Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 127
Temps de recherche: 0.051s

désamour

J’ai cherché dans l’absence un remède à mes maux ;

J’ai fui les lieux charmants qu’embellit l’infidèle,

Caché dans ces forêts dont l’ombre est éternelle,

J’ai trouvé le silence, et jamais le repos.

Par les sombres détours d’une route inconnue

J’arrive sur ces monts qui divisent la nue :

De quel étonnement tous mes sens sont frappés !

Quel calme ! quels objets ! quelle immense étendue !

La mer paraît sans borne à mes regards trompés,

Et dans l’azur des cieux est au loin confondue.

Le zéphyr en ce lieu tempère les chaleurs,

De l’aquilon parfois on y sent les rigueurs,

Et tandis que l’hiver habite ces montagnes,

Plus bas l’été brûlant dessèche les campagnes.



Le volcan dans sa course a dévoré ces champs ;

La pierre calcinée atteste son passage :

L’arbre y croît avec peine, et l’oiseau par ses chants

N’a jamais égayé ce lieu triste et sauvage.

Tout se tait, tout est mort ; mourez, honteux soupirs,

Mourez importuns souvenirs

Qui me retracez l’infidèle ;

Mourez tumultueux désirs ;

Ou soyez volages comme elle.

Ces bois ne peuvent me cacher ;

Ici même, avec tous ses charmes,

L’ingrate encor me vient chercher ;

Et son nom fait couler des larmes

Que le temps aurait dû sécher.

O dieux ! ô rendez-moi ma raison égarée ;

Arrachez de mon cœur cette image adorée ;

Eteignez cet amour qu’elle vient rallumer,

Et qui remplit encor mon âme tout entière,

Ah ! l’on devrait cesser d’aimer

Au moment qu’on cesse de plaire.

Tandis qu’avec mes pleurs la plainte et les regrets

Coulent de mon âme attendrie,

J’avance, et de nouveaux objets

Interrompent ma rêverie.

Je vois naître à mes pieds ces ruisseaux différents

Qui, changés tout à coup en rapides torrents,

Traversent à grand bruit les ravines profondes,

Roulent avec leurs flots le ravage et l’horreur,

Fondent sur le rivage, et vont avec fureur

Dans l’océan troublé précipiter leurs ondes.

Je vois des rocs noircis, font le front orgueilleux

S’élève et va frapper les cieux.

Le temps a gravé sur leurs cimes

L’empreinte de la vétusté.

Mon œil rapidement porté

De torrents en torrents, d’abîmes en abîmes,

S’arrête épouvanté.

O nature ! qu’ici je ressens son empire !

J’aime de ce désert la sauvage âpreté ;

De tes travaux hardis j’aime la majesté ;

Oui, ton horreur me plaît, je frissonne et j’admire.



Dans ce séjour tranquille, aux regards des humains

Que ne puis-je cacher le reste de ma vie !

Que ne puis-je du moins y laisser mes chagrins !

Je venais oublier l’ingrate qui m’oublie,

Et ma bouche indiscrète a prononcé son nom ;

Je l’ai redit cent fois, et l’écho solitaire

De ma voix douloureuse a prolongé le son ;

Ma main l’a gravé sur la pierre ;

Au mien il est entrelacé.

Un jour, le voyageur sous la moussé légère,

De ces noms connus à Cythère

Verra quelque reste effacé.

Soudain il s’écriera : "Son amour fut extrême ;

Il chanta sa maîtresse au fond de ces déserts.

Pleurons sur ses malheurs et relisons les vers

Qu’il soupira dans ce lieu même."

Auteur: Parny Evariste Désiré de Forges vicomte de

Info: J'ai cherché, Élégies

[ imprégnation ] [ mélancolie ] [ poème ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

observateur

Une fréquence peut produire n'importe quelle forme ?

Il n'y a aucune forme ou géométrie spécifique intrinsèquement associée à une fréquence spécifique. On peut faire apparaître une fréquence donnée sous n'importe quelle forme, dans certaines limites physiques - tout ce qu'il faut faire est de choisir le bon diamètre pour l'antenne ou le récepteur, et la bonne viscosité ainsi que la tension superficielle du fluide... Alors la fréquence d'entrée produira la géométrie d'onde stationnaire souhaitée.

Nous avons tous fait l'expérience de cette vérité fondamentale en résonance avec nos voix dans une pièce vide. Dans une pièce vide d'ornements muraux, on peut faire résonner différentes tonalités sur une octave. Avec une attention particulière, on peut trouver une ou plusieurs tonalités qui semblent résonner plus longtemps dans la pièce, ou même s'amplifier en volume lorsqu'on chante la note. Ces sons particuliers sont des fréquences qui résonnent avec la géométrie de la pièce et l'air qui la remplit. Si vous changez l'air de la pièce par de l'hélium pur, les sons que vous essayez se comporteront différemment. Si vous modifiez les dimensions de la pièce, vous entendrez différentes tonalités résonner avec l'espace. On a le même concept avec la cymatique liquide. Le fait qu'un certain son résonne bien dans une pièce spécifique ne signifie pas que le son lui-même soit magique - cela signifie simplement qu'il est magique spécifiquement avec cette endroit et l'air qui le remplit. Il se peut pareillement qu'une journée plus humide avec une pression barométrique plus élevée modifie les propriétés de l'air dans cet espace et change ainsi les fréquences de résonance de l'espace.

Ainsi, si on désire une résonance dans la cymatique liquide, il faut choisir le bon espace rempli du bon médium. Base de l'ingénierie de résonance sonique dans l'application de la cymatique liquide.

La conclusion de tout cela est de comprendre que lorsque nous voyons une image cymatique liquide (appelée hydroglyphe), nous visualisons le résultat de la façon dont une certaine fréquence se comportent dans un espace donné ; c'est la relation géométrique spécifique entre la fréquence d'entrée et le fluide dans la cuve utilisée.

Cela amène à parler de l'engouement pour le 432Hz, puisque les gens prétendent que la cymatique du 432Hz est plus "jolie" que celle du 440Hz. Cependant, ce qui manque ici, c'est la reconnaissance du diamètre du conteneur récepteur et du fluide utilisé ; il n'y a pas non plus de prise en considération pour le fait fondamental que si on avait changé le diamètre de ce conteneur ou les propriétés du fluide, on aurait pu rendre le 440Hz "joli" et le 432Hz distordu. En un sens, c'est un mensonge. On peut faire en sorte que *n'importe quelle* fréquence soit jolie alors qu'une autre fréquence proche sera modifiée (440Hz est suffisamment proche de 432Hz pour y ressembler mais être déformée). En ce sens, il n'y a rien de spécial à accorder notre musique sur A432 ou A440. Du moins, jusqu'à ce qu'on examine les dimensions de la forme humaine et les viscosités et tensions superficielles de notre sang.

C'est peut-être à ce moment qu'on trouvera une certaine "magie" dans les fréquences d'un accordage à 432, où les tons résonnent mieux avec les cavités et les fluides spécifiques de la forme humaine. Tant que cette étude n'est pas réalisée, on ne peut pas dire que ce niveau de 432Hz possède une quelconque magie inhérente, même en se basant sur la beauté mathématique des ratios de cet accord.

Ceci apporte un peu lumière sur le phénomène de la cymatique liquide et sur les hydroglyphes qui sont produits ici et là

(Suivent deux photos où on voit 15,6 Hz dans deux espaces distincts remplis du même liquide, une tasse de 2 pouces de diamètre et l'autre de 2,875 pouces de diamètre. Avec des réseaux de couleurs différentes qui éclairent chaque espace, et on peut clairement voir que l'un est une géométrie triple et l'autre une géométrie quadruple. Ainsi, on ne peut pas dire "C'est à ça que ressemble 15,6 Hz", puisqu'on peut faire en sorte que 15,6 Hz ressemble à n'importe quelle forme.)

Ceci étant expliqué, on constatera que seul "l'esprit attentif" apporte une certaine cohérence rationnelle à ce qui précède...

Il semble correct de constater que n'importe quel humain - éventuellement n'importe quel être, puisse être d'accord sur une telle démonstration du rôle de recepteur.

Et donc, même si nous "ressentons" tous les choses différemment, nous sommes ici capable de partager ce concept... Mais pour l'instant uniquement dans le domaine humain... Au même niveau, celui de notre espèce... Pas plus.

Pouvons-nous dire que ceci est possible parce que nous partageons tous un accordage des sens similaire ?... De la même syntonisation avec le réel, qui nous permet de créer et partager un univers consensuel ?

Auteur: Internet

Info: Post FB de Mr. E-Scholar, 13 janv 2023. Adaptation Mg

[ point de singularité ] [ totale relativité ] [ pur esprit désincarné ] [ question ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

protestantisme

Il est vrai, Caïetan reprochait autre chose à Luther : sa doctrine de la justification : neminem justificari posse nisi per fidem. Question capitale sans doute ; mais enfin, telle qu’il la formulait avant la dispute de Leipzig et dans l’été de 1518, la doctrine de Luther était-elle hérétique, sans hésitation ni scrupule quelconque ? Un historien n’est pas qualifié pour le dire. Il peut seulement, il doit rappeler un fait.

L’attention s’est portée dans ces dernières années sur l’activité doctrinale d’un groupe de théologiens, dont certains parvinrent, dans l’Église, à de hautes situations et qui, sur la justification, professèrent fort tard (en plein concile de Trente) des opinions toutes proches, pour un profane, des opinions luthériennes. Tel, ce Girolamo Seripando, général des Augustins de 1539 à 1551, qui reçut le chapeau (1561) et remplit jusqu’à sa mort (1563) les fonctions de cardinal-légat au concile. Là, à l’indignation de certains (ce n’étaient pas des Augustins !) il exposa et défendit avec acharnement des idées hardies, opposées à celles des thomistes, proches des idées luthériennes. Les tenait-il de Luther ?

Le chanoine Paquier, dans le Dictionnaire de théologie catholique, s’empresse de laver Seripando d’un tel soupçon. Peu nous chaut. Le fait demeure. Un légat pontifical, un cardinal romain, pouvait impunément, quarante ans après la condamnation de Luther par la bulle Exsurge, dix-sept ans après la mort de l’hérétique, soutenir en plein concile des doctrines telles que M. Paquier se croit tenu d’écrire : "La manière fort opposée dont l’Église a traité ces idées et ces hommes (Seripando, Luther) ne doit pas scandaliser... À toutes les époques de la vie de l’Église, certaines théories se côtoyant ont éprouvé ainsi, des traitements fort divers... La vraie raison de cette différence... tient à la doctrine elle-même... Seripando et les siens ont toujours maintenu la responsabilité de l’homme envers Dieu et l’obligation d’observer la morale. Luther au contraire a nié fougueusement la liberté. Et pour affirmer qu’à elle seule, la foi neutralise les péchés les plus réels, il a des textes d’une massivité déconcertante." Oui, mais ces textes, de quand datent-ils ? Ces déclarations "d’une massivité déconcertante" sont donc antérieures à la dispute de Leipzig ? Rappelons-nous les dates, et que Luther, quand il comparaît à Augsbourg devant Caïetan, du 12 au 14 octobre 1518, près d’un an avant son tournoi avec Eck — déjà ses juges romains, sans plus de façon l’ont déclaré hérétique ; déjà l’ordre a été transmis aux chefs des Augustins d’Allemagne d’avoir à incarcérer leur confrère pestilentiel ; déjà le bref du 23 août 1518 mobilise contre lui et l’Église et l’État...

Or, qu’on se reporte à l’écrit en allemand, Unterricht auf etliche Artikel, que Luther publia en février 1519, à la veille de la dispute de Leipzig. Des idées réformatrices, sans doute. Un effort hardi pour épurer la théologie du temps. Mais qu’il s’agisse du culte des saints, à travers qui l’on doit honorer et invoquer Dieu lui-même (p. 70) ; ou des âmes du Purgatoire qui peuvent être secourues par des prières et des aumônes, encore qu’on ne sache rien des peines qu’elles endurent et de la manière dont Dieu leur applique nos suffrages — weiss ich nit, und sag noch das das niemant genugsam weiss — qu’il soit question encore des commandements de l’Église : ils sont, écrit Luther, au Décalogue ce que la paille est à l’or, wie das Golt und edel Gesteyn uber das Holtz und Stroo ; qu’il vienne à traiter, enfin, de l’Église romaine qu’on ne saurait quitter en considération de saint Pierre, de saint Paul, des centaines de martyrs précieux qui l’ont honorée de leur sang, ou même du pouvoir papal qu’il faut respecter comme tous les pouvoirs établis, tous venant également de Dieu : rien dans tout cela que vingt, que quarante théologiens ou humanistes en vue de ce temps n’aient dit de leur côté, avec autant ou même parfois avec plus de vivacité et de hardiesse, sans qu’ils fussent traqués, cités en cour de Rome, réputés hérétiques et dénoncés d’avance aux pouvoirs séculiers... 

[…] Érasme avait raison pour une fois. Si Rome poursuivait Luther avec tant de hâte passionnée, c’est qu’il avait touché "à la couronne du pape et au ventre des moines". Et Hutten avait raison aussi : c’est que Luther était un Allemand qui, dangereusement, se dressant à la porte de l’Allemagne, prétendait en interdire l’exploitation fructueuse aux Italiens. Comment Luther, l’impulsif, l’impressionnable Luther aurait-il fermé les yeux à cette évidence ?

Ainsi Rome faisait tout pour le pousser, l’incliner dans la voie des Hutten et des Crotus Rubianus. En le classant sans répit et presque sans débat parmi ces hérétiques criminels dont il faut étouffer les idées dans l’œuf, elle le chassait peu à peu hors de cette unité, de cette catholicité au sein de laquelle pourtant, de toute son évidente sincérité, il proclamait vouloir vivre et mourir. Elle acceptait le schisme, elle courait au-devant de lui. Elle fermait, sur la route de Martin Luther, la porte pacifique, la porte discrète d’une réforme intérieure.

Auteur: Febvre Lucien

Info: Un destin : Martin Luther, PUF, 1968, pages 94 à 97

[ catholicisme ] [ politique ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

sodomie

L'art et la manière. Un certain nombre de femmes hésitent, voire refusent, à la pratiquer. Pour certaines il s'agit d'une pratique déplaisante, pour d'autres c'est la crainte d'avoir mal et pour la plupart c'est le fait de penser qu'elles n'en tireront aucun plaisir si ce n'est le fait de complaire à leur amant. Certains hommes (pas les meilleurs amants) utilisent des mots grossièrement excitants, pour en parler : enculade, fourre-cul, bourrage, etc. Grossièreté qui n'est, pour moi, que la crainte inavouée d'un fantasme enfui en eux de se faire enculer eux-mêmes, craignant de ce fait une perte de leur virilité tout en ayant le souhait trouble que cela leur arrive. Trivialité qui ne me dérange pas et même m'amuse, surtout quand j'utilise ces mots pour le demander de me prendre par derrière. Je me suis aperçue que cela les faisait souvent bander comme des cerfs, ce dont je profitais bien évidemment ensuite ! N'hésitez pas, mesdames, à utiliser sans complexes les mots les plus crus, ces messieurs adoreront. Cette pratique est vieille comme le monde, utilisée dans toutes les civilisations et présente également dans la nature avec certaines espèces d'animaux. Exclusivement masculine du fait même de sa nature cette pratique n'est ni déplaisante, ni douloureuse et procure une jouissance certaine à qui sait en faire usage. En tant que femme, amoureuse du sexe et pratiquante résolue, je pense que toutes les pratiques sexuelles sont honorables tant qu'elles sont faites entre adultes consentants. Elle est également le seul moyen pour un homme de ressentir un peu la sensation que perçoit une femme qui se fait prendre. Tous les gays vous le diront, ils en tirent une grande jouissance. Enfin elle permet à tous ceux qui ont des problèmes d'érection d'arriver à la jouissance, même avec une femme, si celle-ci utilise un godemiché-ceinture. Je l'ai fait pour un ou deux de mes amants qui souhaitaient avoir une sensation homosexuelle mais préféraient ne pas coucher avec un homme (je pense et dis qu'ils avaient tort, une bonne vraie queue d'homme c'est vraiment autre chose qu'un engin en latex, n'est-ce pas mesdames !). Je la pratique et la sollicite de mon partenaire chaque fois que possible. Il suffit de la pratiquer plusieurs fois pour en tirer ensuite un plaisir incomparable et totalement différent de la pénétration vaginale. Votre amant sera délicieusement surpris si vous lui proposez la sodomie et ravi si vous lui dites "et maintenant je voudrais bien que tu m'encules ! J'adore ça !". Son étonnement fera place à une ardeur renouvelée dont vous n'aurez pas à vous plaindre et cela vous entraînera peut-être vers d'autres chemins érotiques qui vous raviront. Une préparation s'impose, surtout les premières fois. Ce que je pourrais conseiller c'est de se préparer dans sa baignoire, avec sa douchette. Vous dévisser d'abord la douchette pour ne conserver que le flexible, ensuite vous ouvrez l'eau à une température chaude mais non brûlante, vous vous adossez au fond de la baignoire, vous relevez et écartez vos cuisses. Vous pouvez à ce moment diriger doucement le jet chaud vers votre anus(et ce n'est pas le moment de jouer avec votre petite chatte, coquines !) et vous laissez un moment l'eau vous caresser. Caresse que vous prolongez ensuite avec un doigt que vous faites tourner gentiment autour de votre oeillet, puis vous précisez la caresse en forçant doucement l'entrée de votre réduit intime, faites aller et venir doucement ce doigt. Vous commencez à ressentir une sensation agréable. Introduisez ensuite, toujours avec douceur, un deuxième puis un troisième doigt. Votre passage commence à être prêt. Renouvelez cette opération chaque fois que possible et votre première sodomie (et les autres) seront un vrai plaisir !. Si vous devez faire l'amour dans les heures qui suivent je vous recommande : lorsque vous serez suffisamment élargie et si votre flexible n'a pas d'aspérités gênantes (impératif), introduisez-le délicatement dans votre cul, avec un jet très faible et rincez ainsi votre passage, l'eau sera très vite claire et votre partenaire appréciera, surtout s'il viendra vous humecter le passage avec sa langue, ce qui est, là aussi, follement délicieux. Avec votre amant utilisez sans complexe un gel intime ou un lait de toilette car l'anus n'a pas de lubrification naturelle comme son petit veinard de voisin ! Cette lubrification peut devenir un jeu sexuel très excitant ! J'ai connu des hommes qui éjaculaient sans contact rien qu'en me préparant de la sorte ! C'était frustrant sur le moment mais ma bouche savait bien les revigorer et ils n'en étaient que plus longs à jouir et donc à me donner du plaisir ensuite !. Ressentir un membre chaud, dur et doux à la fois, qui lentement vous rentre entre les reins, sentir la pulsation sanguine qui l'irrigue et le doux va-et-vient qui vous remplit le cul, provoque au fur et à mesure une excitation grandissante qui me mène à l'orgasme, orgasme qui éclate en feu d'artifice quand le jet brûlant de sperme s'éclate au plus profond de moi. Si au même moment une main, la sienne ou la mienne, qu'importe, joue avec mon minou au même moment, là il y a plaisir intense. L'anus est un muscle délicat et sensible, de même nature que les lèvres, dont la forte irrigation nerveuse peut et doit être une source de plaisir. Il est cependant un peu fragile et doit être utilisé avec délicatesse même si c'est avec passion !. Bien entendu si vous ne connaissez pas très bien votre partenaire (ou que vous le connaissiez trop bien !) l'usage d'un préservatif s'impose alors, l'absence d'explosion chaude du sperme dans votre ventre sera compensée par de la sécurité. Foutu SIDA !

Auteur: Internet

Info: Frédérique, http://vassilia.net/frederique06.htm

[ femmes-hommes ] [ éloge ]

 

Commentaires: 0

compte-rendu de lecture

Les pépites de Charles S. Peirce

L’œuvre de Peirce est plutôt disparate, souvent dense et incontestablement précieuse. S’y inventent tout à la fois une notion très déterminée de l’épistémologie, une théorie de la vérité ou encore un rapport particulier à la logique. Entre autres.

Charles Sanders Peirce est un auteur que tout philosophe gagnerait à fréquenter, car il y trouverait, pour parler comme Russell, qui n’avait pourtant pas été tendre pour la théorie pragmatiste de la vérité, "des pépites d’or pur". Il est vrai qu’il faut pour cela s’armer de patience, car les obstacles à surmonter sont nombreux. Un peu comme Leibniz, Peirce est un polymathe, qui n’a jamais exercé de fonction universitaire durable et a laissé une œuvre très éclatée, composée d’une foule de petits textes, d’accès souvent difficile, entre lesquels il faut sans cesse naviguer. Il a adopté une morale terminologique propre à dissuader le lecteur le mieux disposé, pour traiter des sujets de surcroît le plus souvent très ardus. Une vue d’ensemble, comme celle offerte dans le présent ouvrage, est donc particulièrement bienvenue, même si elle se heurte à des difficultés dont l’auteur était bien conscient. Vouloir, en quelque trois cents pages, présenter à la fois la diversité des domaines abordés et la richesse des analyses élaborées tenait un peu de la gageure. Pour réussir, J.-M. Chevalier a choisi une écriture très dense et, faute de pouvoir le suivre dans tous les détails de son argumentation, il faut se contenter d’en prendre une vue on ne peut plus schématique.

Une épistémologie à inventer

Peirce est connu pour être le père du pragmatisme, mais l’auteur nous propose de voir aussi en lui l’inventeur de l’épistémologie. Ce faisant, il joue sur l’équivoque d’un mot qui, sous l’influence de l’anglais, ne signifie plus seulement philosophie des sciences, mais plus généralement théorie de la connaissance, le mot gnoséologie n’ayant jamais réussi à entrer dans l’usage. Si, au premier sens, l’affirmation est manifestement fausse, même dans le dernier cas elle ne va pas de soi, la théorie de la connaissance s’étant constituée, dès avant Peirce, en discipline bien établie (p. 10). Toutefois, entre l’Erkenntnistheorie des néo-kantiens et l’actuelle epistemology, il y a bien une rupture dont Peirce est l’un des principaux artisans, de sorte que l’épistémologie dont il sera question était bien alors "une discipline encore à inventer" (p. 9). La référence à Kant n’en est pas moins omniprésente. Comme pour ce dernier, il s’agit de rendre compte des conditions de possibilité de la connaissance, de sorte que la perspective transcendantale est conservée, mais sensiblement infléchie. Le rapport à Kant est en effet doublé d’un autre rapport, d’une tout autre nature, mais non moins important, à Mill. En cent ans, les sciences expérimentales avaient en effet connu un essor prodigieux et, sous l’influence de l’empirisme, on avait eu tendance à attribuer ce succès à l’induction. À la différence de Kant, il convenait donc d’adopter un point de vue historique et d’expliquer aussi le progrès des connaissances ; de même, contre Mill, il était urgent de constituer une nouvelle théorie de l’induction. Aussi l’auteur a choisi de prendre comme fil conducteur l’élaboration de cette pièce maîtresse de la nouvelle épistémologie (p. 6, 108), car, sans s’identifier, les deux tâches sont étroitement liées et mettent en particulier en valeur la place qu’occupe dans ces deux cas la logique.

L’examen de la question suit les quatre grandes périodes qui scandent la vie intellectuelle de Peirce : la recherche d’une méthode (1857-67) ; l’enquête en théorie et en pratique (1868-1884, la grande époque, où Peirce devient Peirce et pose les fondements du pragmatisme) ; lois de la nature et loi de l’esprit (1884-1902, l’audacieuse synthèse d’une métaphysique scientifique) ; pragmatisme et science normative (1902-1914, la remise en chantier du pragmatisme dans un cadre architectonique).

Peirce et la logique

Peirce est entré en philosophie, à l’âge de douze ans, "en tombant dans la marmite logique" (p. 15), et il tiendra pendant plus de quarante ans un logic notebook. Il a d’ailleurs laissé dans ce domaine des contributions de premier plan. Ainsi, il a découvert, indépendamment de Frege, et en même temps que lui, la théorie des quantificateurs ; mais cela n’intéresse que les logiciens et s’inscrit de plus dans une approche algébrique de la logique qui sera écartée au profit du logicisme ou de la théorie de la démonstration.

L’ouvrage insiste bien davantage sur l’élargissement considérable de l’idée de logique, qui aboutit à quelque chose de fort différent de ce qui s’enseigne sous ce nom aujourd’hui et qu’on a proposé d’appeler un socialisme logique (208). La logique est d’abord un art de penser et Peirce posera en "première règle de la logique" la maxime : "pour apprendre il faut désirer apprendre" (p. 210). De même, un lien étroit est établi entre logique et morale : "la pensée logique est la pensée morale" (p. 247) ; "pour être logiques, les hommes ne doivent pas être égoïstes" (p. 116 ; plus généralement, 114-119, 247-252)

Un autre trait caractéristique de Peirce est de maintenir les liens existants depuis Aristote entre logique et métaphysique ; et cela de deux façons. Il y a d’une part la théorie des catégories, présente dès le départ, sous l’influence de Kant. Très vite, elles prennent la forme d’une triade (priméité, secondéité et tiercéité) qui sert de trame à bien des constructions ultérieures. L’auteur montre bien que cette théorie occupe une place assez déconcertante pour que Peirce se soit vu obligé de "se défendre d’une tendance pathologique à la triadomanie" (p. 226). Plus classique, il y a aussi la question du réalisme et des universaux, qui témoigne d’une connaissance de la logique médiévale très rare à l’époque. Peirce abandonnera vite son nominalisme initial pour adhérer à un réalisme hautement revendiqué. Mais ce réalisme n’exclut pas un idéalisme à la Schelling : l’esprit n’est que de la matière assoupie (p. 199). Enfin, on retrouve la dimension morale de la logique, car la querelle des universaux n’est pas seulement spéculative : le nominalisme, qui ne reconnaît que les individus, est lié à l’individualisme, alors que le réalisme, qui reconnaît la réalité des genres, conduit à l’altruisme.

Fonder l’induction

Si les logiciens contemporains ignorent assez largement l’idée de logique inductive pour ne s’intéresser qu’à l’idée de conséquence valide, Aristote mettait pourtant déjà en parallèle induction et déduction. Quant à Peirce, son goût pour les schémas tripartites le conduit à introduire dès le début, à côté de celles-ci, une autre composante. Comme on l’a déjà signalé, Peirce se fait de la logique une idée très large. Pour lui, comme pour Descartes, logique est un peu synonyme de méthode. Elle doit en particulier rendre compte de la démarche des sciences expérimentales. Celles-ci utilisent la déduction (de l’hypothèse à ses conséquences), l’induction (on dit que ce sont des sciences inductives) ; mais cela ne suffit pas et déjà Comte, dans le Cours de philosophie positive, avait souligné l’intervention d’une troisième opération, qu’il appelait hypothèse, comme Peirce au début ; mais celui-ci pour souligner l’appartenance à la logique, parlera par la suite de rétroduction, ou d’abduction.

Pour comprendre la focalisation sur l’induction, il faut revenir au rapport qu’elle entretient avec l’épistémologie encore à inventer. Si l’induction est au cœur de la connaissance expérimentale, qui est à son tour, beaucoup plus que l’a priori, au cœur de la connaissance, alors l’épistémologie aura pour pièce maîtresse une théorie de l’induction. Le problème en effet ne porte pas seulement sur les conditions de possibilité de la connaissance. Il s’agit d’expliquer l’essor prodigieux des sciences expérimentales, l’efficacité de la connaissance. Dans le cadre transcendantal hérité de Kant, l’induction est pratiquement absente. De ce point de vue, la référence à Mill remplit une double fonction. L’auteur du System of Logic vient réveiller Peirce de son sommeil critique et lui rappeler que les sciences expérimentales seraient des sciences inductives. Mais il sert aussi de repoussoir, sa théorie de l’induction, et en particulier le fondement qu’il lui donnait, étant inacceptables. Peirce n’aura de cesse de trouver une solution qui ne fasse appel ni au sujet transcendantal, ni à l’uniformité de la nature et, preuve de l’importance qu’il accordait à la question, il en proposera d’ailleurs plusieurs.

La première, qui coïncide avec la naissance du pragmatisme, comprend deux composantes. De façon très novatrice, elle recourt massivement à la théorie des probabilités et aux statistiques, présentes dès les tout premiers travaux de Peirce, fidèle en cela à Boole, qui associait déjà logique et probabilité. L’approche était incontestablement féconde et Carnap rapprochera à son tour logique inductive et probabilité. Aussi l’auteur accorde une attention toute particulière aux développements extrêmement originaux consacrés à cet aspect. Mais simultanément, à un autre niveau, pour expliquer le succès de la connaissance, il faut mettre en place les concepts fondamentaux du pragmatisme entendu comme théorie de l’enquête et étude des différents moyens de fixer la croyance. L’accord entre ces deux composantes, approche statistique de l’induction et découverte de la vérité, va si peu de soi que Putnam a parlé à ce propos d’énigme de Peirce (p. 115) : pourquoi des fréquences, à long terme, devraient-elles guider des choix à court terme ?

La réponse mène au principe social de la logique, puisqu’elle opère un transfert psychologique de l’individu à la communauté. La conception fréquentiste ne pouvait attribuer de probabilité aux cas uniques. Pour résoudre la difficulté, Peirce propose d’interpréter chaque évènement possible comme le choix d’un membre de la communauté. Puisqu’il y a autant de choix que de membres, et que plusieurs membres peuvent faire le même choix, il devient possible de déterminer des fréquences. Le sujet transcendantal s’efface ainsi et cède la place à la cité savante : si la communauté agit conformément aux probabilités, elle connaîtra plus de succès que d’échec.

Avec le temps, la solution proposée en 1878 dans les Illustrations de la logique de la science s’avérera toutefois insatisfaisante et, après 1904, la reprise de la question obligera à remettre en chantier la théorie du pragmatisme. Tout commence par un mea culpa : "dans presque tout ce que j’ai publié avant le début de ce siècle j’ai plus ou moins mélangé hypothèse et induction" (p. 271). Alors que la première, en partant de l’expérience, contribue à la conclusion finale de l’enquête, l’induction, qui y retourne, ne fait qu’évaluer ce contenu. On remarquera que la place ainsi réservée à l’induction n’est pas du tout celle qu’on lui accorde d’ordinaire et qui veut que l’observation de différents cas isolés nous "soufflerait" la bonne explication. Ici, elle se borne à tester l’hypothèse, pour la valider ou l’invalider. Comme la déduction, elle augmente non pas nos connaissances, mais la confiance qu’on peut leur accorder. Les nouveaux développements sur la vraisemblance des tests empiriques conduisent à réviser toute la conception des probabilités, mais les effets de la confusion initiale s’étendent à la question des fondements. Sans disparaître, le besoin de fonder l’induction passe au second plan.

Pour l’épistémologue qui veut expliquer l’efficacité de la connaissance, l’abduction, c’est-à-dire la découverte de la bonne hypothèse, est une étape décisive et originale (p. 117). Ainsi, la démarche qui a conduit Kepler à rendre compte des mouvements célestes non plus par des cercles, mais par des ellipses ne relève ni de la déduction ni de l’induction. Dans cette dernière période, on assiste donc à une montée en puissance de l’abduction, qui a pour effet de distendre les liens entre logique et épistémologie. L’appartenance de l’abduction à la logique va en effet si peu de soi qu’il n’y a toujours pas de logique abductive. Alors que l’abduction a parfois été appelée inférence à la meilleure explication, il n’est pas sûr que la découverte de la bonne explication soit bien une inférence, au même titre que l’induction ou la déduction et on aurait plutôt tendance à l’attribuer au génie, à ce que les Allemands appellent Einsicht et les Anglais Insight. Peirce ira d’ailleurs dans ce sens quand il estimera que ce qui explique le succès de la connaissance, ce n’est pas tant la raison que l’instinct. L’esprit humain est le produit d’une sélection naturelle, ce qui fait qu’il est comme "accordé à la vérité des choses" (p. 274).

De cette brève présentation, il importe de souligner à quel point elle donne une image appauvrie et déformée de l’ouvrage. À regret, des pans entiers ont dû être passés sous silence. Ainsi, rien n’a été dit du rapport complexe de Peirce à la psychologie. La distinction établie entre le penser (l’acte, fait biologique contingent) et la Pensée (fait réel, objectif, idéal, la proposition des logiciens) lui permet de condamner le psychologisme, qui méconnaît cette distinction, tout en développant une théorie psychologique à laquelle l’auteur consacre de nombreuses pages. Rien n’a été dit non plus de la métaphysique scientifique décrite dans la troisième partie de l’ouvrage. Il en va de même encore de la sémiotique, à laquelle le nom de Peirce reste étroitement attaché, et qui est un peu à l’épistémologie ce que la philosophie du langage est à la philosophie de l’esprit. Un des grands mérites de l’ouvrage tient à la volonté de respecter les grands équilibres, et les tensions, à l’œuvre chez Peirce, et de faire sentir l’imbrication des différents thèmes. Le lecteur peut ainsi mesurer la distance entre ce qu’on retient d’ordinaire de Peirce et ce qu’on trouve dans ses écrits. À cet égard, l’ouvrage s’avère très précieux et même celui qui connaît déjà Peirce y trouvera à apprendre.

Cette qualité a toutefois un coût. La richesse de l’information s’obtient parfois au détriment de l’intelligibilité. À vouloir trop couvrir, il arrive que le fil directeur soit perdu de vue pour des considérations adventices, portant de surcroît sur des sujets souvent ardus, où il est facile de s’égarer. Sur cette épistémologie qui sert de sous-titre à l’ouvrage, le lecteur reste un peu sur sa faim. Au fur et à mesure, les différents matériaux de cette discipline à inventer sont mis en place, mais il aurait aimé les voir rassemblés, de façon à pouvoir se faire une idée de cette discipline en cours de constitution.

Ces quelques réserves ne doivent pas masquer l’intérêt considérable d’un ouvrage qui est le fruit d’une longue fréquentation de l’œuvre de Peirce. Les livres sur cet auteur ne sont pas si nombreux et celui-ci est incontestablement appelé à rendre de nombreux services. S’il n’est pas destiné à ceux qui ignoreraient tout du pragmatisme, il n’en constitue pas moins une introduction à une œuvre qu’on gagne à fréquenter. Pour quiconque veut travailler Peirce, c’est une véritable mine, à condition bien sûr de se donner la peine de chercher ces pépites dont parlait Russell.

Auteur: Bourdeau Michel

Info: A propos de : Jean-Marie Chevalier, "Peirce ou l’invention de l’épistémologie", Paris, Vrin, 2022, 313 p., 29 €. 20 octobre 2022

[ transdisciplinarité ] [ orthogonalité subjectif-objectif ] [ rationalismes instanciés ] [ abstractions ] [ vie des idées ] [ sociologie politique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste