarks ou répartie sur plusieurs.

(Illustration qui montre les apparences du proton en fonction des types de collisions)

Même les collisions de division de protons du SLAC étaient douces par rapport aux normes actuelles. Lors de ces événements de diffusion, les électrons jaillissaient souvent d'une manière suggérant qu'ils s'étaient écrasés sur des quarks transportant un tiers de l'impulsion totale du proton. Cette découverte correspond à une théorie de Murray Gell-Mann et George Zweig, qui affirmaient en 1964 qu'un proton était constitué de trois quarks.

Le " modèle des quarks " de Gell-Mann et Zweig reste une façon élégante d'imaginer le proton. Il possède deux quarks " up " avec des charges électriques de +2/3 chacun et un quark " down " avec une charge de −1/3, pour une charge totale de protons de +1.

(Image mobile : Trois quarks sont présents dans cette animation basée sur les données.)

Mais le modèle avec des quarks est une simplification excessive qui présente de sérieuses lacunes.

Qui échoue, par exemple, lorsqu'il s'agit du spin d'un proton, une propriété quantique analogue au moment cinétique. Le proton possède une demi-unité de spin, tout comme chacun de ses quarks up et down. Les physiciens ont initialement supposé que — dans un calcul faisant écho à la simple arithmétique de charge — les demi-unités des deux quarks up moins celle du quark down devaient être égales à une demi-unité pour le proton dans son ensemble. Mais en 1988, la Collaboration européenne sur les muons a rapporté que la somme des spins des quarks était bien inférieure à la moitié. De même, les masses de deux quarks up et d’un quark down ne représentent qu’environ 1 % de la masse totale du proton. Ces déficits ont fait ressortir un point que les physiciens commençaient déjà à comprendre : le proton est bien plus que trois quarks.

Beaucoup plus que trois quarks

L'accélérateur annulaire de hadrons et d'électrons (HERA), qui a fonctionné à Hambourg, en Allemagne, de 1992 à 2007, a projeté des électrons sur des protons avec une force environ mille fois supérieure à celle du SLAC. Dans les expériences HERA, les physiciens ont pu sélectionner les électrons qui avaient rebondi sur des quarks à impulsion extrêmement faible, y compris ceux transportant aussi peu que 0,005 % de l'impulsion totale du proton. Et ils les ont détectés : Les électrons d'HERA ont rebondi sur un maelström de quarks à faible dynamique et de leurs contreparties d'antimatière, les antiquarks.

(Photo image animée : De nombreux quarks et antiquarks bouillonnent dans une " mer " de particules bouillonnantes."

Les résultats ont confirmé une théorie sophistiquée et farfelue qui avait alors remplacé le modèle des quarks de Gell-Mann et Zweig. Développée dans les années 1970, il s’agissait d’une théorie quantique de la " force forte " qui agit entre les quarks. La théorie décrit les quarks comme étant liés par des particules porteuses de force appelées gluons. Chaque quark et chaque gluon possède l'un des trois types de charges "colorées ", étiquetées rouge, verte et bleue ; ces particules chargées de couleur se tirent naturellement les unes sur les autres et forment un groupe – tel qu’un proton – dont les couleurs s’additionnent pour former un blanc neutre. La théorie colorée est devenue connue sous le nom de chromodynamique quantique, ou QCD.

Selon cette QCD, les gluons peuvent capter des pics d’énergie momentanés. Avec cette énergie, un gluon se divise en un quark et un antiquark – chacun portant juste un tout petit peu d’impulsion – avant que la paire ne s’annihile et ne disparaisse. C'est cette " mer " de gluons, de quarks et d'antiquarks transitoires qu'HERA, avec sa plus grande sensibilité aux particules de faible impulsion, a détecté de première main.

HERA a également recueilli des indices sur ce à quoi ressemblerait le proton dans des collisionneurs plus puissants. Alors que les physiciens ajustaient HERA pour rechercher des quarks à faible impulsion, ces quarks – qui proviennent des gluons – sont apparus en nombre de plus en plus grand. Les résultats suggèrent que dans des collisions à énergie encore plus élevée, le proton apparaîtrait comme un nuage composé presque entièrement de gluons. (Image)

Les gluons abondent sous une forme semblable à un nuage.

Ce pissenlit de gluon est exactement ce que prédit la QCD. "Les données HERA sont une preuve expérimentale directe que la QCD décrit la nature", a déclaré Milner.

Mais la victoire de la jeune théorie s'est accompagnée d'une pilule amère : alors que la QCD décrivait magnifiquement la danse des quarks et des gluons à durée de vie courte révélée par les collisions extrêmes d'HERA, la théorie est inutile pour comprendre les trois quarks à longue durée de vie observés suite à un plus léger bombardement du SLAC.

Les prédictions de QCD ne sont faciles à comprendre que lorsque la force forte est relativement faible. Et la force forte ne s'affaiblit que lorsque les quarks sont extrêmement proches les uns des autres, comme c'est le cas dans les paires quark-antiquark de courte durée. Frank Wilczek, David Gross et David Politzer ont identifié cette caractéristique déterminante de la QCD en 1973, remportant le prix Nobel 31 ans plus tard.

Mais pour des collisions plus douces comme celle du SLAC, où le proton agit comme trois quarks qui gardent mutuellement leurs distances, ces quarks s'attirent suffisamment fortement les uns les autres pour que les calculs de QCD deviennent impossibles. Ainsi, la tâche de démystifier plus loin une vision du proton à trois quarks incombe en grande partie aux expérimentateurs. (Les chercheurs qui mènent des " expériences numériques ", dans lesquelles les prédictions QCD sont simulées sur des superordinateurs, ont également apporté des contributions clés .) Et c'est dans ce genre d' images à basse résolution que les physiciens continuent de trouver des surprises.

Une charmante nouvelle approche

Récemment, une équipe dirigée par Juan Rojo de l'Institut national de physique subatomique des Pays-Bas et de l'Université VU d'Amsterdam a analysé plus de 5 000 instantanés de protons pris au cours des 50 dernières années, en utilisant l'apprentissage automatique pour déduire les mouvements des quarks et des gluons à l'intérieur du proton via une procédure qui évite les conjectures théoriques.

Ce nouvel examen a détecté un flou en arrière-plan dans les images qui avait échappé aux chercheurs antérieurs. Dans des collisions relativement douces, juste capables d'ouvrir à peine le proton, la majeure partie de l'impulsion était enfermée dans les trois quarks habituels : deux ups et un down. Mais une petite quantité d’impulsion semble provenir d’un quark " charmé " et d’un antiquark charmé – particules élémentaires colossales dont chacune dépasse de plus d’un tiers le proton entier.

(Image mobie : Le proton agit parfois comme une " molécule " de cinq quarks.)

Ces charmés de courte durée apparaissent fréquemment dans le panorama " mer des quarks " du proton (les gluons peuvent se diviser en six types de quarks différents s'ils ont suffisamment d'énergie). Mais les résultats de Rojo et de ses collègues suggèrent que les charmés ont une présence plus permanente, ce qui les rend détectables lors de collisions plus douces. Dans ces collisions, le proton apparaît comme un mélange quantique, ou superposition, d'états multiples : un électron rencontre généralement les trois quarks légers. Mais il rencontrera occasionnellement une " molécule " plus rare de cinq quarks, comme un quark up, down et charmé regroupés d'un côté et un quark up et un antiquark charmé de l'autre.

Des détails aussi subtils sur la composition du proton pourraient avoir des conséquences. Au Grand collisionneur de hadrons, les physiciens recherchent de nouvelles particules élémentaires en frappant ensemble des protons à grande vitesse et en observant ce qui en ressort ; Pour comprendre les résultats, les chercheurs doivent commencer par savoir ce que contient un proton. L’apparition occasionnelle de quarks charmés géants rendrait impossible la production de particules plus exotiques.

Et lorsque des protons appelés rayons cosmiques déferlent ici depuis l'espace et percutent les protons de l'atmosphère terrestre, des quarks charmés apparaissant au bon moment inonderaient la Terre de neutrinos extra-énergétiques, ont calculé les chercheurs en 2021. Cela pourrait dérouter les observateurs à la recherche de neutrinos à haute énergie provenant de tout le cosmos.

La collaboration de Rojo prévoit de poursuivre l'exploration du proton en recherchant un déséquilibre entre les quarks charmés et les antiquarks. Et des constituants plus lourds, comme le quark top, pourraient faire des apparitions encore plus rares et plus difficiles à détecter.

Les expériences de nouvelle génération rechercheront des fonctionnalités encore plus inconnues. Les physiciens du Laboratoire national de Brookhaven espèrent lancer le collisionneur électron-ion dans les années 2030 et reprendre là où HERA s'est arrêté, en prenant des instantanés à plus haute résolution qui permettront les premières reconstructions 3D du proton. L'EIC utilisera également des électrons en rotation pour créer des cartes détaillées des spins des quarks et des gluons internes, tout comme le SLAC et HERA ont cartographié leurs impulsions. Cela devrait aider les chercheurs à enfin déterminer l'origine du spin du proton et à répondre à d'autres questions fondamentales concernant cette particule déroutante qui constitue l'essentiel de notre monde quotidien.

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Bois, 19 octobre 2022

[ univers subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

psychosomatique

Nous avons 2 cerveaux.

On se demande souvent pourquoi les gens ont des "boules" dans l'estomac avant d'aller sur scène ? Ou pourquoi un entretien d'emploi imminent peut causer des crampes intestinales ? Ainsi que : pourquoi les antidépresseur qui visent le cerveau causent la nausée ou un bouleversement abdominal chez des millions de personnes qui prennent de telles drogues ?

Les scientifiques disent que la raison de ces réactions est que notre corps a deux cerveaux : le familier, dans le crâne et, moins connus, mais extrêmement importants un autre dans l'intestin humain- Tout comme des jumeaux siamois, les deux cerveaux sont reliés ensemble ; quand l'un est affecté, l'autre aussi. Le cerveau de l'intestin, connu sous le nom de système nerveux entérique, est situé dans les gaines du tissu qui tapissent l'oesophage, l'estomac, le petit intestin et le colon. Si on le considère comme une simple entité, c'est un réseau de neurones, de neurotransmetteurs et de protéines qui zappent des messages entre eux, soutiennent des cellules comme celles du cerveau proprement dit et offrent des circuits complexes qui lui permettent d'agir indépendamment, d'apprendre, de se rappeler et, selon le dicton, de produire des sensations dans les intestins.

Le cerveau de l'intestin joue un rôle important dans le bonheur et la misère humains. Mais peu de gens savent qu'il existe indique le Dr. Michael Gershon, professeur d'anatomie et de biologie des cellules au centre médical presbytérien de Colombia à New York. Pendant des années, on a dit aux gens qui ont des ulcères, des problèmes pour avaler ou des douleurs abdominales chroniques que leurs problèmes étaient imaginaires ou, émotifs, c'est à dire simplement dans leurs têtes. Ces gens ont donc faits la navette entre divers psychiatres pour le traitement. Les médecins avaient raison en attribuant ces problèmes au cerveau dit le DR. Gershon, mais ils blâment le faux. Beaucoup de désordres gastro-intestinaux, comme le syndrome d'entrailles irritable proviennent des problèmes dans le propre cerveau de l'intestin, affirme-t'il. Les symptômes provenant des deux cerveaux - tendent à être confus : " Comme le cerveau peut déranger l'intestin, l'intestin peut également déranger le cerveau... si tu es enchaîné aux toilette avec un serre joint, tu seras aussi affecté."

Les détails de la façon dont le système nerveux entérique reflète le système nerveux central ont émergé ces dernières années, dit le Dr. Gershon, et c'est considéré comme un nouveau champ d'investigation appelé neuro-gastro-enterologie par la médecine. Ainsi, presque chaque substance qui aide à faire fonctionner et à commander le cerveau a donné des résultat dans l'intestin, dit Gershon. Les neurotransmetteurs principaux comme la sérotonine, dopamine, glutamate, nopépinéphrine et l'oxyde nitrique sont là. Deux douzaine de petites protéines cervicales, appelées les neuropeptides, sont dans l'intestin, comme les cellules principales du système immunitaire. Les Enkephalins, une classe d'opiacés normaux du corps, sont dans l'intestin et, constatation qui laisse les chercheurs perplexe, l'intestin est une riche source de benzodiazépines - la famille des produits chimiques psycho-actifs qui inclut des drogues toujours populaires telles que le Valium et le Xanax.

En termes évolutionnistes, il est assez clair que le corps a deux cerveaux, dit le Dr. David Wingate, professeur de science gastro-intestinale à l'université de Londres et conseiller à l'hôpital royal de Londres. Les premiers systèmes nerveux étaient des animaux non tubulaires qui collaient aux roches et attendaient le passage de nourriture. Le système limbique est souvent désignée sous le nom de "cerveau reptilien". Alors que la vie évoluait, les animaux ont eu besoin d'un cerveau plus complexe pour trouver la nourriture et un partenaire sexuel et ainsi ont développé un système nerveux central. Mais le système nerveux de l'intestin était trop important pour l'intégrer à cette nouvelle tête, même avec de longs raccordements sur tout le corps. Un rejeton à toujours besoin de manger et digérer de la nourriture à la naissance. Par conséquent, la nature semble avoir préservé le système nerveux entérique en tant que circuit indépendant.

Chez de plus grands animaux, il est simplement relié de manière vague au système nerveux central et peut la plupart du temps fonctionner seul, sans instructions de l'extérieur. C'est en effet l'image vue par les biologistes développementalistes. Une motte de tissus appelée la "crête neurale" se forme tôt dans l'embryogenese dit le DR.Gershon. Une section se transforme en système nerveux central. Un autre morceau émigre pour devenir le système nerveux entérique. Et postérieurieurement seulement les deux systèmes nerveux seront relié par l'intermédiaire d'une sorte de câble appelé le nerf "vagus". Jusque à relativement récemment, les gens ont pensé que les muscles et les nerfs sensoriels de l'intestin étaient câblés directement au cerveau et que le cerveau commandait l'intestin par deux voies qui augmentaient ou diminuaient les taux de l'activité. L'intestin étant un simple tube avec des réflexes. L'ennui est que personne ne pris la peine de compter les fibres de nerf dans l'intestin. Quand on l'a fait on fut étonné de constater que l'intestin contient 100 millions de neurones - plus que la moelle épinière.

Pourtant le conduit vagus n'envoie qu'environ deux mille fibres de nerf vers l'intestin. Le cerveau envoie des signaux à l'intestin en parlant à un nombre restreint de'"neurones de commande", qui envoient à leur tour des signaux aux neurones internes de l'intestin qui diffusent les messages. Les neurones et les inter neurones de commande sont dispersées dans deux couches de tissu intestinal appelées le plexus myenteric et le plexus subrmuscosal. ("le plexus solaire" est en fait un terme de boxe qui se réfère simplement aux nerfs de l'abdomen.) Ces neurones commandent et contrôlent le modèle de l'activité de l'intestin. Le nerf vagus modifie seulement le volume en changeant le taux de mise à feu. Les plexus contiennent également les cellules gliales qui nourrissent les neurones, les cellules pylônes impliquées dans des immuno-réactions, et "une barrière de sang cervical " qui maintient ces substances nocives loin des neurones importants. Ils ont des sondes pour les protéines de sucre, d'acidité et d'autres facteurs chimiques qui pourraient aider à surveiller le progrès de la digestion, déterminant comment l'intestin mélange et propulse son contenu. "Ce n'est pas une voie simple", Y sont employés des circuits intégrés complexes, pas différents du cerveau." Le cerveau de l'intestin et le cerveau de la tête agissent de la même manière quand ils sont privés d'informations venant du monde extérieur.

Pendant le sommeil, le cerveau de la tête produit des cycles de 90-minutes de sommeil lent, ponctué par des périodes de sommeil avec des mouvement d'oeil rapide (REM) où les rêves se produisent. Pendant la nuit, quand il n'a aucune nourriture, le cerveau de l'intestin produit des cycles 90-minute de lentes vagues de contractions des muscles, ponctuées par de courts gerbes de mouvements rapides des muscles, dit le Dr. Wingate. Les deux cerveaux peuvent donc s'influencer dans cet état. On a trouvé des patients présentant des problèmes d'entrailles ayant un sommeil REM anormal. Ce qui n'est pas contradictoire avec la sagesse folklorique qui voudrait que l'indigestion pousse au cauchemar. Alors que la lumière se fait sur les connexions entre les deux cerveaux, les chercheurs commencent à comprendre pourquoi les gens agissent et se sentent de telle manière.

Quand le cerveau central rencontre une situation effrayante, il libère les hormones d'effort qui préparent le corps combattre ou à se sauver dit le DR.Gershon. L'estomac contient beaucoup de nerfs sensoriels qui sont stimulés par cette montée chimique subite - ainsi surviennent les ballonnements. Sur le champ de bataille, le cerveau de la tête indique au cerveau d'intestin arrêter dit le DR.Gershon " Effrayé un animal en train de courir ne cesse pas de déféquer ". La crainte fait aussi que le nerf vagus au "monte le volume" des circuits de sérotonine dans l'intestin. Ainsi, trop stimulé, l'intestin impulse des vitesse élevés et, souvent, de la diarrhée. De même, des gens s'étouffent avec l'émotion. Quand des nerfs dans l'oesophage sont fortement stimulés, les gens peuvent éprouver des problèmes d'ingestion. Même le prétendu " Moment de Maalox " d'efficacité publicitaire peut être expliqué par les deux cerveaux agissant en interaction, dit le Dr. Jackie D. Wood, président du département de physiologie à l'université de l'Etat de l'Ohio à Columbus. Les signaux d'effort du cerveau de la tête peuvent changer la fonction de nerf entre l'estomac et l'oesophage, ayant pour résultat la brûlure d'estomac.

Dans les cas d'efforts extrême. le cerveau dominant semble protéger l'intestin en envoyant des signaux aux cellules pylônes immunologiques dans le plexus. Les cellules pylônes sécrètent l'histamine, la prostaglandine et d'autres agents qui aident à produire l'inflammation. "C'est protecteur. Si un animal est en danger et sujet au trauma, la substance sale dans les intestins est seulement à quelques cellules du reste du corps. En enflammant l'intestin, le cerveau amorce l'intestin pour la surveillance. Si la barrière se casse, l'intestin est prêt à faire les réparations ". Dit le DR. Wood. Malheureusement, ces produits chimiques libérés causent également la diarrhée et les crampes. Ceci explique également beaucoup d'interactions.."quand tu prends une drogue pour avoir des effets psychiques sur le cerveau, il est très probable que tu auras aussi des effets sur l'intestin. Réciproquement, les drogues développées pour le cerveau ont des utilisations pour l'intestin.

Par exemple, l'intestin est chargé avec la sérotonine des neurotransmetteur. Quand des récepteurs de pression de la doublure de l'intestin sont stimulés, la sérotonine est libérée et commence le mouvement réflexe du péristaltisme. Maintenant un quart des personnes prenant du Prozac ou des antidépresseur semblables ont des problèmes gastro- intestinaux comme la nausée, diarrhée et constipation. Ces drogues agissent sur la sérotonine, empêchant sa prise par les cellules cible de sorte qu'elle demeure plus abondante dans le système nerveux central. Dans une étude le DR.Gershon et ses collègues expliquent les effets secondaires du Prozac sur l'intestin. Ils ont monté une section de colon du cobaye sur un stand et ont mis un petit granule à l'extrémité de la "bouche". Le colon isolé fouette le granule vers le bas vers l'extrémité "anale" de la colonne, juste comme il le ferai à l'intérieur de l'animal. Quand les chercheurs ont mis un peu de Prozac dans le colon, le granule " y est entré dans la haute vitesse". La drogue a doublé la vitesse à laquelle le granule a traversé le colon, ce qui expliqueraient pourquoi certains ont la diarrhée. Le Prozac a été parfois utilisé à petites doses pour traiter la constipation chronique, a il ajouté. Mais quand les chercheurs ont augmenté la quantité de Prozac dans le colon du cobaye, le granule a cessé de se déplacer. Le DR Gershon dit que c'est pourquoi certains deviennent constipé avec cette drogue. Et parce que les nerfs sensoriels stimulés par Prozac peuvent également causer la nausée. Certains antibiotiques comme la crythromycine agissent sur des récepteurs d'intestin et produisent des oscillations. Certaines ont alors des crampes et des nausées. Des drogues comme la morphine et l'héroïne s'attachent aux récepteurs des opiacé de l'intestin, produisant la constipation. En effet, les deux cerveaux peuvent être intoxiqués aux opiacés. Les victimes des maladies d'Alzheimer et de Parkinson souffrent de constipation. Les nerfs dans leur intestin sont aussi malades que les cellules de nerf dans leurs cerveaux. Juste comme le cerveau central affecte l'intestin, le cerveau de l'intestin peut parler à la tête. La plupart des sensations d'intestin qui entrent dans la part consciente sont des choses négatives comme la douleur et le ballonnement.

Les gens ne s'attendent pas à sentir "du bon" venant de l'intestin... mais cela ne signifie pas que de tels signaux sont absents. Par conséquent, il y a la question intrigante : pourquoi l'intestin produit-il de la benzodiazépine ? Le cerveau humain contient des récepteurs pour la benzodiazépine, une drogue qui soulage l'inquiétude, suggérant que le corps produise sa propre source interne de la drogue, dit le Dr. Anthony Basile, neurochimiste au laboratoire de neurologie aux instituts nationaux de la santé a Bethesda. Il y a plusieurs années, dit-il, un scientifique italien a fait une découverte plus effrayante. Les patients présentant un disfonctionnement du foie tombèrent dans un coma profond. Le coma put être renversé, en quelques minutes, en donnant aux patients une drogue qui bloque la benzodiazépine. Quand le foie s'arrête, les substances habituellement neutralisées par le foie vont au cerveau. Certaines sont mauvaises, comme l'ammoniaque et les mercaptans, qui sont "les composés puants que les putois pulvérisent pour se défendre ". Mais une série de composés est également identique à la benzodiazépine. " Nous ne savons pas s'ils viennent de l'intestin lui-même, de bactéries dans l'intestin ou de la nourriture". dit. Le Dr Basile. Mais quand le foie s'arrête la benzodiazépine de l'intestin va directement au cerveau, mettant le patient dans le coma.

L'intérêt pour de telles interactions entre le cerveau d'intestin et celui de tête est énorme... Par exemple, beaucoup de personnes sont allergiques à certaines nourritures, comme les mollusques et les crustacés. C'est parce que les cellules pylônes dans l'intestin deviennent mystérieusement sensibilisées aux antigènes de la nourriture. La prochaine fois que l'antigène apparaît dans l'intestin ; les cellules pylônes appellent un programme, libérant des modulateurs chimiques, qui essaye d'éliminer la menace. La personne allergique se retrouve donc avec de la diarrhée et des crampes. Beaucoup de maladies auto-immunes comme la maladie de Krohn et les colites ulcérative peuvent impliquer le cerveau de l'intestin. Les conséquences peuvent être horribles, comme dans la maladie de Chagas, qui est provoquée par un parasite trouvé en Amérique du sud. Les infectés développent une réponse auto-immune des neurones de leur intestin. Leurs systèmes immunitaires détruit alors lentement leurs propres neurones intestinales. Quand assez de neurones sont mortes, les intestins éclatent littéralement.

Restent ces questions : Est ce que le cerveau de l'intestin apprend ? Pense - il pour lui-même ? L'intestin humain a été longtemps vu comme le réceptacle des bons et des mauvais sentiments. Des états peut-être émotifs du cerveau de la tête sont reflétés dans le cerveau de l'intestin, ou sont-ils ressentis que par ceux qui prêtent l'attention à elles. Le cerveau de l'intestin prend la forme de deux réseaux de raccordements neuraux dans la doublure de l'appareil gastro-intestinal, appelée le plexus myenteric et le plexus subrnucosal. Les nerfs sont fortement reliés ensemble et ont une influence directe sur des choses comme la vitesse de la digestion, le mouvement et des sécrétions de la muqueuses "comme-des-doigts" qui ligne les intestins et les contractions des différents genres de muscle dans les parois de l'intestin. Autoroute cerveau intestin à 2 voies : RUE Bidirectionnelle : L'intestin a son propre esprit, le système nerveux entérique. Juste comme le cerveau dans la tête, disent les chercheurs. Ce système envoie et reçoit des impulsions, enregistre, fait des expériences et répond aux émotions. Ses cellules nerveuse sont baignées et influencées par les mêmes neurotransmetteurs. L'intestin peut déranger le cerveau juste comme le cerveau peut déranger l'intestin. Diagramme des parois du petit intestin : un plan de coupe montre deux réseaux de nerfs qui composent le système nerveux entérique, ou "cerveau dans l'intestin". Le premier réseau, appelé le plexus submucosal, est juste sous la doublure muqueuse. le second, le plexus myenteric, se trouve entre les deux manteaux de muscle.

Auteur: Blakeslee Sandra

Info: New York Times 23 Janvier 1996

[ dyspepsie ] [ tourista ]

 

Commentaires: 0

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Chat GPT ou le perroquet grammairien

L’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur le langage humain et sur ce qu’on appelle parler. Notamment, les IA redonnent naissance à un débat ancien sur la grammaire générative et sur l’innéisme des facultés langagières. Mais les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction, et considérant aussi la façon dont les animaux communiquent.

a capacité de ChatGPT à produire des textes en réponse à n’importe quelle requête a immédiatement attiré l’attention plus ou moins inquiète d’un grand nombre de personnes, les unes animées par une force de curiosité ou de fascination, et les autres, par un intérêt professionnel.

L’intérêt professionnel scientifique que les spécialistes du langage humain peuvent trouver aux Large Language Models ne date pas d’hier : à bien des égards, des outils de traduction automatique comme DeepL posaient déjà des questions fondamentales en des termes assez proches. Mais l’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur ce que les Large Language Models sont susceptibles de nous dire sur le langage humain et sur ce qu’on appelle parler.

L’outil de traduction DeepL (ou les versions récentes de Google Translate) ainsi que les grands modèles de langage reposent sur des techniques d’" apprentissage profond " issues de l’approche " neuronale " de l’Intelligence Artificielle : on travaille ici sur des modèles d’IA qui organisent des entités d’information minimales en les connectant par réseaux ; ces réseaux de connexion sont entraînés sur des jeux de données considérables, permettant aux liaisons " neuronales " de se renforcer en proportion des probabilités de connexion observées dans le jeu de données réelles – c’est ce rôle crucial de l’entraînement sur un grand jeu de données qui vaut aux grands modèles de langage le sobriquet de " perroquets stochastiques ". Ces mécanismes probabilistes sont ce qui permet aussi à l’IA de gagner en fiabilité et en précision au fil de l’usage. Ce modèle est qualifié de " neuronal " car initialement inspiré du fonctionnement des réseaux synaptiques. Dans le cas de données langagières, à partir d’une requête elle-même formulée en langue naturelle, cette technique permet aux agents conversationnels ou aux traducteurs neuronaux de produire très rapidement des textes généralement idiomatiques, qui pour des humains attesteraient d’un bon apprentissage de la langue.

IA neuronales et acquisition du langage humain

Au-delà de l’analogie " neuronale ", ce mécanisme d’entraînement et les résultats qu’il produit reproduisent les théories de l’acquisition du langage fondées sur l’interaction avec le milieu. Selon ces modèles, généralement qualifiés de comportementalistes ou behavioristes car étroitement associés aux théories psychologiques du même nom, l’enfant acquiert le langage par l’exposition aux stimuli linguistiques environnants et par l’interaction (d’abord tâtonnante, puis assurée) avec les autres. Progressivement, la prononciation s’aligne sur la norme majoritaire dans l’environnement individuel de la personne apprenante ; le vocabulaire s’élargit en fonction des stimuli ; l’enfant s’approprie des structures grammaticales de plus en plus contextes ; et en milieu bilingue, les enfants apprennent peu à peu à discriminer les deux ou plusieurs systèmes auxquels ils sont exposés. Cette conception essentiellement probabiliste de l’acquisition va assez spontanément de pair avec des théories grammaticales prenant comme point de départ l’existence de patrons (" constructions ") dont la combinatoire constitue le système. Dans une telle perspective, il n’est pas pertinent qu’un outil comme ChatGPT ne soit pas capable de référer, ou plus exactement qu’il renvoie d’office à un monde possible stochastiquement moyen qui ne coïncide pas forcément avec le monde réel. Cela ne change rien au fait que ChatGPT, DeepL ou autres maîtrisent le langage et que leur production dans une langue puisse être qualifiée de langage : ChatGPT parle.

Mais ce point de vue repose en réalité sur un certain nombre de prémisses en théorie de l’acquisition, et fait intervenir un clivage lancinant au sein des sciences du langage. L’actualité de ces dernières années et surtout de ces derniers mois autour des IA neuronales et génératives redonne à ce clivage une acuité particulière, ainsi qu’une pertinence nouvelle pour l’appréhension de ces outils qui transforment notre rapport au texte et au discours. La polémique, comme souvent (trop souvent ?) quand il est question de théorie du langage et des langues, se cristallise – en partie abusivement – autour de la figure de Noam Chomsky et de la famille de pensée linguistique très hétérogène qui se revendique de son œuvre, généralement qualifiée de " grammaire générative " même si le pluriel (les grammaires génératives) serait plus approprié.

IA générative contre grammaire générative

Chomsky est à la fois l’enfant du structuralisme dans sa variante états-unienne et celui de la philosophie logique rationaliste d’inspiration allemande et autrichienne implantée sur les campus américains après 1933. Chomsky est attaché à une conception forte de la logique mathématisée, perçue comme un outil d’appréhension des lois universelles de la pensée humaine, que la science du langage doit contribuer à éclairer. Ce parti-pris que Chomsky qualifiera lui-même de " cartésien " le conduit à fonder sa linguistique sur quelques postulats psychologiques et philosophiques, dont le plus important est l’innéisme, avec son corollaire, l’universalisme. Selon Chomsky et les courants de la psychologie cognitive influencée par lui, la faculté de langage s’appuie sur un substrat génétique commun à toute l’espèce humaine, qui s’exprime à la fois par un " instinct de langage " mais aussi par l’existence d’invariants grammaticaux, identifiables (via un certain niveau d’abstraction) dans toutes les langues du monde.

La nature de ces universaux fluctue énormément selon quelle période et quelle école du " générativisme " on étudie, et ce double postulat radicalement innéiste et universaliste reste très disputé aujourd’hui. Ces controverses mettent notamment en jeu des conceptions très différentes de l’acquisition du langage et des langues. Le moment fondateur de la théorie chomskyste de l’acquisition dans son lien avec la définition même de la faculté de langage est un violent compte-rendu critique de Verbal Behavior, un ouvrage de synthèse des théories comportementalistes en acquisition du langage signé par le psychologue B.F. Skinner. Dans ce compte-rendu publié en 1959, Chomsky élabore des arguments qui restent structurants jusqu’à aujourd’hui et qui définissent le clivage entre l’innéisme radical et des théories fondées sur l’acquisition progressive du langage par exposition à des stimuli environnementaux. C’est ce clivage qui préside aux polémiques entre linguistes et psycholinguistes confrontés aux Large Language Models.

On comprend dès lors que Noam Chomsky et deux collègues issus de la tradition générativiste, Ian Roberts, professeur de linguistique à Cambridge, et Jeffrey Watumull, chercheur en intelligence artificielle, soient intervenus dans le New York Times dès le 8 mars 2023 pour exposer un point de vue extrêmement critique intitulée " La fausse promesse de ChatGPT ". En laissant ici de côté les arguments éthiques utilisés dans leur tribune, on retiendra surtout l’affirmation selon laquelle la production de ChatGPT en langue naturelle ne pourrait pas être qualifiée de " langage " ; ChatGPT, selon eux, ne parle pas, car ChatGPT ne peut pas avoir acquis la faculté de langage. La raison en est simple : si les Grands Modèles de Langage reposent intégralement sur un modèle behaviouriste de l’acquisition, dès lors que ce modèle, selon eux, est réfuté depuis soixante ans, alors ce que font les Grands Modèles de Langage ne peut être qualifié de " langage ".

Chomsky, trop têtu pour qu’on lui parle ?

Le point de vue de Chomsky, Roberts et Watumull a été instantanément tourné en ridicule du fait d’un choix d’exemple particulièrement malheureux : les trois auteurs avançaient en effet que certaines constructions syntaxiques complexes, impliquant (dans le cadre générativiste, du moins) un certain nombre d’opérations sur plusieurs niveaux, ne peuvent être acquises sur la base de l’exposition à des stimuli environnementaux, car la fréquence relativement faible de ces phénomènes échouerait à contrebalancer des analogies formelles superficielles avec d’autres tournures au sens radicalement différent. Dans la tribune au New York Times, l’exemple pris est l’anglais John is too stubborn to talk to, " John est trop entêté pour qu’on lui parle ", mais en anglais on a littéralement " trop têtu pour parler à " ; la préposition isolée (ou " échouée ") en position finale est le signe qu’un constituant a été supprimé et doit être reconstitué aux vues de la structure syntaxique d’ensemble. Ici, " John est trop têtu pour qu’on parle à [John] " : le complément supprimé en anglais l’a été parce qu’il est identique au sujet de la phrase.

Ce type d’opérations impliquant la reconstruction d’un complément d’objet supprimé car identique au sujet du verbe principal revient dans la plupart des articles de polémique de Chomsky contre la psychologie behaviouriste et contre Skinner dans les années 1950 et 1960. On retrouve même l’exemple exact de 2023 dans un texte du début des années 1980. C’est en réalité un exemple-type au service de l’argument selon lequel l’existence d’opérations minimales universelles prévues par les mécanismes cérébraux humains est nécessaire pour l’acquisition complète du langage. Il a presque valeur de shibboleth permettant de séparer les innéistes et les comportementalistes. Il est donc logique que Chomsky, Roberts et Watumull avancent un tel exemple pour énoncer que le modèle probabiliste de l’IA neuronale est voué à échouer à acquérir complètement le langage.

On l’aura deviné : il suffit de demander à ChatGPT de paraphraser cette phrase pour obtenir un résultat suggérant que l’agent conversationnel a parfaitement " compris " le stimulus. DeepL, quand on lui demande de traduire cette phrase en français, donne deux solutions : " John est trop têtu pour qu’on lui parle " en solution préférée et " John est trop têtu pour parler avec lui " en solution de remplacement. Hors contexte, donc sans qu’on sache qui est " lui ", cette seconde solution n’est guère satisfaisante. La première, en revanche, fait totalement l’affaire.

Le détour par DeepL nous montre toutefois la limite de ce petit test qui a pourtant réfuté Chomsky, Roberts et Watumull : comprendre, ici, ne veut rien dire d’autre que " fournir une paraphrase équivalente ", dans la même langue (dans le cas de l’objection qui a immédiatement été faite aux trois auteurs) ou dans une autre (avec DeepL), le problème étant que les deux équivalents fournis par DeepL ne sont justement pas équivalents entre eux, puisque l’un est non-ambigu référentiellement et correct, tandis que l’autre est potentiellement ambigu référentiellement, selon comment on comprend " lui ". Or l’argument de Chomsky, Roberts et Watumull est justement celui de l’opacité du complément d’objet… Les trois auteurs ont bien sûr été pris à défaut ; reste que le test employé, précisément parce qu’il est typiquement behaviouriste (observer extérieurement l’adéquation d’une réaction à un stimulus), laisse ouverte une question de taille et pourtant peu présente dans les discussions entre linguistes : y a-t-il une sémantique des énoncés produits par ChatGPT, et si oui, laquelle ? Chomsky et ses co-auteurs ne disent pas que ChatGPT " comprend " ou " ne comprend pas " le stimulus, mais qu’il en " prédit le sens " (bien ou mal). La question de la référence, présente dans la discussion philosophique sur ChatGPT mais peu mise en avant dans le débat linguistique, n’est pas si loin.

Syntaxe et sémantique de ChatGPT

ChatGPT a une syntaxe et une sémantique : sa syntaxe est homologue aux modèles proposés pour le langage naturel invoquant des patrons formels quantitativement observables. Dans ce champ des " grammaires de construction ", le recours aux données quantitatives est aujourd’hui standard, en particulier en utilisant les ressources fournies par les " grand corpus " de plusieurs dizaines de millions voire milliards de mots (quinze milliards de mots pour le corpus TenTen francophone, cinquante-deux milliards pour son équivalent anglophone). D’un certain point de vue, ChatGPT ne fait que répéter la démarche des modèles constructionalistes les plus radicaux, qui partent de co-occurrences statistiques dans les grands corpus pour isoler des patrons, et il la reproduit en sens inverse, en produisant des données à partir de ces patrons.

Corrélativement, ChatGPT a aussi une sémantique, puisque ces théories de la syntaxe sont majoritairement adossées à des modèles sémantiques dits " des cadres " (frame semantics), dont l’un des inspirateurs n’est autre que Marvin Minsky, pionnier de l’intelligence artificielle s’il en est : la circulation entre linguistique et intelligence artificielle s’inscrit donc sur le temps long et n’est pas unilatérale. Là encore, la question est plutôt celle de la référence : la sémantique en question est très largement notionnelle et ne permet de construire un énoncé susceptible d’être vrai ou faux qu’en l’actualisant par des opérations de repérage (ne serait-ce que temporel) impliquant de saturer grammaticalement ou contextuellement un certain nombre de variables " déictiques ", c’est-à-dire qui ne se chargent de sens que mises en relation à un moi-ici-maintenant dans le discours.

On touche ici à un problème transversal aux clivages dessinés précédemment : les modèles " constructionnalistes " sont plus enclins à ménager des places à la variation contextuelle, mais sous la forme de variables situationnelles dont l’intégration à la description ne fait pas consensus ; les grammaires génératives ont très longtemps évacué ces questions hors de leur sphère d’intérêt, mais les considérations pragmatiques y fleurissent depuis une vingtaine d’années, au prix d’une convocation croissante du moi-ici-maintenant dans l’analyse grammaticale, du moins dans certains courants. De ce fait, l’inscription ou non des enjeux référentiels et déictiques dans la définition même du langage comme faculté humaine représente un clivage en grande partie indépendant de celui qui prévaut en matière de théorie de l’acquisition.

À l’école du perroquet

La bonne question, en tout cas la plus féconde pour la comparaison entre les productions langagières humaines et les productions des grands modèles de langage, n’est sans doute pas de savoir si " ChatGPT parle " ni si les performances de l’IA neuronale valident ou invalident en bloc tel ou tel cadre théorique. Une piste plus intéressante, du point de vue de l’étude de la cognition et du langage humains, consiste à comparer ces productions sur plusieurs niveaux : les mécanismes d’acquisition ; les régularités sémantiques dans leur diversité, sans les réduire aux questions de référence et faisant par exemple intervenir la conceptualisation métaphorique des entités et situations désignées ; la capacité à naviguer entre les registres et les variétés d’une même langue, qui fait partie intégrante de la maîtrise d’un système ; l’adaptation à des ontologies spécifiques ou à des contraintes communicatives circonstancielles… La formule du " perroquet stochastique ", prise au pied de la lettre, indique un modèle de ce que peut être une comparaison scientifique du langage des IA et du langage humain.

Il existe en effet depuis plusieurs décennies maintenant une linguistique, une psycholinguistique et une pragmatique de la communication animale, qui inclut des recherches comparant l’humain et l’animal. Les progrès de l’étude de la communication animale ont permis d’affiner la compréhension de la faculté de langage, des modules qui la composent, de ses prérequis cognitifs et physiologiques. Ces travaux ne nous disent pas si " les animaux parlent ", pas plus qu’ils ne nous disent si la communication des corbeaux est plus proche de celle des humains que celle des perroquets. En revanche ils nous disent comment diverses caractéristiques éthologiques, génétiques et cognitives sont distribuées entre espèces et comment leur agencement produit des modes de communication spécifiques. Ces travaux nous renseignent, en nous offrant un terrain d’expérimentation inédit, sur ce qui fait toujours système et sur ce qui peut être disjoint dans la faculté de langage. Loin des " fausses promesses ", les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction. 



 

Auteur: Modicom Pierre-Yves

Info: https://aoc.media/ 14 nov 2023

[ onomasiologie bayésienne ] [ sémiose homme-animal ] [ machine-homme ] [ tiercités hors-sol ] [ signes fixés externalisables ]

 

Commentaires: 0

Ajouté à la BD par miguel