Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 334
Temps de recherche: 0.0534s

covid-19

De façon concrète, dans nos vies, la "smart planet" sans contact - le monde-machine - a franchi des seuils en 2020 :

Bond en avant du commerce électronique et des livraisons à domicile. L’épidémie a augmenté de 183 milliards les dépenses dans l’e-commerce mondial. L’e-commerce représente désormais 13,4 % du commerce de détail en France, contre 9,8 % en 2019. Selon Romain Boisson, patron de Visa France, "l’e-commerce s’est ancré dans les habitudes de consommation des Français et s’impose désormais […] pour tous les commerçants, quelle que soit la taille de leur entreprise". Deliveroo vaut 7 milliards de dollars en bourse. Les grandes sociétés de transport/logistique (DHL, UPS, FedEx, etc.) ont réalisé un chiffre d’affaires de 300 milliards de dollars en 2020. Le chiffre d’affaires d’Amazon a augmenté de 38 % en 2020 pour atteindre 320 milliards d’euros. C’est à l’"Amazon academy" que l’État français, via la Banque publique d’investissement, confie la formation des PME pour leur mettre le pied à l’Internet. Nom du programme : l’Accélérateur du numérique.

Adoption du télétravail. Cinq millions de Français ont télétravaillé pendant le premier confinement et 60 % des salariés veulent continuer après la crise. Moins de locaux, plus de télécommunications. Le nombre d’abonnés à la fibre chez Orange a bondi de 50 % : "Jamais on n’a autant câblé les Français qu’en 2020". Boom des applications de visioconférence et autres "outils collaboratifs" en ligne. Microsoft Teams enregistre un record avec 44 millions d’utilisateurs quotidiens. Les ventes d’ordinateurs connaissent la plus forte croissance annuelle (+ 4,8 %) depuis dix ans dans le monde. Au tribunal administratif de Grenoble, "le tout numérique a amorti la baisse d’activité". De quoi tenir l’objectif des services publics "100 % dématérialisés" fixé par la plan "Action publique 2022".

Invasion du télé-enseignement. Invention des cours "en distanciel" y compris pour les apprentis, grâce au "learning management system". L’école de commerce de Grenoble organise ses "Portes ouvertes online" en janvier 2021. La ministre de l’Enseignement supérieur, Frédérique Vidal, voit dans l’épidémie "une opportunité de façonner l’université numérique de demain". Envol inespéré pour le "e-learning et les ed-tech", le plus profitable des "marchés porteurs" identifiés en février 2020 par le cabinet Roland Berger, avec 6000 milliards de dollars en 2018. Parmi les "verrous à lever", celui-ci déplorait "la complexité́ des processus d’accès au marché́ scolaire qui agit comme une barrière à l’entrée". Voilà un verrou forcé par le virus. Le moindre prétexte renvoie désormais les élèves derrière leur écran, comme l’ont constaté ceux des Yvelines, assignés "en distanciel" pour une chute de neige le 10 février 2021. #Restezchezvous est entré dans les mœurs.

Ruée sur les loisirs en ligne. 36 % de temps d’écran en plus par jour pour les Français, plus une heure de télé supplémentaire. Plus de 2,6 milliards de personnes utilisent quotidiennement Facebook, WhatsApp et Instagram, soit 15 % de plus que fin 201928. Netflix et le jeu vidéo, grands gagnants du confinement. Lequel a "accéléré le processus d’une culture de la sédentarité plus poussée, notamment la place des écrans", alerte David Thivel, membre du conseil scientifique de l’Observatoire national de l’activité́ physique et de la sédentarité́ (il y a des observatoires pour tout). Les Français ont pris en moyenne 3 kg en 2020.

Décollage de la télémédecine. 28 % de téléconsultations en avril 2020, contre 0,1 % avant la pandémie. 19 millions de téléconsultations remboursées par la Sécurité sociale en 2020. Les start up de la santé numérique (dites "healthtech") lèvent 8,2 milliards de dollars au premier trimestre 2020, un record30. Selon Stanislas Niox-Chateau, le patron de Doctolib, "une fois l’épidémie de coronavirus passée, entre 15 % et 20 % des consultations médicales se feront à distance en France".

[...]

Invasion de la monnaie virtuelle. Les Français délaissent le cash par peur de la contamination. Les retraits de liquide ont chuté de 50 % en volume pendant le premier confinement, au profit du paiement "sans contact" (dont l’Autorité bancaire européenne a relevé le plafond à 50 €), qui bondit de 65 %. Les réfractaires ont "sauté le pas, et il n’y aura pas de retour en arrière", selon Pierre-Antoine Vacheron, directeur général de Natixis Payments. Au fait, le nombre de distributeurs de billets diminue en France depuis 2015. Ça va s’accélérer. Avec l’e-commerce et le "click & collect", le consommateur paie désormais en ligne. "Les Français s’y habituent", constate le même expert. Ou plutôt, on y habitue les Français. On s’est vu refuser un chèque au motif qu’il faudrait toucher notre carte d’identité pour l’encaisser. [...]

Effet-cliquet : on ne revient pas en arrière quand les technologies ont imposé de nouvelles habitudes. L’offre a créé la demande. De réunions Zoom en concerts virtuels, de cours sur Internet en achats en ligne, de cyber-démarches administratives en téléconsultations médicales, nous devenons des Smartiens, cette espèce qui ne survit que connectée à la Machinerie générale. Voyez la gratitude des confinés connectés – "comment aurions-nous fait sans Internet ?" - révélant toute honte bue leur dépendance Si notre vie tient à un câble, la sélection technologique élimine ceux qui refusent ou n’ont pas accès à la connexion universelle. Seuls restent les adaptés, les connectés, vaccinés, livrés et monitorés par la Machine. Le petit commerce ne survit pas sans mise en ligne, c’est-à-dire sans supprimer ce qui fait le petit commerce. Il faut choisir : disparaître ou disparaître.

Auteur: PMO Pièces et main-d'oeuvre

Info: Dans "Le règne machinal", éditions Service compris, 2021, pages 65 à 70

[ transition technologique ] [ transformations ] [ conséquences ] [ accélération ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

microbiologie

Comment le microbiome* influence notre santé 

Nous ne sommes jamais seuls. En plus des 30 000 milliards de cellules humaines, notre corps abrite quelque 39 000 milliards de microbes – bactéries, champignons et protozoaires qui vivent dans nos intestins, nos poumons, notre bouche, notre nez, notre peau et ailleurs dans tout le corps. Les ensembles d’organismes présents dans et sur notre corps, le " microbiote ", font partie d’habitats microbiens plus larges, ou " microbiomes ", qui englobent tous les génomes viraux et cellulaires, les protéines codées et d’autres molécules dans leur environnement local. (Cependant,  il existe une certaine ambiguïté  dans les définitions, de sorte que l'utilisation des termes varie souvent.)

Bien que le microbiome soit récemment devenu un sujet brûlant en raison de son importance potentielle pour notre santé, ce n'est pas un concept nouveau. Certains font remonter ses origines au XVIIe siècle, lorsque le microbiologiste néerlandais Antonie van Leeuwenhoek a décrit pour la première fois de minuscules organismes qu'il avait prélevés dans sa bouche et observés sous un microscope artisanal. Tout au long des années 1900 et au début des années 2000, un certain nombre de découvertes ont attiré l'attention des gens sur les microbes vivant à l'intérieur de nous, mais ce domaine a reçu une attention accrue en 2007 lorsque les National Institutes of Health ont lancé le projet sur le microbiome humain. Depuis lors, les scientifiques ont catalogué de manière de plus en plus détaillée la biodiversité microbienne du corps humain. Ils ont découvert que les microbiomes sont distincts dans tout le corps : la composition microbienne de l’intestin, par exemple, est très différente de celle de la bouche. Ils en sont également venus à reconnaître qu’il n’existe pas de microbiome " ​​normal ". Au contraire, comme pour les empreintes digitales, chacun abrite une sélection unique d’espèces et de souches microbiennes.

Ces microbes jouent de nombreux rôles, depuis la protection contre les agents pathogènes et le réglage de nos réponses immunitaires jusqu'à la digestion des aliments et la synthèse des nutriments. Pour cette raison, lorsqu’un microbiome est désorganisé – par exemple à cause d’une mauvaise alimentation, de maladies infectieuses, de médicaments ou de facteurs environnementaux – cela peut avoir un effet d’entraînement sur notre santé. Des microbiomes malsains ont été associés au cancer, aux maladies cardiaques et pulmonaires, à l’inflammation et aux maladies inflammatoires de l’intestin. On pense même que les microbes régulent l’axe intestin-cerveau, une autoroute de communication qui relie le cerveau au système nerveux entérique, qui contrôle les intestins. Aujourd’hui, la médecine cible de plus en plus les microbiomes pour traiter diverses maladies. Par exemple, les greffes fécales contenant un microbiote sain sont parfois utilisées pour traiter des infections bactériennes graves du côlon.


Malgré une accélération de la recherche sur le microbiome au cours des dernières décennies, qui a donné naissance à de nouvelles technologies génomiques puissantes, de nombreuses questions fondamentales restent sans réponse complète. Comment acquérons-nous le microbiote et comment la communauté évolue-t-elle tout au long de notre vie ? Quel est l’impact des différents environnements et modes de vie sur le microbiome ? Comment le microbiome peut-il provoquer ou être utilisé pour traiter des maladies ? Ces questions et bien d’autres alimentent la recherche biologique et nous aident à mieux comprendre qui et ce qui fait de nous ce que nous sommes.

Quoi de neuf et remarquable

D’où vient notre microbiome ? Plusieurs études réalisées au cours de la dernière année ont donné des indications. Les bébés acquièrent la plupart de leurs microbes de leur mère à la naissance et dans les mois qui suivent. Mais il s’avère que les mères ne partagent pas seulement des organismes microbiens avec leurs bébés, elles partagent également des gènes microbiens. Dans une étude de 2022 publiée dans Cell , des scientifiques ont révélé que de courtes séquences d'ADN appelées éléments mobiles peuvent passer des bactéries de la mère aux bactéries du bébé, même des mois après la naissance. Comme je l'ai déjà signalé dans  Quanta , il est probable que ces gènes pourraient aider à développer un microbiome intestinal plus performant chez le bébé, ce qui pourrait à son tour développer davantage son système immunitaire.

La transmission ne se produit pas seulement à la naissance. En fait, les microbiomes sont incroyablement dynamiques et peuvent changer radicalement au cours de la vie d’une personne. Dans un article de Quanta publié l’année dernière, j’ai rendu compte de l’analyse mondiale la plus complète de la transmission du microbiome à ce jour. À l’aide de nouveaux outils génomiques, une équipe de biologistes italiens a retracé plus de 800 000 souches de microbes entre familles, colocataires, voisins et villages dans 20 pays. Ils ont découvert que les microbes sautent beaucoup entre les personnes, en particulier entre les conjoints et les colocataires, qui passent beaucoup de temps ensemble. Ces résultats suggèrent que certaines maladies qui ne sont pas considérées comme contagieuses pourraient avoir un aspect contagieux si elles impliquent le microbiome. Cependant, cette idée est spéculative et sera sûrement débattue et étudiée dans les années à venir.

Les connaissances sur la manière dont nous acquérons le microbiome et son impact sur notre corps ne proviennent pas uniquement d’études réalisées sur des humains. D’autres animaux possèdent également des microbiomes essentiels à leur santé et à leur développement – ​​et plusieurs études récentes ont établi des liens entre les microbes intestinaux et le cerveau. En 2019, Quanta a signalé que le comportement de peur diffère entre les souris ayant des microbiomes différents, et en 2022, nous avons rendu compte de la manière dont les microbiomes influencent les compétences sociales et la structure cérébrale du poisson zèbre.




Auteur: Internet

Info: https://www.quantamagazine.org/ - 11 03 2024 - Yasemin Saplakogku. *Pour préciser : Le terme microbiote est suivi du nom de l'environnement dans lequel il se trouve. Par exemple, le « microbiote intestinal » fait référence au microbiote présent dans les voies intestinales. Le microbiome fait référence à l'ensemble des gènes hébergés par des micro-organismes, ce que l'on appelle le théâtre d'activité.

[ orchestre invisible du corps ] [ Des bactéries aux organes ]

 

Commentaires: 0

Ajouté à la BD par miguel

recherche fondamentale

Personne ne prenait au sérieux les expériences quantiques de John F. Clauser. 50 ans plus tard, il reçoit un prix Nobel.

Le 4 octobre, John F. Clauser, 80 ans, s'est réveillé dans sa maison californienne pour apprendre qu'il avait reçu le prix Nobel de physique. Il le recevra lors d'une cérémonie à Stockholm, en Suède, le 10 décembre, avec Anton Zeilinger et Alain Aspect, pour leurs travaux sur l'intrication quantique. 

Un moment de fête pour Clauser, dont les expériences révolutionnaires sur les particules de lumière ont contribué à prouver des éléments clés de la mécanique quantique.

"Tout le monde veut gagner un prix Nobel", a déclaré M. Clauser. "Je suis très heureux."

Mais son parcours jusqu'à l'obtention du plus grand prix scientifique n'a pas toujours été simple. 

Dans les années 1960, Clauser était étudiant en physique à l'université Columbia. Par hasard, il découvrit à la bibliothèque de l'université un article qui allait façonner sa carrière et l'amener à poursuivre les travaux expérimentaux qui lui ont valu le prix Nobel.

L'article, écrit par le physicien irlandais John Stewart Bell et publié dans la revue Physics en 1964, se demandait si la mécanique quantique donnait ou non une description complète de la réalité. Le phénomène d'intrication quantique constituant le cœur de la question.

L'intrication quantique se produit lorsque deux ou plusieurs particules sont liées d'une certaine manière, et quelle que soit la distance qui les sépare dans l'espace, leurs états restent liés. 

Par exemple, imaginez une particule A qui s'envole dans une direction et une particule B dans l'autre. Si les deux particules sont intriquées - ce qui signifie qu'elles partagent un état quantique commun - une mesure de la particule A déterminera immédiatement le résultat de la mesure de la particule B. Peu importe que les particules soient distantes de quelques mètres ou de plusieurs années-lumière - leur liaison à longue distance est instantanée. 

Cette possibilité avait été rejetée par Albert Einstein et ses collègues dans les années 1930. Au lieu de cela, ils soutenaient qu'il existe un "élément de réalité" qui n'est pas pris en compte par la mécanique quantique. 

Dans son article de 1964, Bell soutenait qu'il était possible de tester expérimentalement si la mécanique quantique échouait à décrire de tels éléments de la réalité. Il appelait ces éléments non pris en compte des "variables cachées".

Bell pensait en particulier à des variables locales. Ce qui signifie qu'elles n'affectent la configuration physique que dans leur voisinage immédiat. Comme l'explique Clauser, "si vous placez des éléments localement dans une boîte et effectuez une mesure dans une autre boîte très éloignée, les choix de paramètres expérimentaux effectués dans une boîte ne peuvent pas affecter les résultats expérimentaux dans l'autre boîte, et vice versa."

Clauser décida de tester la proposition de Bell. Mais lorsqu'il voulut faire l'expérience, son superviseur l'exhorta à reconsidérer sa décision. 

"Le plus difficile au départ a été d'obtenir l'opportunité", se souvient Clauser. "Tout le monde me disait que ce n'était pas possible, donc à quoi bon !".

Le laboratoire quantique 

En 1972, Clauser a finalement eu l'occasion de tester la proposition de Bell alors qu'il occupait un poste postdoctoral au Lawrence Berkeley National Laboratory en Californie. Il s'associa à un étudiant en doctorat, Stuart Freedman. Ensemble, ils mirent sur pied un laboratoire rempli d'équipement optique. 

"Personne n'avait fait cela auparavant", a déclaré Clauser. "Nous n'avions pas d'argent pour faire quoi que ce soit. Nous avons dû tout construire à partir de rien. Je me suis sali les mains, ai été immergé dans l'huile, il y avait beaucoup de fils et j'ai construit beaucoup d'électronique."

Clauser et Freedman ont réussi à créer des photons intriqués en manipulant des atomes de calcium. Les particules de lumière, ou photons, s'envolaient dans des filtres polarisants que Clauser et Freedman pouvaient faire tourner les uns par rapport aux autres. 

La mécanique quantique prédit qu'une plus grande quantité de photons passerait simultanément les filtres que si la polarisation des photons était déterminée par des variables locales et cachées.

L'expérience de Clauser et Freedman mis en évidence que les prédictions de la mécanique quantique étaient correctes. "Nous considérons ces résultats comme des preuves solides contre les théories de variables cachées locales", ont-ils écrit en 1972 dans Physical Review Letters.

Des débuts difficiles

Les résultats de Clauser et Freedman furent confirmés par d'autres expériences menées par Alain Aspect et Anton Zeilinger. 

"Mes travaux ont eu lieu dans les années 70, ceux d'Aspect dans les années 80 et ceux de Zeilinger dans les années 90", a déclaré Clauser. "Nous avons travaillé de manière séquentielle pour améliorer le domaine".

Mais l'impact de l'expérience révolutionnaire de Clauser n'a pas été reconnu immédiatement.

"Les choses étaient difficiles", se souvient Clauser. "Tout le monde disait : "Belle expérience, mais vous devriez peut-être sortir et mesurer des chiffres et arrêter de perdre du temps et de l'argent et commencer à faire de la vraie physique"."

Il a fallu attendre 50 ans pour que Clauser reçoive le prix Nobel pour son travail expérimental. Son collègue, Stuart Freedman, est décédé en 2012. 

"Mes associés sont morts depuis longtemps. Mon seul titre de gloire est d'avoir vécu assez longtemps". a déclaré Clauser

Lorsqu'on lui a demandé s'il avait des conseils à donner aux jeunes chercheurs compte tenu de sa propre difficulté initiale, Clauser a répondu : "Si vous prouvez quelque chose que tout le monde pense vrai, et que vous êtes le premier à le faire, vous ne serez probablement pas reconnu avant 50 ans. C'est la mauvaise nouvelle. La bonne, c'est que j'ai eu beaucoup de plaisir à faire ce travail." 


Auteur: Internet

Info: https://www.livescience.com, Jonas Enande, 9 déc 2022

[ agrément moteur ] [ délectation ] [ observateur dualisant ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier évolutif

Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue

Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.

(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."

Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.

Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.

(Photo : Des mitochondries dans une cellule.)

La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.

D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.

La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".

Un organite à part entière

La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.

Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.

D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.

Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.

(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)

Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".

Un potentiel pour une production d’azote plus durable

Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.

Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes. 



 

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024

[ symbiogénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

femmes-hommes

Orgasmes masculin et féminins
L'orgasme féminin est la manifestation physique de l'extase qui emporte, du plaisir absolu, corps, coeur et tête à la fois. Cet orgasme "total" demande un concours de circonstances très favorables, différentes pour chaque femme, et se produit donc assez rarement. Quand la communion entre les partenaires est proche de la perfection ou quand la femme est en parfaite harmonie avec elle-même, on appelle ce moment magique "la petite mort" parce que la femme a atteint un tel degré d'excitation et de plaisir qu'elle a le sentiment d'arriver à un point de non-retour et a quasi l'impression qu'elle va mourir, ou perdre conscience. C'est pourquoi il faut que, avec le temps, la femme arrive à dominer la peur et à se laisser aller au seul plaisir. Cet orgasme est si intense qu'une femme n'en aura généralement qu'un et devra prendre le temps de "récupérer" si elle souhaite qu'un autre se produise. A un degré moindre, d'autres types d'orgasmes sont possibles qui sont aussi très satisfaisants et qui, eux, peuvent se suivre assez rapidement. Le corps est alors saisi d'une réaction due à un plaisir sexuel très fort. Ce plaisir peut venir du corps seulement ou de la tête seulement ou des deux à la fois. Cette réaction se propage dans l'ensemble du corps mais se ressent en particulier dans le ventre et dans le sexe.
Il faut aussi savoir que dans un rapport de couple, le besoin de la femme en orgasme est moins impérieux, moins fort. Il n'est donc pas nécessaire que pour qu'un rapport sexuel soit réussi, une femme ait absolument un orgasme. Beaucoup d'hommes cherchent ainsi, à tout prix, à déclencher celui de leur compagne, et beaucoup de femmes en font une exigence... c'est se fixer une performance : le résultat risque d'être décevant. Une femme peut ressentir une intense volupté, un énorme plaisir, même si son orgasme ne se déclenche pas.
L'orgasme féminin est compliqué : à la suite d'une stimulation - génitale ou autre - le cerveau envoie un message qui traverse la colonne vertébrale et provoque une série de contractions rythmiques de la région interne du premier tiers du vagin, de l'utérus et de la région anale mettant trois groupes musculaires en jeu. L'orgasme se produit au terme de la phase de plateau : quand l'excitation s'intensifie et que la tension sexuelle et musculaire augmente. Le premier tiers du vagin se gonfle et resserre l'ouverture, les deux tiers du fond du vagin s'arrondissent. Le clitoris se presse contre l'os du pubis, et les petites lèvres deviennent plus foncées et plus épaisses. Si rien ne vient perturber le processus physiologique (téléphone, bébé qui pleure...), l'orgasme peut alors se produire, ne durant souvent que quelques secondes : il peut y avoir de 2 à 3 contractions musculaires, distantes l'une de l'autre de moins d'une seconde.
Les différents types d'orgasme féminin : Clitoridien ou vaginal ?... Le clitoris et le vagin sont deux zones de stimulation capables de provoquer le plaisir orgasmique. L'orgasme clitoridien est plus aigu. Grâce à la masturbation, la femme peut y parvenir en quelques minutes. La stimulation du clitoris tend à produire des orgasmes plus intenses. La sensation éprouvée est très puissante. Cet orgasme met en jeu les muscles pelviens et abdominaux. L'orgasme vaginal est, selon Freud, l'orgasme "adulte et supérieur", (contrairement à l'orgasme clitoridien, "infantile et inférieur"). Comme les parois internes du vagin ont des terminaisons nerveuses, un tiers des femmes affirment qu'elles peuvent avoir un orgasme de cette façon. La stimulation du point G pourrait conduire à un orgasme profond. Des sensations de vagues de chaleur inondent alors tout le corps. Il semble en fait qu'il n'y ait pas d'orgasme en fait strictement clitoridien. Mais la stimulation vaginale à elle seule ne suffit pas non plus, pour la plupart des femmes, à produire un orgasme. Une femme n'est pas clitoridienne ou vaginale, mais les deux à la fois. Selon Masters et Johnson, il n'y a en fait qu'un type d'orgasme, provoqué par la stimulation du clitoris et se traduisant par des contractions du vagin. Pour d'autres, il faudrait un orgasme clitoridien préalable pour parvenir à un orgasme vaginal. C'est en fait la stimulation prolongée du clitoris qui finit par provoquer des contractions de la plate-forme vaginale. Ce réflexe clitoris vaginal provoque un orgasme superficiel. L'orgasme dit profond se traduit par des contractions utérines régulières, et procure un sentiment de détente. Les deux types d'orgasmes peuvent se produire de façon simultanée ou successivement.
Les orgasmes multiples : Si la stimulation et l'intérêt sexuel se prolongent par l'orgasme, certaines femmes (une sur dix) peuvent avoir une série d'orgasmes les uns à la suite des autres. Comme les femmes mettent plus de temps à atteindre l'orgasme, elles restent plus longtemps dans la phase de plateau, et peuvent replonger dedans. Contrairement à l'homme, elles ne connaissent pas de période réfractaire et peuvent donc prolonger le plaisir beaucoup plus longtemps. Elles peuvent ainsi avoir 5, 10, voire 20 orgasmes au cours d'un même rapport sexuel. Mais les orgasmes multiples ne sont pas pour autant liés à la satisfaction sexuelle. En avoir ne devrait pas être un but en soi : en fait, beaucoup de femmes trouvent même que la stimulation des parties génitales après l'orgasme n'est pas agréable, voire douloureuse.
En conclusion ce n'est pas la durée de la pénétration, forme trop simple de sexualité, qui permet à la femme de parvenir à l'orgasme. Elle est quasi jamais suffisante pour provoquer l'orgasme. Les femmes ont besoin d'un stimulation directe de leur clitoris, buccales, masturbatoires, certaines doivent même avoir une stimulation des seins. Ne pas parvenir à l'orgasme à chaque rapport sexuel n'est pas synonyme d'échec. 40 % des femmes qui ne parviennent pas à l'orgasme à chaque rapport se disent pourtant tout à fait satisfaites de leur sexualité. La satisfaction sexuelle d'une femme ne dépend pas du nombre de ses orgasmes. Les orgasmes multiples, et les orgasmes simultanés ne devraient pas être le but à atteindre. Le contrôle et la volonté d'être synchros empêchent au contraire de vous abandonner au plaisir. Les femmes peuvent avoir un orgasme sans éprouver de plaisir. Sachez aussi que l'orgasme rend la peau éclatante, améliore le tonus de tout le corps, et a aussi des effets positifs sur le plan cardiovasculaire. Un dernier scoop : L'orgasme aurait une fonction plus utilitaire que le simple plaisir. Une femme éprouverait le désir d'avoir un orgasme à chaque fois que son corps juge que cela peut optimiser ses chances de fécondation. Schopenhauer aurait parlé de ruse de l'espèce. La sexualité ne viserait qu'à transmettre notre capital génétique. D'ailleurs, les femmes qui ont un orgasme expulsent moins de spermatozoïdes dans la demi-heure qui suit l'insémination. Les spermatozoïdes sont ainsi plus nombreux à passer du vagin au canal cervical et à l'utérus.

Auteur: Internet

Info: http://www.affection.org/sexualite/orgasme.html

[ mâles-femelles ] [ vus-scientifiquement ]

 
Commentaires: 1

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel

réseaux sociaux

L’Américaine Sarah T. Roberts a écrit, après huit ans de recherches, "Behind The Screen" (Yale university press), un livre sur le travail des modérateurs. Elle en a rencontré des dizaines, chargés de nettoyer les grandes plates-formes (Facebook, YouTube, etc.) des pires contenus, et entourés d’une culture du secret.

C’est un métier dont on ne connaît pas encore bien les contours, et qui est pourtant au coeur du fonctionnement des grandes plates-formes du Web : les modérateurs sont chargés de les débarrasser des contenus postés par les utilisateurs (photos, vidéos, commentaires, etc.) qu’elles interdisent. Répartis dans des open spaces aux quatre coins du monde, gérés par des sous-traitants, ces milliers de petites mains examinent, tout au long de leur journée de travail, les pires contenus qui circulent sur Internet, et décident de leur sort.

Nous l’avons interviewée lors de son passage à Paris pour participer à un cycle de conférences sur "le côté obscur du travail", organisé à la Gaîté-Lyrique, à Paris.

(MT) - Les géants du Web (Facebook, YouTube, Twitter, etc.) sont très réticents à parler de la façon dont ils modèrent les contenus. Pourquoi ?

- Quand ces entreprises ont été lancées il y a une quinzaine d’années, la dernière chose qu’elles voulaient, c’était d’avoir à prendre des décisions sur le contenu. Elles se concentraient sur les technologies, et se présentaient auprès des pouvoirs publics américains comme faisant partie de la catégorie "fournisseurs d’accès à Internet". Cela leur a permis d’affirmer que le contenu n’était pas leur coeur de métier, et d’avancer sans qu’on ne leur demande de rendre des comptes.

Ce positionnement leur a permis de grandir. Il fallait donc que les décisions que prenaient ces entreprises du Web sur le contenu restent secrètes. Elles vendaient cette idée aux utilisateurs qu’il n’y avait aucune intervention, que vous pouviez vous exprimer sur YouTube ou Facebook sans aucune barrière. Elles ne voulaient pas qu’il y ait un astérisque, elles ne voulaient pas entrer dans les détails. Il y a pourtant eu, dès leurs débuts, des contenus supprimés.

(MT) - Dans votre livre, vous allez jusqu’à dire que ces entreprises "effacent les traces humaines" de la modération. C’est une formule très forte…

-Ces entreprises pensent profondément que les solutions informatiques sont meilleures que les autres, et il y a cette idée chez elles qu’il y aura bientôt une technologie assez forte pour remplacer ces travailleurs. Elles semblent dire "ne nous habituons pas trop à l’idée qu’il y a des humains, c’est juste temporaire".

De plus, si les utilisateurs savaient qu’il y avait des humains impliqués, ils demanderaient des explications. Et ces entreprises ne voulaient pas être responsables de ces décisions. Elles ont donc choisi de rendre ce processus invisible et croisé les doigts pour que les gens ne posent pas trop de questions.

(MT) - La modération est un travail difficile. Quels sont les risques auxquels sont confrontés ces travailleurs ?
- Il y en a plusieurs, à commencer par les risques psychologiques. Les modérateurs à qui j’ai parlé me disaient souvent : "Je suis capable de faire ce travail, des gens sont partis au bout de deux semaines. Mais moi, je suis fort." Et quelques minutes plus tard, ils me disaient "je buvais beaucoup" ou "je ne veux plus sortir avec des amis, car on parle toujours de travail, et je ne veux pas en parler, et d’ailleurs je n’en ai pas le droit".

Quand des gens me disent qu’ils ne peuvent pas cesser de penser à une image ou une vidéo qu’ils ont vue au travail, c’est inquiétant. Une femme, qui était modératrice il y a une quinzaine d’années pour Myspace, m’a dit qu’elle n’aimait pas rencontrer de nouvelles personnes et leur serrer la main. "Je sais ce que les gens font, et ils sont ignobles. Je n’ai plus confiance en qui que ce soit."

Il y a aussi d’autres choses difficiles, qui paraissent moins évidentes. Vous devez être très cultivé pour être un bon modérateur, beaucoup ont fait des études de littérature, d’économie, d’histoire, parfois dans des universités prestigieuses. Mais c’est considéré comme un travail de bas niveau, assez mal payé.

(MT) - Comment les conditions de travail des modérateurs ont-elles évolué ?
- C’est difficile à dire, ce sont souvent des conditions de call centers : d’un point de vue purement matériel, c’est relativement confortable. Aux Philippines, des gens travaillent dans des gratte-ciel avec l’air conditionné, ce qui est important là-bas.

(MT) - Mais... En quoi cela change quelque chose à ce qu’ils voient tous les jours ?
- Certaines entreprises ont mis à disposition des psychologues. Mais les employés sont méfiants : quand le psychologue est payé par votre employeur, cela crée une relation compliquée, ça peut être difficile pour le travailleur de s’ouvrir sincèrement.

(MT) - Mais si ces entreprises ne mettaient pas de psychologues à disposition, on le leur reprocherait…
- C’est vrai. Mais est-ce vraiment efficace ou est-ce juste pour faire joli ? Un modérateur m’a dit : "Le problème, c’est que si je me lève pour aller parler au psychologue, mon manager et mes collègues me voient tous me lever et comprennent que j’ai un problème. Je ne veux pas qu’ils le sachent." Et puis, ce sont des solutions de court terme.

(MT) - Que devraient faire ces entreprises pour assurer le bien-être de leurs salariés ?
- Pour commencer, ils pourraient les payer davantage. Ensuite, le fait que leur travail ne soit pas reconnu est très dur pour eux, tout comme les accords de confidentialité. Tout cela fait qu’ils ont peur de parler de leur travail, qu’ils ne soient pas en lien avec les autres. Ils ne savent même pas qui sont les autres modérateurs. Ce sont des choses qui pourraient facilement changer. Et sur la psychologie, il faudrait étudier les effets de ce travail sur le long terme. Il n’existe aucune étude de ce type, à ma connaissance.

(MT) - Pourrait-on se passer de modérateurs ? A quoi ressemblerait Internet sans eux ?
- Au forum 4chan [connu pour sa modération très faible, et la virulence de certains de ses membres anonymes] ? Ce serait pire ! La plupart des gens ne veulent pas de ça, et doivent donc avoir à faire à des modérateurs. Or les internautes passent beaucoup de temps sur les grandes plates-formes mainstream, financées par la publicité, et le fait qu’ils ne comprennent pas comment ces espaces sont modérés est problématique, car cela reflète des valeurs.

L’idée d’un Internet sans modération n’a pas beaucoup existé. Certes, j’ai donné l’exemple de 4chan. Mais à un moment donné il y a eu une décision, à 4chan, que l’approche serait de tout laisser passer. C’est une posture idéologique là aussi. Et il est important de noter que c’est ce que veulent certaines personnes.

(MT) - Vous écrivez que ce sujet de recherche représente "le travail d’une vie". Quels aspects de la modération vous intéressent le plus pour la suite ?
- C’est le travail d’une vie parce que cela change tout le temps : Facebook change ses règles toutes les deux semaines ! Et si aujourd’hui on a 100 000 personnes qui travaillent comme modérateurs, où en sera-t-on dans deux, cinq ou dix ans ?

Je m’intéresse aussi beaucoup à la question de la régulation de ces entreprises. Ainsi qu’à la façon dont les Américains ont adopté depuis quinze ans ces technologies. Nous approchons de l’élection présidentielle de 2020, et ces plates-formes sont très impliquées, on a eu des déclarations intéressantes de Facebook sur la véracité des informations diffusées… Tout cela est d’une certaine manière lié à la question de la modération. Ces entreprises sont désormais considérées comme responsables, alors qu’elles n’ont jamais voulu l’être ! Devoir gérer ça est leur pire cauchemar, et elles doivent désormais le faire tout le temps.

Auteur: Tual Morgane

Info: Propos recueillis par MT, 11 janvier 2020, www.lemonde.fr. Sujet : Sarah T. Roberts : "Les géants du Web ont choisi de rendre le processus de modération invisible"

[ homme-machine ]

 

Commentaires: 0

Ajouté à la BD par miguel

corps-esprit

Lourdement handicapé, Stephen Hawking, auteur d’"Une brève histoire du temps" est le héros d’un film. L’anthropologue des sciences Hélène Mialet dévoile le système d’une personnalité fascinante.

Au-delà de ses contributions importantes sur la connaissance des trous noirs, l’exceptionnalité de l’homme réside aussi dans sa condition physique. Atteint de sclérose latérale amyotrophique, une dégénérescence des neurones moteurs, il est paralysé depuis des dizaines d’années. Ne pouvant plus parler, il communique par l’intermédiaire d’un ordinateur équipé d’un logiciel de synthèse vocale qu’il dirigeait au départ avec son doigt, plus récemment par une contraction de la joue. Grâce à ce système, il a écrit Une Brève Histoire du temps, ouvrage de référence vendu à près de dix millions d’exemplaires. A 73 ans, Stephen Hawking, élevé au statut d’icône du génie scientifique, continue d’écrire et de donner des conférences. Comment? C’est la question posée par Madame Mialet, philosophe et anthropologue des sciences, professeure invitée à l’Université de Californie à Davis, aux Etats-Unis, qui a côtoyé ce scientifique hors du commun. Elle a passé dix ans à l’interviewer, l’observer, à rencontrer ses proches et ses collègues.

Samedi Culturel: Qui est Stephen Hawking?

HM Difficile de répondre, parce qu’il est une icône. On imagine que Stephen Hawking, lourdement handicapé, est capable, seul, de produire de la science. Il incarne le mythe de notre modernité, qui trouve son origine dans l’interprétation de la pensée de Descartes, selon laquelle on n’a pas besoin d’un corps pour penser et qu’il suffit d’avoir un esprit. Stephen Hawking renchérit lui-même en disant: "Pour faire de la physique, un esprit suffit." J’ai pris ça au mot et en tant qu’ethnographe, j’ai passé des années à le suivre, à étudier sa façon de travailler, à interviewer ses étudiants et ses collègues. Il est devenu en quelque sorte ma tribu! J’ai reconstruit le réseau de compétences qui l’entoure et mis en évidence un collectif complexe. La question posée dans mon livre est plutôt: où est Stephen Hawking dans ce collectif?

SC : Est-ce que l’esprit brillant de Stephen Hawking suffit seul à faire de la science?

HM : Non, je ne pense pas. Parce qu’il ne peut pas bouger ni manipuler des objets. Il ne peut parler que par l’intermédiaire d’une voix de synthèse générée par un ordinateur. Il doit tout déléguer aux machines et aux individus. Ses proches ont appris à communiquer avec lui plus rapidement en lui posant des questions auxquelles il répond par oui ou non. Le type de vocabulaire engrangé dans son ordinateur est organisé, et le logiciel complète systématiquement ses phrases en reconnaissant ses motifs d’expression. Les gens aussi finissent ses phrases, ce qu’il n’aime pas d’ailleurs, et mettent en action ses énoncés. Contrairement à ce que l’on croit, tout n’est pas dans sa tête mais aussi à l’extérieur. Ses étudiants organisés autour de lui mènent les projets de recherche, font les calculs. En bout de course il est l’auteur principal et ceux qui l’ont aidé disparaissent du processus.

SC : Stephen Hawking est-il différent d’autres scientifiques?

HM : Non, son corps étendu au collectif lui permet de faire de la science comme tout chercheur à son niveau. Les chefs de laboratoire aussi lancent des pistes de recherche à d’autres qui font les expériences. Stephen Hawking est singulier car il est très collectivisé, et non parce qu’il serait coupé du monde social et matériel.

SC : Comment a-t-il réagi à la lecture de votre livre?

HM : Je le lui ai envoyé mais je n’ai pas eu de retour. Sa secrétaire m’a dit qu’il avait trouvé bizarre la couverture choisie par l’éditeur de la version anglaise [l’image montre une statue en marbre de lui dans son fauteuil flottant au milieu des étoiles]. Je suis assez d’accord, car cette illustration retombe dans le mythe du personnage.

SC : Comment se passaientvos rencontres?

HM : Ça m’a pris deux ans pour avoir accès à lui. Mon premier entretien, en 1998, a été très déstabilisant car toute l’interaction passait par l’ordinateur. Je n’arrivais pas à lire son langage corporel. Je posais mes questions, il répondait en tapant, et sa voix synthétique parlait souvent avec un décalage temporel. Nos deux regards étaient dirigés vers l’écran. Parfois, ses assistants s’occupaient de lui, ce qui troublait l’interaction. Un moment, la machine s’est arrêtée de fonctionner. En fait, quand on est très proche de lui, on ne sait plus où il est. Alors que quand on s’en éloigne, à travers les médias et les films, on perçoit Stephen Hawking, le génie, c’est-à-dire un individu doté de qualités stables, d’histoires reproduites sur sa personne et ses découvertes scientifiques.

SC : L’avez-vous revu par la suite?

HM : Oui, à la conférence sur la théorie des cordes à Berlin, en 1999. Nous avons dansé avec lui dans un night-club! Son attaché de presse avait passé plusieurs semaines à Berlin pour sélectionner le plus accessible. Quand nous sommes arrivés dans le night-club, il est allé au milieu de la piste et tout le monde a dansé autour de lui. Plus tard, à la fin de mon séjour à Cambridge, en 2007, il m’a invité plusieurs fois à souper à l’université ou chez lui. Il avait envie de parler plus intimement de sa façon de penser et de travailler.

SC : Comment pense Stephen Hawking?

HM : A cette question, il a répondu: "En images" Selon ses étudiants, il résout des problèmes en les mémorisant. Il a développé une façon de penser de manière visuelle en manipulant des diagrammes que ces étudiants dessinent sous ses yeux. Ils écrivent aussi, sous ses yeux, les démonstrations des équations à résoudre, et lui dit si elles sont justes ou pas. Mes observations montrent que même le travail intellectuel le plus abstrait nécessite l’usage du corps, dans le cas de Stephen Hawking, de ses yeux qui regardent les autres travailler et du corps des autres qui dessinent les diagrammes. C’est un va-et-vient constant.

SC : Quelle relation entretient-il avec son entourage?

HM : Il a beaucoup d’humour, ce qui lui permet d’établir un lien rapide avec les gens. Il fait preuve d’une grande force de caractère et exerce aussi un certain contrôle sur son entourage. Ses assistants les plus proches, qui s’occupent de la logistique, des voyages, restent rarement plus d’un an car ils sont épuisés de répondre jour et nuit à ses besoins. Et il maîtrise beaucoup son image auprès des journalistes.

SC : Il n’a jamais voulu changer l’accent américain de sa voix synthétique. Pourquoi?

HM : Beaucoup de compagnies anglaises ont voulu lui rendre son accent anglais. Il a résisté et n’a pas accepté car il disait que sa voix américaine était devenue sa voix. Des logiciels plus récents lui permettraient de communiquer plus vite mais il ne veut pas les changer car il s’y est habitué.

SC : En quoi Stephen Hawking est-il exceptionnel?

HM : Pour ses travaux scientifiques sur les trous noirs, évidemment, notamment ceux des années 1970, qui étaient des découvertes fondamentales. Mais pour moi, cet homme est exceptionnel car il devient un exemple par sa condition inhabituelle. Sa situation de handicap et de dépendance rend visible ce que l’on ne voit pas autrement, comme ce qu’il faut pour être une star, un chef de laboratoire, mais aussi ce qui est nécessaire pour penser visuellement ou pour qu’une conversation soit fluide.

A Cambridge, des archives sont en cours de construction avec les articles sur Stephen Hawking et ses propres articles. Elles posent la question de l’archivage d’un auteur à l’ère du digital. Pour lui, tout passe par la machine depuis longtemps, et il décide lui-même de ce qu’il veut garder ou non. Nous devenons tous dépendants de nos tablettes et ordinateurs, mais lui l’a été avant tout le monde. Il a utilisé des programmes qu’on utilise tous maintenant, comme ceux qui complètent ses mots et ses phrases. Stephen Hawking est un pionnier du post-humanisme. 

Auteur: Mialet Hélène

Info: Sur Le Temps.ch, 16 janvier 2015. A propos de : A la recherche de Stephen Hawking, de H M, 2014, Ed. Odile Jacob, 168 p.

[ starification ] [ scientifique vedette ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Comment l’IA impacte la recherche sur la structure des protéines

Chaque être humain possède plus de 20 000 protéines. Par exemple l’hémoglobine qui s’occupe du transport de l’oxygène depuis les poumons vers les cellules de tout le corps, ou encore l’insuline qui indique à l’organisme la présence de sucre dans le sang.

Chaque protéine est formée d’une suite d’acides aminés, dont la séquence détermine son repliement et sa structure spatiale – un peu comme si un mot se repliait dans l’espace en fonction des enchaînements de lettres dont il est composé. Cette séquence et ce repliement (ou structure) de la protéine déterminent sa fonction biologique : leur étude est le domaine de la « biologie structurale ». Elle s’appuie sur différentes méthodes expérimentales complémentaires, qui ont permis des avancées considérables dans notre compréhension du monde du vivant ces dernières décennies, et permet notamment la conception de nouveaux médicaments.

Depuis les années 1970, on cherche à connaître les structures de protéines à partir de la seule connaissance de la séquence d’acides aminés (on dit « ab initio »). Ce n’est que très récemment, en 2020, que ceci est devenu possible de manière quasi systématique, avec l’essor de l’intelligence artificielle et en particulier d’AlphaFold, un système d’IA développé par une entreprise appartenant à Google.

Face à ces progrès de l’intelligence artificielle, quel est désormais le rôle des chercheurs en biologie structurale ?

Pour le comprendre, il faut savoir qu’un des défis de la biologie de demain est la "biologie intégrative", qui a pour objectif de comprendre les processus biologiques au niveau moléculaire dans leurs contextes à l’échelle de la cellule. Vu la complexité des processus biologiques, une approche pluridisciplinaire est indispensable. Elle s’appuie sur les techniques expérimentales, qui restent incontournables pour l’étude de la structure des protéines, leur dynamique et leurs interactions. De plus, chacune des techniques expérimentales peut bénéficier à sa manière des prédictions théoriques d’AlphaFold.

(Photo) Les structures de trois protéines de la bactérie Escherichia coli, déterminées par les trois méthodes expérimentales expliquées dans l’article, à l’Institut de Biologie Structurale de Grenoble. Beate Bersch, IBS, à partir d’une illustration de David Goodsell, Fourni par l'auteur

La cristallographie aux rayons X

La cristallographie est, à cette date, la technique la plus utilisée en biologie structurale. Elle a permis de recenser plus de 170 000 structures de protéines dans la "Protein Data Bank", avec plus de 10 000 repliements différents.

Pour utiliser la cristallographie à rayons X, il faut faire "cristalliser les protéines". On dit souvent que cette technique est limitée par la qualité de cristaux de protéines, qui est moindre pour les grosses protéines. Mais cette notion ne correspond pas toujours à la réalité : par exemple, la structure du ribosome, l’énorme machine moléculaire qui assemble les protéines, a été résolue à 2,8 angströms de résolution. Venkatraman Ramakrishnan, Thomas Steitz et Ada Yonath ont reçu le prix Nobel de chimie en 2009 pour ce travail.

Avec le développement récent du laser X à électron libre (XFEL), il est devenu possible d’étudier simultanément des milliers de microcristaux de protéines à température ambiante et à l’échelle de la femtoseconde (10-15 secondes, soit un millionième de milliardième de seconde, l’échelle de temps à laquelle ont lieu les réactions chimiques et le repliement des protéines). Cette technique permet d’imager les protéines avant qu’elles ne soient détruites. Elle est en train de révolutionner la "cristallographie cinétique", qui permet de voir les protéines "en action", ainsi que la recherche de médicaments.

Pour l’instant, l’apport d’AlphaFold à l’étude de la structure des protéines par cristallographie s’est concentré dans la génération de modèles de protéines assez précis pour appliquer la technique dite de "remplacement moléculaire" à la résolution des structures.

La spectroscopie par résonance magnétique nucléaire

Une autre méthode expérimentale pour étudier la structure des protéines est la "spectroscopie par résonance magnétique nucléaire". Alors que son alter ego d’imagerie médicale, l’IRM, regarde la distribution spatiale d’un seul signal, caractéristique des éléments chimiques dans les tissus biologiques observés, en spectroscopie par résonance magnétique nucléaire, c’est un ensemble de signaux provenant des atomes constituant la protéine qui est enregistré (ce qu’on appelle le "spectre").

Généralement, la détermination de la structure par résonance magnétique est limitée à des protéines de taille modeste. On calcule des modèles de molécules basés sur des paramètres structuraux (comme des distances interatomiques), provenant de l’analyse des spectres expérimentaux. On peut s’imaginer cela comme dans les débuts de la cartographie, où des distances entre des points de référence permettaient de dessiner des cartes en 2D. Pour faciliter l’interprétation des spectres qui contiennent beaucoup d’information, on peut utiliser des modèles obtenus par prédiction (plutôt qu’expérimentalement), comme avec AlphaFold.

En plus de la détermination structurale, la spectroscopie par résonance magnétique nucléaire apporte deux atouts majeurs. D’une part, en général, l’étude est effectuée avec un échantillon en solution aqueuse et il est possible d’observer les parties particulièrement flexibles des protéines, souvent invisibles avec les autres techniques. On peut même quantifier leur mouvement en termes d’amplitude et de fréquence, ce qui est extrêmement utile car la dynamique interne des protéines est aussi cruciale pour leur fonctionnement que leur structure.

D’autre part, la spectroscopie par résonance magnétique nucléaire permet de détecter aisément les interactions des protéines avec des petites molécules (ligands, inhibiteurs) ou d’autres protéines. Ceci permet d’identifier les sites d’interaction, information essentielle entre autres pour la conception rationnelle de molécules actives comme des médicaments.

Ces propriétés font de la spectroscopie par résonance magnétique nucléaire un outil extraordinaire pour la caractérisation fonctionnelle des protéines en complémentarité avec d’autres techniques expérimentales et l’IA.

La "cryomicroscopie électronique"

La cryomicroscopie électronique consiste à congeler ultrarapidement (environ -180 °C) un échantillon hydraté dans une fine couche de glace, qui sera traversée par les électrons. Les électrons transmis vont générer une image de l’échantillon, qui après analyse, permet d’accéder à des structures qui peuvent atteindre la résolution atomique. En comparaison, un microscope optique n’a un pouvoir résolutif que de quelques centaines de nanomètres, qui correspond à la longueur d’onde de la lumière utilisée ; seul un microscope utilisant une source possédant des longueurs d’onde suffisamment faibles (comme les électrons pour la microscopie électronique) possède un pouvoir résolutif théorique de l’ordre de l’angström. Le prix Nobel de Chimie 2017 a été décerné à Jacques Dubochet, Richard Henderson et Joachim Frank pour leurs contributions au développement de la cryomicroscopie électronique.

Avec de nombreux développements technologiques, dont celui des détecteurs à électrons directs, depuis le milieu des années 2010, cette technique est devenue essentielle en biologie structurale en amorçant une "révolution de la résolution". En effet, la cryomicroscopie électronique permet désormais d’obtenir des structures avec une résolution atomique, comme dans le cas de l’apoferritine – une protéine de l’intestin grêle qui contribue à l’absorption du fer – à 1,25 angström de résolution.

Son principal atout est de permettre de déterminer la structure d’objets de taille moyenne, au-delà de 50 000 Dalton (un Dalton correspond environ à la masse d’un atome d’hydrogène), comme l’hémoglobine de 64 000 Dalton, mais également d’objets de quelques milliards de daltons (comme le mimivirus, virus géant d’environ 0,5 micromètre).

Malgré toutes les avancées technologiques précédemment évoquées, la cryomicroscopie ne permet pas toujours de résoudre à suffisamment haute résolution la structure de "complexes", constitués de plusieurs protéines. C’est ici qu’AlphaFold peut aider et permettre, en complémentarité avec la cryomicroscopie, de décrire les interactions au niveau atomique entre les différents constituants d’un complexe. Cette complémentarité donne une force nouvelle à la cryomicroscopie électronique pour son rôle à jouer demain en biologie structurale.

Les apports d’AlphaFold

AlphaFold permet de prédire la structure de protéines uniquement à partir de leur séquence avec la connaissance acquise par la biologie structurale expérimentale. Cette approche est révolutionnaire car les séquences de beaucoup de protéines sont connues à travers les efforts des séquençages des génomes, mais déterminer leurs structures expérimentalement nécessiterait des moyens humains et techniques colossaux.

À l’heure actuelle, ce type de programme représente donc un acteur supplémentaire de complémentarité, mais ne se substitue pas aux techniques expérimentales qui, comme nous l’avons vu, apportent aussi des informations complémentaires (dynamiques, interfaces), à des échelles différentes (des sites métalliques aux complexes multiprotéiques) et plus fiables, car expérimentalement vérifiées. Au-delà de la pure détermination structurale d’une protéine isolée, la complexité des systèmes biologiques nécessite souvent une approche pluridisciplinaire afin d’élucider mécanismes et fonctions de ces biomolécules fascinantes que sont les protéines.

Auteur: Internet

Info: Published: December 19, 2022 Beate Bersch, Emmanuelle Neumann, Juan Fontecilla, Université Grenoble Alpes (UGA)

[ gnose chimique ]

 

Commentaires: 0

Ajouté à la BD par miguel

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel