Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 334
Temps de recherche: 0.0603s

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Les particules quantiques ne tournent pas. Alors d'où vient leur spin ?

Le fait que les électrons possèdent la propriété quantique du spin est essentiel pour notre monde tel que nous le connaissons. Pourtant, les physiciens ne pensent pas que ces particules tournent réellement. 

Les électrons sont des petits magiciens compétents. Ils semblent voltiger autour d'un atome sans suivre de chemin particulier, ils semblent souvent être à deux endroits à la fois, et leur comportement dans les micropuces en silicium alimente l'infrastructure informatique du monde moderne. Mais l'un de leurs tours les plus impressionnants est faussement simple, comme toute bonne magie. Les électrons semblent toujours tourner. Tous les électrons jamais observés, qu'ils se déplacent sur un atome de carbone dans votre ongle ou qu'ils se déplacent à toute vitesse dans un accélérateur de particules, ont l'air de faire constamment de petites pirouettes en se déplaçant dans le monde. Sa rotation ne semble jamais ralentir ou accélérer. Peu importe comment un électron est bousculé ou frappé, il semble toujours tourner à la même vitesse. Il possède même un petit champ magnétique, comme devrait le faire un objet en rotation doté d'une charge électrique. Naturellement, les physiciens appellent ce comportement "spin".

Mais malgré les apparences, les électrons ne tournent pas. Ils ne peuvent pas tourner. Prouver qu'il est impossible que les électrons tournent est un problème standard dans tout cours d'introduction à la physique quantique. Si les électrons tournaient suffisamment vite pour expliquer tout le comportement de rotation qu'ils affichent, leurs surfaces se déplaceraient beaucoup plus vite que la vitesse de la lumière (si tant est qu'ils aient des surfaces). Ce qui est encore plus surprenant, c'est que pendant près d'un siècle, cette contradiction apparente a été ignorée par la plupart des physiciens comme étant une autre caractéristique étrange du monde quantique, qui ne mérite pas qu'on s'y attarde.

Pourtant, le spin est profondément important. Si les électrons ne semblaient pas tourner, votre chaise s'effondrerait pour ne plus représenter qu'une fraction minuscule de sa taille. Vous vous effondreriez aussi - et ce serait le moindre de vos problèmes. Sans le spin, c'est tout le tableau périodique des éléments qui s'effondrerait, et toute la chimie avec. En fait, il n'y aurait pas de molécules du tout. Le spin n'est donc pas seulement l'un des meilleurs tours de magie des électrons, c'est aussi l'un des plus importants. Et comme tout bon magicien, les électrons n'ont jamais dit à personne comment ils faisaient ce tour. Mais aujourd'hui, une nouvelle explication du spin est peut-être en train de se profiler à l'horizon, une explication qui tire le rideau et montre comment la magie opère.

UNE DÉCOUVERTE VERTIGINEUSE

La rotation a toujours été une source de confusion. Même les premières personnes qui ont développé l'idée du spin pensaient qu'elle devait être fausse. En 1925, deux jeunes physiciens hollandais, Samuel Goudsmit et George Uhlenbeck, s'interrogeaient sur les derniers travaux du célèbre (et célèbre) physicien Wolfgang Pauli. Pauli, dans une tentative d'expliquer la structure des spectres atomiques et du tableau périodique, avait récemment postulé que les électrons avaient une "double valeur non descriptible classiquement". Mais Pauli n'avait pas dit à quelle propriété physique de l'électron sa nouvelle valeur correspondait, et Goudsmit et Uhlenbeck se demandaient ce que cela pouvait être.

Tout ce qu'ils savaient - tout le monde le savait à l'époque - c'est que la nouvelle valeur de Pauli était associée à des unités discrètes d'une propriété bien connue de la physique newtonienne classique, appelée moment angulaire. Le moment angulaire est simplement la tendance d'un objet en rotation à continuer de tourner. C'est ce qui fait que les toupies tournent et que les bicyclettes restent droites. Plus un objet tourne vite, plus il a de moment cinétique, mais la forme et la masse de l'objet ont aussi leur importance. Un objet plus lourd a plus de moment cinétique qu'un objet plus léger qui tourne aussi vite, et un objet qui tourne avec plus de masse sur les bords a plus de moment cinétique que si sa masse était concentrée en son centre.

Les objets peuvent avoir un moment angulaire sans tourner. Tout objet qui tourne autour d'un autre objet, comme la Terre qui tourne autour du soleil ou un trousseau de clés qui se balance autour de votre doigt sur un cordon, a un certain moment angulaire. Mais Goudsmit et Uhlenbeck savaient que ce type de moment angulaire ne pouvait pas être la source du nouveau nombre de Pauli. Les électrons semblent effectivement se déplacer autour du noyau atomique, retenus par l'attraction entre leur charge électrique négative et l'attraction positive des protons du noyau. Mais le moment angulaire que ce mouvement leur confère était déjà bien pris en compte et ne pouvait pas être le nouveau nombre de Pauli. Les physiciens savaient également qu'il existait déjà trois nombres associés à l'électron, qui correspondaient aux trois dimensions de l'espace dans lesquelles il pouvait se déplacer. Un quatrième nombre signifiait une quatrième façon dont l'électron pouvait se déplacer. Les deux jeunes physiciens pensaient que la seule possibilité était que l'électron lui-même tourne, comme la Terre qui tourne sur son axe autour du soleil. Si les électrons pouvaient tourner dans l'une des deux directions - dans le sens des aiguilles d'une montre ou dans le sens inverse - cela expliquerait la "bivalence" de Pauli.

Excités, Goudsmit et Uhlenbeck rédigent leur nouvelle idée et la montrent à leur mentor, Paul Ehrenfest. Ehrenfest, un ami proche d'Einstein et un formidable physicien à part entière, trouve l'idée intrigante. Tout en la considérant, il dit aux deux jeunes hommes enthousiastes d'aller consulter quelqu'un de plus âgé et de plus sage : Hendrik Antoon Lorentz, le grand manitou de la physique néerlandaise, qui avait anticipé une grande partie du développement de la relativité restreinte deux décennies plus tôt et qu'Einstein lui-même tenait en très haute estime.

Mais Lorentz est moins impressionné par l'idée de spin qu'Ehrenfest. Comme il l'a fait remarquer à Uhlenbeck, on sait que l'électron est très petit, au moins 3 000 fois plus petit qu'un atome - et on sait déjà que les atomes ont un diamètre d'environ un dixième de nanomètre, soit un million de fois plus petit que l'épaisseur d'une feuille de papier. L'électron étant si petit, et sa masse encore plus petite - un milliardième de milliardième de milliardième de gramme - il était impossible qu'il tourne assez vite pour fournir le moment angulaire que Pauli et d'autres recherchaient. En fait, comme Lorentz l'a dit à Uhlenbeck, la surface de l'électron devrait se déplacer dix fois plus vite que la vitesse de la lumière, une impossibilité absolue.

Défait, Uhlenbeck retourne voir Ehrenfest et lui annonce la nouvelle. Il demande à Ehrenfest de supprimer l'article, mais on lui répond qu'il est trop tard, car son mentor a déjà envoyé l'article pour publication. "Vous êtes tous les deux assez jeunes pour pouvoir vous permettre une stupidité", a dit Ehrenfest. Et il avait raison. Malgré le fait que l'électron ne pouvait pas tourner, l'idée du spin était largement acceptée comme correcte, mais pas de la manière habituelle. Plutôt qu'un électron qui tourne réellement, ce qui est impossible, les physiciens ont interprété la découverte comme signifiant que l'électron portait en lui un certain moment angulaire intrinsèque, comme s'il tournait, même s'il ne pouvait pas le faire. Néanmoins, l'idée était toujours appelée "spin", et Goudsmit et Uhlenbeck ont été largement salués comme les géniteurs de cette idée.

Le spin s'est avéré crucial pour expliquer les propriétés fondamentales de la matière. Dans le même article où il avait proposé son nouveau nombre à deux valeurs, Pauli avait également suggéré un "principe d'exclusion", à savoir que deux électrons ne pouvaient pas occuper exactement le même état. S'ils le pouvaient, alors chaque électron d'un atome tomberait simplement dans l'état d'énergie le plus bas, et pratiquement tous les éléments se comporteraient presque exactement de la même manière les uns que les autres, détruisant la chimie telle que nous la connaissons. La vie n'existerait pas. L'eau n'existerait pas. L'univers serait simplement rempli d'étoiles et de gaz, dérivant dans un cosmos ennuyeux et indifférent sans rencontrer la moindre pierre. En fait, comme on l'a compris plus tard, toute matière solide, quelle qu'elle soit, serait instable. Bien que l'idée de Pauli soit clairement correcte, la raison pour laquelle les électrons ne pouvaient pas partager des états n'était pas claire. Comprendre l'origine du principe d'exclusion de Pauli permettrait d'expliquer tous ces faits profonds de la vie quotidienne.

La réponse à cette énigme se trouvait dans le spin. On découvrit bientôt que le spin était une propriété de base de toutes les particules fondamentales, et pas seulement des électrons, et qu'il était étroitement lié au comportement de ces particules en groupes. En 1940, Pauli et le physicien suisse Markus Fierz ont prouvé que lorsque la mécanique quantique et la relativité restreinte d'Einstein étaient combinées, cela conduisait inévitablement à un lien entre le spin et le comportement statistique des groupes. Le principe d'exclusion de Pauli n'était qu'un cas particulier de ce théorème de la statistique du spin, comme on l'a appelé. Ce théorème est un "fait puissant sur le monde", comme le dit le physicien Michael Berry. "Il est à la base de la chimie, de la supraconductivité, c'est un fait très fondamental". Et comme tant d'autres faits fondamentaux en physique, le spin s'est avéré utile sur le plan technologique également. Dans la seconde moitié du XXe siècle, le spin a été exploité pour développer des lasers, expliquer le comportement des supraconducteurs et ouvrir la voie à la construction d'ordinateurs quantiques.

VOIR AU-DELÀ DU SPIN

Mais toutes ces fabuleuses découvertes, applications et explications laissent encore sur la table la question de Goudsmit et Uhlenbeck : qu'est-ce que le spin ? Si les électrons doivent avoir un spin, mais ne peuvent pas tourner, alors d'où vient ce moment angulaire ? La réponse standard est que ce moment est simplement inhérent aux particules subatomiques et ne correspond à aucune notion macroscopique de rotation.

Pourtant, cette réponse n'est pas satisfaisante pour tout le monde. "Je n'ai jamais aimé l'explication du spin donnée dans un cours de mécanique quantique", déclare Charles Sebens, philosophe de la physique à l'Institut de technologie de Californie. On vous le présente et vous vous dites : "C'est étrange. Ils agissent comme s'ils tournaient, mais ils ne tournent pas vraiment ? Je suppose que je peux apprendre à travailler avec ça". Mais c'est étrange."

Récemment, cependant, Sebens a eu une idée. "Dans le cadre de la mécanique quantique, il semble que l'électron ne tourne pas", dit-il. Mais, ajoute-t-il, "la mécanique quantique n'est pas notre meilleure théorie de la nature. La théorie des champs quantiques est une théorie plus profonde et plus précise."

La théorie quantique des champs est l'endroit où le monde quantique des particules subatomiques rencontre l'équation la plus célèbre du monde : E = mc2, qui résume la découverte d'Einstein selon laquelle la matière peut se transformer en énergie et vice versa. (La théorie quantique des champs est également à l'origine du théorème de la statistique du spin). C'est à partir de cette propriété que lorsque des particules subatomiques interagissent, de nouvelles particules sont souvent créées à partir de leur énergie, et les particules existantes peuvent se désintégrer en quelque chose d'autre. La théorie quantique des champs traite ce phénomène en décrivant les particules comme provenant de champs qui imprègnent tout l'espace-temps, même l'espace vide. Ces champs permettent aux particules d'apparaître et de disparaître, conformément aux règles strictes de la relativité restreinte d'Einstein et aux lois probabilistes du monde quantique.

Et ce sont ces champs, selon Sebens, qui pourraient contenir la solution à l'énigme du spin. "L'électron est habituellement considéré comme une particule", explique-t-il. "Mais dans la théorie quantique des champs, pour chaque particule, il existe une façon de la considérer comme un champ." En particulier, l'électron peut être considéré comme une excitation dans un champ quantique connu sous le nom de champ de Dirac, et ce champ pourrait être ce qui porte le spin de l'électron. "Il y a une véritable rotation de l'énergie et de la charge dans le champ de Dirac", dit Sebens. Si c'est là que réside le moment angulaire, le problème d'un électron tournant plus vite que la vitesse de la lumière disparaît ; la région du champ portant le spin de l'électron est bien plus grande que l'électron supposé ponctuel lui-même. Ainsi, selon Sebens, d'une certaine manière, Pauli et Lorentz avaient à moitié raison : il n'y a pas de particule qui tourne. Il y a un champ tournant, et c'est ce champ qui donne naissance aux particules.

UNE QUESTION SANS RÉPONSE ?

Jusqu'à présent, l'idée de Sebens a produit quelques remous, mais pas de vagues. Pour ce qui est de savoir si les électrons tournent, "je ne pense pas qu'il s'agisse d'une question à laquelle on puisse répondre", déclare Mark Srednicki, physicien à l'université de Californie à Santa Barbara. "Nous prenons un concept qui trouve son origine dans le monde ordinaire et nous essayons de l'appliquer à un endroit où il ne s'applique plus vraiment. Je pense donc que ce n'est vraiment qu'une question de choix, de définition ou de goût pour dire que l'électron tourne vraiment." Hans Ohanian, physicien à l'université du Vermont qui a réalisé d'autres travaux sur le spin des électrons, souligne que la version originale de l'idée de Sebens ne fonctionne pas pour l'antimatière.

Mais tous les physiciens ne sont pas aussi dédaigneux. Selon Sean Carroll, physicien à l'université Johns Hopkins et à l'Institut Santa Fe, "la formulation conventionnelle de notre réflexion sur le spin laisse de côté un élément potentiellement important". "Sebens est tout à fait sur la bonne voie, ou du moins fait quelque chose de très, très utile dans le sens où il prend très au sérieux l'aspect champ de la théorie quantique des champs." Mais, souligne Carroll, "les physiciens sont, au fond, des pragmatiques..... Si Sebens a raison à 100 %, les physiciens vous diront : "D'accord, mais qu'est-ce que cela m'apporte ?"

Doreen Fraser, philosophe de la théorie des champs quantiques à l'université de Waterloo, au Canada, se fait l'écho de ce point de vue. "Je suis ouverte à ce projet que Sebens a de vouloir forer plus profondément pour avoir une sorte d'intuition physique pour aller avec le spin", dit-elle. "Vous avez cette belle représentation mathématique ; vous voulez avoir une image physique intuitive pour l'accompagner." En outre, une image physique pourrait également déboucher sur de nouvelles théories ou expériences qui n'ont jamais été réalisées auparavant. "Pour moi, ce serait le test pour savoir si c'est une bonne idée."

Il est trop tôt pour dire si les travaux de M. Sebens porteront ce genre de fruits. Et bien qu'il ait rédigé un article sur la manière de résoudre la préoccupation d'Ohanian concernant l'antimatière, d'autres questions connexes restent en suspens. "Il y a beaucoup de raisons d'aimer" l'idée du champ, dit Sebens. "Je prends cela plus comme un défi que comme un argument massue contre elle."

Auteur: Becker Adam

Info: Scientific American, November 22, 2022

[ approfondissement ]

 

Commentaires: 0

Ajouté à la BD par miguel

psychosomatique

Nous avons 2 cerveaux.

On se demande souvent pourquoi les gens ont des "boules" dans l'estomac avant d'aller sur scène ? Ou pourquoi un entretien d'emploi imminent peut causer des crampes intestinales ? Ainsi que : pourquoi les antidépresseur qui visent le cerveau causent la nausée ou un bouleversement abdominal chez des millions de personnes qui prennent de telles drogues ?

Les scientifiques disent que la raison de ces réactions est que notre corps a deux cerveaux : le familier, dans le crâne et, moins connus, mais extrêmement importants un autre dans l'intestin humain- Tout comme des jumeaux siamois, les deux cerveaux sont reliés ensemble ; quand l'un est affecté, l'autre aussi. Le cerveau de l'intestin, connu sous le nom de système nerveux entérique, est situé dans les gaines du tissu qui tapissent l'oesophage, l'estomac, le petit intestin et le colon. Si on le considère comme une simple entité, c'est un réseau de neurones, de neurotransmetteurs et de protéines qui zappent des messages entre eux, soutiennent des cellules comme celles du cerveau proprement dit et offrent des circuits complexes qui lui permettent d'agir indépendamment, d'apprendre, de se rappeler et, selon le dicton, de produire des sensations dans les intestins.

Le cerveau de l'intestin joue un rôle important dans le bonheur et la misère humains. Mais peu de gens savent qu'il existe indique le Dr. Michael Gershon, professeur d'anatomie et de biologie des cellules au centre médical presbytérien de Colombia à New York. Pendant des années, on a dit aux gens qui ont des ulcères, des problèmes pour avaler ou des douleurs abdominales chroniques que leurs problèmes étaient imaginaires ou, émotifs, c'est à dire simplement dans leurs têtes. Ces gens ont donc faits la navette entre divers psychiatres pour le traitement. Les médecins avaient raison en attribuant ces problèmes au cerveau dit le DR. Gershon, mais ils blâment le faux. Beaucoup de désordres gastro-intestinaux, comme le syndrome d'entrailles irritable proviennent des problèmes dans le propre cerveau de l'intestin, affirme-t'il. Les symptômes provenant des deux cerveaux - tendent à être confus : " Comme le cerveau peut déranger l'intestin, l'intestin peut également déranger le cerveau... si tu es enchaîné aux toilette avec un serre joint, tu seras aussi affecté."

Les détails de la façon dont le système nerveux entérique reflète le système nerveux central ont émergé ces dernières années, dit le Dr. Gershon, et c'est considéré comme un nouveau champ d'investigation appelé neuro-gastro-enterologie par la médecine. Ainsi, presque chaque substance qui aide à faire fonctionner et à commander le cerveau a donné des résultat dans l'intestin, dit Gershon. Les neurotransmetteurs principaux comme la sérotonine, dopamine, glutamate, nopépinéphrine et l'oxyde nitrique sont là. Deux douzaine de petites protéines cervicales, appelées les neuropeptides, sont dans l'intestin, comme les cellules principales du système immunitaire. Les Enkephalins, une classe d'opiacés normaux du corps, sont dans l'intestin et, constatation qui laisse les chercheurs perplexe, l'intestin est une riche source de benzodiazépines - la famille des produits chimiques psycho-actifs qui inclut des drogues toujours populaires telles que le Valium et le Xanax.

En termes évolutionnistes, il est assez clair que le corps a deux cerveaux, dit le Dr. David Wingate, professeur de science gastro-intestinale à l'université de Londres et conseiller à l'hôpital royal de Londres. Les premiers systèmes nerveux étaient des animaux non tubulaires qui collaient aux roches et attendaient le passage de nourriture. Le système limbique est souvent désignée sous le nom de "cerveau reptilien". Alors que la vie évoluait, les animaux ont eu besoin d'un cerveau plus complexe pour trouver la nourriture et un partenaire sexuel et ainsi ont développé un système nerveux central. Mais le système nerveux de l'intestin était trop important pour l'intégrer à cette nouvelle tête, même avec de longs raccordements sur tout le corps. Un rejeton à toujours besoin de manger et digérer de la nourriture à la naissance. Par conséquent, la nature semble avoir préservé le système nerveux entérique en tant que circuit indépendant.

Chez de plus grands animaux, il est simplement relié de manière vague au système nerveux central et peut la plupart du temps fonctionner seul, sans instructions de l'extérieur. C'est en effet l'image vue par les biologistes développementalistes. Une motte de tissus appelée la "crête neurale" se forme tôt dans l'embryogenese dit le DR.Gershon. Une section se transforme en système nerveux central. Un autre morceau émigre pour devenir le système nerveux entérique. Et postérieurieurement seulement les deux systèmes nerveux seront relié par l'intermédiaire d'une sorte de câble appelé le nerf "vagus". Jusque à relativement récemment, les gens ont pensé que les muscles et les nerfs sensoriels de l'intestin étaient câblés directement au cerveau et que le cerveau commandait l'intestin par deux voies qui augmentaient ou diminuaient les taux de l'activité. L'intestin étant un simple tube avec des réflexes. L'ennui est que personne ne pris la peine de compter les fibres de nerf dans l'intestin. Quand on l'a fait on fut étonné de constater que l'intestin contient 100 millions de neurones - plus que la moelle épinière.

Pourtant le conduit vagus n'envoie qu'environ deux mille fibres de nerf vers l'intestin. Le cerveau envoie des signaux à l'intestin en parlant à un nombre restreint de'"neurones de commande", qui envoient à leur tour des signaux aux neurones internes de l'intestin qui diffusent les messages. Les neurones et les inter neurones de commande sont dispersées dans deux couches de tissu intestinal appelées le plexus myenteric et le plexus subrmuscosal. ("le plexus solaire" est en fait un terme de boxe qui se réfère simplement aux nerfs de l'abdomen.) Ces neurones commandent et contrôlent le modèle de l'activité de l'intestin. Le nerf vagus modifie seulement le volume en changeant le taux de mise à feu. Les plexus contiennent également les cellules gliales qui nourrissent les neurones, les cellules pylônes impliquées dans des immuno-réactions, et "une barrière de sang cervical " qui maintient ces substances nocives loin des neurones importants. Ils ont des sondes pour les protéines de sucre, d'acidité et d'autres facteurs chimiques qui pourraient aider à surveiller le progrès de la digestion, déterminant comment l'intestin mélange et propulse son contenu. "Ce n'est pas une voie simple", Y sont employés des circuits intégrés complexes, pas différents du cerveau." Le cerveau de l'intestin et le cerveau de la tête agissent de la même manière quand ils sont privés d'informations venant du monde extérieur.

Pendant le sommeil, le cerveau de la tête produit des cycles de 90-minutes de sommeil lent, ponctué par des périodes de sommeil avec des mouvement d'oeil rapide (REM) où les rêves se produisent. Pendant la nuit, quand il n'a aucune nourriture, le cerveau de l'intestin produit des cycles 90-minute de lentes vagues de contractions des muscles, ponctuées par de courts gerbes de mouvements rapides des muscles, dit le Dr. Wingate. Les deux cerveaux peuvent donc s'influencer dans cet état. On a trouvé des patients présentant des problèmes d'entrailles ayant un sommeil REM anormal. Ce qui n'est pas contradictoire avec la sagesse folklorique qui voudrait que l'indigestion pousse au cauchemar. Alors que la lumière se fait sur les connexions entre les deux cerveaux, les chercheurs commencent à comprendre pourquoi les gens agissent et se sentent de telle manière.

Quand le cerveau central rencontre une situation effrayante, il libère les hormones d'effort qui préparent le corps combattre ou à se sauver dit le DR.Gershon. L'estomac contient beaucoup de nerfs sensoriels qui sont stimulés par cette montée chimique subite - ainsi surviennent les ballonnements. Sur le champ de bataille, le cerveau de la tête indique au cerveau d'intestin arrêter dit le DR.Gershon " Effrayé un animal en train de courir ne cesse pas de déféquer ". La crainte fait aussi que le nerf vagus au "monte le volume" des circuits de sérotonine dans l'intestin. Ainsi, trop stimulé, l'intestin impulse des vitesse élevés et, souvent, de la diarrhée. De même, des gens s'étouffent avec l'émotion. Quand des nerfs dans l'oesophage sont fortement stimulés, les gens peuvent éprouver des problèmes d'ingestion. Même le prétendu " Moment de Maalox " d'efficacité publicitaire peut être expliqué par les deux cerveaux agissant en interaction, dit le Dr. Jackie D. Wood, président du département de physiologie à l'université de l'Etat de l'Ohio à Columbus. Les signaux d'effort du cerveau de la tête peuvent changer la fonction de nerf entre l'estomac et l'oesophage, ayant pour résultat la brûlure d'estomac.

Dans les cas d'efforts extrême. le cerveau dominant semble protéger l'intestin en envoyant des signaux aux cellules pylônes immunologiques dans le plexus. Les cellules pylônes sécrètent l'histamine, la prostaglandine et d'autres agents qui aident à produire l'inflammation. "C'est protecteur. Si un animal est en danger et sujet au trauma, la substance sale dans les intestins est seulement à quelques cellules du reste du corps. En enflammant l'intestin, le cerveau amorce l'intestin pour la surveillance. Si la barrière se casse, l'intestin est prêt à faire les réparations ". Dit le DR. Wood. Malheureusement, ces produits chimiques libérés causent également la diarrhée et les crampes. Ceci explique également beaucoup d'interactions.."quand tu prends une drogue pour avoir des effets psychiques sur le cerveau, il est très probable que tu auras aussi des effets sur l'intestin. Réciproquement, les drogues développées pour le cerveau ont des utilisations pour l'intestin.

Par exemple, l'intestin est chargé avec la sérotonine des neurotransmetteur. Quand des récepteurs de pression de la doublure de l'intestin sont stimulés, la sérotonine est libérée et commence le mouvement réflexe du péristaltisme. Maintenant un quart des personnes prenant du Prozac ou des antidépresseur semblables ont des problèmes gastro- intestinaux comme la nausée, diarrhée et constipation. Ces drogues agissent sur la sérotonine, empêchant sa prise par les cellules cible de sorte qu'elle demeure plus abondante dans le système nerveux central. Dans une étude le DR.Gershon et ses collègues expliquent les effets secondaires du Prozac sur l'intestin. Ils ont monté une section de colon du cobaye sur un stand et ont mis un petit granule à l'extrémité de la "bouche". Le colon isolé fouette le granule vers le bas vers l'extrémité "anale" de la colonne, juste comme il le ferai à l'intérieur de l'animal. Quand les chercheurs ont mis un peu de Prozac dans le colon, le granule " y est entré dans la haute vitesse". La drogue a doublé la vitesse à laquelle le granule a traversé le colon, ce qui expliqueraient pourquoi certains ont la diarrhée. Le Prozac a été parfois utilisé à petites doses pour traiter la constipation chronique, a il ajouté. Mais quand les chercheurs ont augmenté la quantité de Prozac dans le colon du cobaye, le granule a cessé de se déplacer. Le DR Gershon dit que c'est pourquoi certains deviennent constipé avec cette drogue. Et parce que les nerfs sensoriels stimulés par Prozac peuvent également causer la nausée. Certains antibiotiques comme la crythromycine agissent sur des récepteurs d'intestin et produisent des oscillations. Certaines ont alors des crampes et des nausées. Des drogues comme la morphine et l'héroïne s'attachent aux récepteurs des opiacé de l'intestin, produisant la constipation. En effet, les deux cerveaux peuvent être intoxiqués aux opiacés. Les victimes des maladies d'Alzheimer et de Parkinson souffrent de constipation. Les nerfs dans leur intestin sont aussi malades que les cellules de nerf dans leurs cerveaux. Juste comme le cerveau central affecte l'intestin, le cerveau de l'intestin peut parler à la tête. La plupart des sensations d'intestin qui entrent dans la part consciente sont des choses négatives comme la douleur et le ballonnement.

Les gens ne s'attendent pas à sentir "du bon" venant de l'intestin... mais cela ne signifie pas que de tels signaux sont absents. Par conséquent, il y a la question intrigante : pourquoi l'intestin produit-il de la benzodiazépine ? Le cerveau humain contient des récepteurs pour la benzodiazépine, une drogue qui soulage l'inquiétude, suggérant que le corps produise sa propre source interne de la drogue, dit le Dr. Anthony Basile, neurochimiste au laboratoire de neurologie aux instituts nationaux de la santé a Bethesda. Il y a plusieurs années, dit-il, un scientifique italien a fait une découverte plus effrayante. Les patients présentant un disfonctionnement du foie tombèrent dans un coma profond. Le coma put être renversé, en quelques minutes, en donnant aux patients une drogue qui bloque la benzodiazépine. Quand le foie s'arrête, les substances habituellement neutralisées par le foie vont au cerveau. Certaines sont mauvaises, comme l'ammoniaque et les mercaptans, qui sont "les composés puants que les putois pulvérisent pour se défendre ". Mais une série de composés est également identique à la benzodiazépine. " Nous ne savons pas s'ils viennent de l'intestin lui-même, de bactéries dans l'intestin ou de la nourriture". dit. Le Dr Basile. Mais quand le foie s'arrête la benzodiazépine de l'intestin va directement au cerveau, mettant le patient dans le coma.

L'intérêt pour de telles interactions entre le cerveau d'intestin et celui de tête est énorme... Par exemple, beaucoup de personnes sont allergiques à certaines nourritures, comme les mollusques et les crustacés. C'est parce que les cellules pylônes dans l'intestin deviennent mystérieusement sensibilisées aux antigènes de la nourriture. La prochaine fois que l'antigène apparaît dans l'intestin ; les cellules pylônes appellent un programme, libérant des modulateurs chimiques, qui essaye d'éliminer la menace. La personne allergique se retrouve donc avec de la diarrhée et des crampes. Beaucoup de maladies auto-immunes comme la maladie de Krohn et les colites ulcérative peuvent impliquer le cerveau de l'intestin. Les conséquences peuvent être horribles, comme dans la maladie de Chagas, qui est provoquée par un parasite trouvé en Amérique du sud. Les infectés développent une réponse auto-immune des neurones de leur intestin. Leurs systèmes immunitaires détruit alors lentement leurs propres neurones intestinales. Quand assez de neurones sont mortes, les intestins éclatent littéralement.

Restent ces questions : Est ce que le cerveau de l'intestin apprend ? Pense - il pour lui-même ? L'intestin humain a été longtemps vu comme le réceptacle des bons et des mauvais sentiments. Des états peut-être émotifs du cerveau de la tête sont reflétés dans le cerveau de l'intestin, ou sont-ils ressentis que par ceux qui prêtent l'attention à elles. Le cerveau de l'intestin prend la forme de deux réseaux de raccordements neuraux dans la doublure de l'appareil gastro-intestinal, appelée le plexus myenteric et le plexus subrnucosal. Les nerfs sont fortement reliés ensemble et ont une influence directe sur des choses comme la vitesse de la digestion, le mouvement et des sécrétions de la muqueuses "comme-des-doigts" qui ligne les intestins et les contractions des différents genres de muscle dans les parois de l'intestin. Autoroute cerveau intestin à 2 voies : RUE Bidirectionnelle : L'intestin a son propre esprit, le système nerveux entérique. Juste comme le cerveau dans la tête, disent les chercheurs. Ce système envoie et reçoit des impulsions, enregistre, fait des expériences et répond aux émotions. Ses cellules nerveuse sont baignées et influencées par les mêmes neurotransmetteurs. L'intestin peut déranger le cerveau juste comme le cerveau peut déranger l'intestin. Diagramme des parois du petit intestin : un plan de coupe montre deux réseaux de nerfs qui composent le système nerveux entérique, ou "cerveau dans l'intestin". Le premier réseau, appelé le plexus submucosal, est juste sous la doublure muqueuse. le second, le plexus myenteric, se trouve entre les deux manteaux de muscle.

Auteur: Blakeslee Sandra

Info: New York Times 23 Janvier 1996

[ dyspepsie ] [ tourista ]

 

Commentaires: 0

homme-machine

Chat GPT ou le perroquet grammairien

L’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur le langage humain et sur ce qu’on appelle parler. Notamment, les IA redonnent naissance à un débat ancien sur la grammaire générative et sur l’innéisme des facultés langagières. Mais les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction, et considérant aussi la façon dont les animaux communiquent.

a capacité de ChatGPT à produire des textes en réponse à n’importe quelle requête a immédiatement attiré l’attention plus ou moins inquiète d’un grand nombre de personnes, les unes animées par une force de curiosité ou de fascination, et les autres, par un intérêt professionnel.

L’intérêt professionnel scientifique que les spécialistes du langage humain peuvent trouver aux Large Language Models ne date pas d’hier : à bien des égards, des outils de traduction automatique comme DeepL posaient déjà des questions fondamentales en des termes assez proches. Mais l’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur ce que les Large Language Models sont susceptibles de nous dire sur le langage humain et sur ce qu’on appelle parler.

L’outil de traduction DeepL (ou les versions récentes de Google Translate) ainsi que les grands modèles de langage reposent sur des techniques d’" apprentissage profond " issues de l’approche " neuronale " de l’Intelligence Artificielle : on travaille ici sur des modèles d’IA qui organisent des entités d’information minimales en les connectant par réseaux ; ces réseaux de connexion sont entraînés sur des jeux de données considérables, permettant aux liaisons " neuronales " de se renforcer en proportion des probabilités de connexion observées dans le jeu de données réelles – c’est ce rôle crucial de l’entraînement sur un grand jeu de données qui vaut aux grands modèles de langage le sobriquet de " perroquets stochastiques ". Ces mécanismes probabilistes sont ce qui permet aussi à l’IA de gagner en fiabilité et en précision au fil de l’usage. Ce modèle est qualifié de " neuronal " car initialement inspiré du fonctionnement des réseaux synaptiques. Dans le cas de données langagières, à partir d’une requête elle-même formulée en langue naturelle, cette technique permet aux agents conversationnels ou aux traducteurs neuronaux de produire très rapidement des textes généralement idiomatiques, qui pour des humains attesteraient d’un bon apprentissage de la langue.

IA neuronales et acquisition du langage humain

Au-delà de l’analogie " neuronale ", ce mécanisme d’entraînement et les résultats qu’il produit reproduisent les théories de l’acquisition du langage fondées sur l’interaction avec le milieu. Selon ces modèles, généralement qualifiés de comportementalistes ou behavioristes car étroitement associés aux théories psychologiques du même nom, l’enfant acquiert le langage par l’exposition aux stimuli linguistiques environnants et par l’interaction (d’abord tâtonnante, puis assurée) avec les autres. Progressivement, la prononciation s’aligne sur la norme majoritaire dans l’environnement individuel de la personne apprenante ; le vocabulaire s’élargit en fonction des stimuli ; l’enfant s’approprie des structures grammaticales de plus en plus contextes ; et en milieu bilingue, les enfants apprennent peu à peu à discriminer les deux ou plusieurs systèmes auxquels ils sont exposés. Cette conception essentiellement probabiliste de l’acquisition va assez spontanément de pair avec des théories grammaticales prenant comme point de départ l’existence de patrons (" constructions ") dont la combinatoire constitue le système. Dans une telle perspective, il n’est pas pertinent qu’un outil comme ChatGPT ne soit pas capable de référer, ou plus exactement qu’il renvoie d’office à un monde possible stochastiquement moyen qui ne coïncide pas forcément avec le monde réel. Cela ne change rien au fait que ChatGPT, DeepL ou autres maîtrisent le langage et que leur production dans une langue puisse être qualifiée de langage : ChatGPT parle.

Mais ce point de vue repose en réalité sur un certain nombre de prémisses en théorie de l’acquisition, et fait intervenir un clivage lancinant au sein des sciences du langage. L’actualité de ces dernières années et surtout de ces derniers mois autour des IA neuronales et génératives redonne à ce clivage une acuité particulière, ainsi qu’une pertinence nouvelle pour l’appréhension de ces outils qui transforment notre rapport au texte et au discours. La polémique, comme souvent (trop souvent ?) quand il est question de théorie du langage et des langues, se cristallise – en partie abusivement – autour de la figure de Noam Chomsky et de la famille de pensée linguistique très hétérogène qui se revendique de son œuvre, généralement qualifiée de " grammaire générative " même si le pluriel (les grammaires génératives) serait plus approprié.

IA générative contre grammaire générative

Chomsky est à la fois l’enfant du structuralisme dans sa variante états-unienne et celui de la philosophie logique rationaliste d’inspiration allemande et autrichienne implantée sur les campus américains après 1933. Chomsky est attaché à une conception forte de la logique mathématisée, perçue comme un outil d’appréhension des lois universelles de la pensée humaine, que la science du langage doit contribuer à éclairer. Ce parti-pris que Chomsky qualifiera lui-même de " cartésien " le conduit à fonder sa linguistique sur quelques postulats psychologiques et philosophiques, dont le plus important est l’innéisme, avec son corollaire, l’universalisme. Selon Chomsky et les courants de la psychologie cognitive influencée par lui, la faculté de langage s’appuie sur un substrat génétique commun à toute l’espèce humaine, qui s’exprime à la fois par un " instinct de langage " mais aussi par l’existence d’invariants grammaticaux, identifiables (via un certain niveau d’abstraction) dans toutes les langues du monde.

La nature de ces universaux fluctue énormément selon quelle période et quelle école du " générativisme " on étudie, et ce double postulat radicalement innéiste et universaliste reste très disputé aujourd’hui. Ces controverses mettent notamment en jeu des conceptions très différentes de l’acquisition du langage et des langues. Le moment fondateur de la théorie chomskyste de l’acquisition dans son lien avec la définition même de la faculté de langage est un violent compte-rendu critique de Verbal Behavior, un ouvrage de synthèse des théories comportementalistes en acquisition du langage signé par le psychologue B.F. Skinner. Dans ce compte-rendu publié en 1959, Chomsky élabore des arguments qui restent structurants jusqu’à aujourd’hui et qui définissent le clivage entre l’innéisme radical et des théories fondées sur l’acquisition progressive du langage par exposition à des stimuli environnementaux. C’est ce clivage qui préside aux polémiques entre linguistes et psycholinguistes confrontés aux Large Language Models.

On comprend dès lors que Noam Chomsky et deux collègues issus de la tradition générativiste, Ian Roberts, professeur de linguistique à Cambridge, et Jeffrey Watumull, chercheur en intelligence artificielle, soient intervenus dans le New York Times dès le 8 mars 2023 pour exposer un point de vue extrêmement critique intitulée " La fausse promesse de ChatGPT ". En laissant ici de côté les arguments éthiques utilisés dans leur tribune, on retiendra surtout l’affirmation selon laquelle la production de ChatGPT en langue naturelle ne pourrait pas être qualifiée de " langage " ; ChatGPT, selon eux, ne parle pas, car ChatGPT ne peut pas avoir acquis la faculté de langage. La raison en est simple : si les Grands Modèles de Langage reposent intégralement sur un modèle behaviouriste de l’acquisition, dès lors que ce modèle, selon eux, est réfuté depuis soixante ans, alors ce que font les Grands Modèles de Langage ne peut être qualifié de " langage ".

Chomsky, trop têtu pour qu’on lui parle ?

Le point de vue de Chomsky, Roberts et Watumull a été instantanément tourné en ridicule du fait d’un choix d’exemple particulièrement malheureux : les trois auteurs avançaient en effet que certaines constructions syntaxiques complexes, impliquant (dans le cadre générativiste, du moins) un certain nombre d’opérations sur plusieurs niveaux, ne peuvent être acquises sur la base de l’exposition à des stimuli environnementaux, car la fréquence relativement faible de ces phénomènes échouerait à contrebalancer des analogies formelles superficielles avec d’autres tournures au sens radicalement différent. Dans la tribune au New York Times, l’exemple pris est l’anglais John is too stubborn to talk to, " John est trop entêté pour qu’on lui parle ", mais en anglais on a littéralement " trop têtu pour parler à " ; la préposition isolée (ou " échouée ") en position finale est le signe qu’un constituant a été supprimé et doit être reconstitué aux vues de la structure syntaxique d’ensemble. Ici, " John est trop têtu pour qu’on parle à [John] " : le complément supprimé en anglais l’a été parce qu’il est identique au sujet de la phrase.

Ce type d’opérations impliquant la reconstruction d’un complément d’objet supprimé car identique au sujet du verbe principal revient dans la plupart des articles de polémique de Chomsky contre la psychologie behaviouriste et contre Skinner dans les années 1950 et 1960. On retrouve même l’exemple exact de 2023 dans un texte du début des années 1980. C’est en réalité un exemple-type au service de l’argument selon lequel l’existence d’opérations minimales universelles prévues par les mécanismes cérébraux humains est nécessaire pour l’acquisition complète du langage. Il a presque valeur de shibboleth permettant de séparer les innéistes et les comportementalistes. Il est donc logique que Chomsky, Roberts et Watumull avancent un tel exemple pour énoncer que le modèle probabiliste de l’IA neuronale est voué à échouer à acquérir complètement le langage.

On l’aura deviné : il suffit de demander à ChatGPT de paraphraser cette phrase pour obtenir un résultat suggérant que l’agent conversationnel a parfaitement " compris " le stimulus. DeepL, quand on lui demande de traduire cette phrase en français, donne deux solutions : " John est trop têtu pour qu’on lui parle " en solution préférée et " John est trop têtu pour parler avec lui " en solution de remplacement. Hors contexte, donc sans qu’on sache qui est " lui ", cette seconde solution n’est guère satisfaisante. La première, en revanche, fait totalement l’affaire.

Le détour par DeepL nous montre toutefois la limite de ce petit test qui a pourtant réfuté Chomsky, Roberts et Watumull : comprendre, ici, ne veut rien dire d’autre que " fournir une paraphrase équivalente ", dans la même langue (dans le cas de l’objection qui a immédiatement été faite aux trois auteurs) ou dans une autre (avec DeepL), le problème étant que les deux équivalents fournis par DeepL ne sont justement pas équivalents entre eux, puisque l’un est non-ambigu référentiellement et correct, tandis que l’autre est potentiellement ambigu référentiellement, selon comment on comprend " lui ". Or l’argument de Chomsky, Roberts et Watumull est justement celui de l’opacité du complément d’objet… Les trois auteurs ont bien sûr été pris à défaut ; reste que le test employé, précisément parce qu’il est typiquement behaviouriste (observer extérieurement l’adéquation d’une réaction à un stimulus), laisse ouverte une question de taille et pourtant peu présente dans les discussions entre linguistes : y a-t-il une sémantique des énoncés produits par ChatGPT, et si oui, laquelle ? Chomsky et ses co-auteurs ne disent pas que ChatGPT " comprend " ou " ne comprend pas " le stimulus, mais qu’il en " prédit le sens " (bien ou mal). La question de la référence, présente dans la discussion philosophique sur ChatGPT mais peu mise en avant dans le débat linguistique, n’est pas si loin.

Syntaxe et sémantique de ChatGPT

ChatGPT a une syntaxe et une sémantique : sa syntaxe est homologue aux modèles proposés pour le langage naturel invoquant des patrons formels quantitativement observables. Dans ce champ des " grammaires de construction ", le recours aux données quantitatives est aujourd’hui standard, en particulier en utilisant les ressources fournies par les " grand corpus " de plusieurs dizaines de millions voire milliards de mots (quinze milliards de mots pour le corpus TenTen francophone, cinquante-deux milliards pour son équivalent anglophone). D’un certain point de vue, ChatGPT ne fait que répéter la démarche des modèles constructionalistes les plus radicaux, qui partent de co-occurrences statistiques dans les grands corpus pour isoler des patrons, et il la reproduit en sens inverse, en produisant des données à partir de ces patrons.

Corrélativement, ChatGPT a aussi une sémantique, puisque ces théories de la syntaxe sont majoritairement adossées à des modèles sémantiques dits " des cadres " (frame semantics), dont l’un des inspirateurs n’est autre que Marvin Minsky, pionnier de l’intelligence artificielle s’il en est : la circulation entre linguistique et intelligence artificielle s’inscrit donc sur le temps long et n’est pas unilatérale. Là encore, la question est plutôt celle de la référence : la sémantique en question est très largement notionnelle et ne permet de construire un énoncé susceptible d’être vrai ou faux qu’en l’actualisant par des opérations de repérage (ne serait-ce que temporel) impliquant de saturer grammaticalement ou contextuellement un certain nombre de variables " déictiques ", c’est-à-dire qui ne se chargent de sens que mises en relation à un moi-ici-maintenant dans le discours.

On touche ici à un problème transversal aux clivages dessinés précédemment : les modèles " constructionnalistes " sont plus enclins à ménager des places à la variation contextuelle, mais sous la forme de variables situationnelles dont l’intégration à la description ne fait pas consensus ; les grammaires génératives ont très longtemps évacué ces questions hors de leur sphère d’intérêt, mais les considérations pragmatiques y fleurissent depuis une vingtaine d’années, au prix d’une convocation croissante du moi-ici-maintenant dans l’analyse grammaticale, du moins dans certains courants. De ce fait, l’inscription ou non des enjeux référentiels et déictiques dans la définition même du langage comme faculté humaine représente un clivage en grande partie indépendant de celui qui prévaut en matière de théorie de l’acquisition.

À l’école du perroquet

La bonne question, en tout cas la plus féconde pour la comparaison entre les productions langagières humaines et les productions des grands modèles de langage, n’est sans doute pas de savoir si " ChatGPT parle " ni si les performances de l’IA neuronale valident ou invalident en bloc tel ou tel cadre théorique. Une piste plus intéressante, du point de vue de l’étude de la cognition et du langage humains, consiste à comparer ces productions sur plusieurs niveaux : les mécanismes d’acquisition ; les régularités sémantiques dans leur diversité, sans les réduire aux questions de référence et faisant par exemple intervenir la conceptualisation métaphorique des entités et situations désignées ; la capacité à naviguer entre les registres et les variétés d’une même langue, qui fait partie intégrante de la maîtrise d’un système ; l’adaptation à des ontologies spécifiques ou à des contraintes communicatives circonstancielles… La formule du " perroquet stochastique ", prise au pied de la lettre, indique un modèle de ce que peut être une comparaison scientifique du langage des IA et du langage humain.

Il existe en effet depuis plusieurs décennies maintenant une linguistique, une psycholinguistique et une pragmatique de la communication animale, qui inclut des recherches comparant l’humain et l’animal. Les progrès de l’étude de la communication animale ont permis d’affiner la compréhension de la faculté de langage, des modules qui la composent, de ses prérequis cognitifs et physiologiques. Ces travaux ne nous disent pas si " les animaux parlent ", pas plus qu’ils ne nous disent si la communication des corbeaux est plus proche de celle des humains que celle des perroquets. En revanche ils nous disent comment diverses caractéristiques éthologiques, génétiques et cognitives sont distribuées entre espèces et comment leur agencement produit des modes de communication spécifiques. Ces travaux nous renseignent, en nous offrant un terrain d’expérimentation inédit, sur ce qui fait toujours système et sur ce qui peut être disjoint dans la faculté de langage. Loin des " fausses promesses ", les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction. 



 

Auteur: Modicom Pierre-Yves

Info: https://aoc.media/ 14 nov 2023

[ onomasiologie bayésienne ] [ sémiose homme-animal ] [ machine-homme ] [ tiercités hors-sol ] [ signes fixés externalisables ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0

non-voyant

Le monde tel que l'imaginent ceux qui n'ont jamais vu. (I)
Depuis les opérations pratiquées par le chirurgien anglais Cheselden en 1728 sur des personnes atteintes de cataracte congénitale, redonner la vue aux aveugles ne tient plus du miracle biblique mais de la science - et les avancées extraordinaires que la médecine a effectuées dans ce domaine invitent à être optimistes pour l'avenir. Toutefois, la plupart des aveugles de naissance qui vivent aujourd'hui savent que ces progrès bénéficieront surtout aux générations futures et que, pour la majorité d'entre eux, ils quitteront ce monde sans en avoir rien vu. Pour autant, à en croire certains, il n'y a nullement là de quoi s'affliger :" Je ne regrette jamais de ne pas voir. Je vois autrement et puis je n'ai jamais vu avec les yeux, ça ne peut pas me manquer." affirme Sophie Massieu (36 ans, journaliste).
L'aveugle de naissance "ne sait pas ce qu'il perd", littéralement parlant, il n'a donc aucune raison de soupirer après un état qu'il n'a jamais connu. Ce n'est donc pas, dans son cas, sur le mode de la lamentation ou du regret lyrique qu'il faut entendre le mot "jamais", comme ce peut être le cas pour les aveugles tardifs qui restent longtemps hantés par leurs souvenirs de voyant... Non, pour l'aveugle-né, ce "jamais" fonctionne à la manière d'un levier, d'une faille où s'engouffre son imagination : à quoi peut ressembler ce monde visible dont tout le monde parle autour de lui ? Comment se représenter des notions proprement visuelles, telles que les couleurs, l'horizon, la perspective ? Toutes ces questions pourraient tenir en une seule : comment concevoir ce qu'est la vue sans voir ? Question qui a sa réciproque pour le voyant : comment se représenter ce que c'est que de ne pas voir pour quiconque a toujours vu ? Il y a là un défi lancé à l'imagination, défi d'autant plus difficile à relever que les repères auxquels chacun aura spontanément tendance à se référer seront tirés d'un univers perceptif radicalement différent de celui qu'on cherche à se représenter, et qu'ils risquent fort, par conséquent, de nous induire en erreur. Il n'est pas dit que ce fossé perceptif puisse être franchi par l'imagination - mais comme tout fossé, celui-ci appelle des passerelles : analogies puisées dans les autres sens ou dans le langage, efforts pour s'abstraire de ses automatismes de pensée - ce que Christine Cloux, aveugle de naissance, appelle une forme de "souplesse mentale"... L'enjeu, s'il est vital pour l'aveugle, peut sembler minime pour le voyant : que gagne-t-on à imaginer le monde avec un sens en moins ? On aurait tort de négliger l'intérêt d'une telle démarche intellectuelle, car s'interroger sur la perception du monde d'un aveugle de naissance, c'est remettre la nôtre en perspective, en appréhender le caractère relatif, mesurer à quel point nos représentations mentales dépendent de nos dispositions sensibles - enfin, c'est peut-être le moyen de prendre conscience des limites de notre point de vue et, le temps d'un effort d'imagination, de les dépasser...
Imaginer le monde quand on est enfant
Le jeune enfant voyant croit que les choses cessent d'exister dès lors qu'elles quittent son champ de vision : un moment très bref, dit-on, sépare le temps où il croit encore sa mère absente et celui où il la croit déjà morte. Qu'on s'imagine alors ce qu'il en est pour l'enfant aveugle de naissance... "J'avais peur de lancer un ballon, parce que je pensais qu'il allait disparaître. Mon monde s'arrêtait à un mètre, au-delà, pour moi, c'était le vide. "explique Natacha de Montmollin (38 ans, informaticienne de gestion). Comment être sûr que les objets continuent d'exister quand ils sont hors de portée, d'autant plus quand on ne les retrouve pas là où on les avait laissés ? Comment accorder sa confiance à monde aussi inconstant ? Un enfant aveugle de naissance aura nécessairement besoin de plus de temps qu'un enfant voyant pour trouver ses marques et pour comprendre le monde qui l'entoure.
Dans les premières années de sa vie, l'aveugle de naissance n'a pas conscience de son handicap... De fait, s'il ne vivait dans une société de voyants, il passerait toute sa vie sans se douter de l'existence du monde visible. Dans la nouvelle de H. G. Wells Le pays des aveugles, le héros, voyant débarqué dans une communauté d'aveugles qui vit repliée sur elle-même, découvre à ses dépens qu'on y traite ceux qui se prétendent doués de la vue non comme des dieux ou des rois, mais comme des fous, comme nous traitons ceux qui affirment voir des anges - pour le dire autrement : au royaume des aveugles de naissance, les borgnes seraient internés. C'est uniquement parce qu'il vit dans une société organisée par et pour des voyants que l'aveugle finit par contracter, avec le temps, le sentiment de sa différence. Cette découverte peut se faire de différentes manières : les parents peuvent, quand ils estiment leur enfant assez mûr, lui expliquer son infirmité ; l'enfant peut également la découvrir par lui-même, au contact des autres enfants. "On ne m'a jamais expliqué que j'étais aveugle, j'en ai pris conscience avec le temps, explique Sophie Massieu. Quand je jouais à cache-cache avec les autres enfants, je ne comprenais pas pourquoi j'étais toujours la première débusquée... Evidemment, j'étais toujours cachée sous une table, sans rien autour pour me protéger, je sautais un peu aux yeux..."
Le jeune aveugle de naissance finit donc par comprendre qu'il existe une facette de la réalité que les autres perçoivent mais qui lui demeure inaccessible. Dans un premier temps, cette "face du monde" doit lui paraître pour le moins abstraite et difficile à concevoir. Pour avoir un aperçu de l'effort d'imagination que cela exige, le voyant devrait tenter de se représenter une quatrième dimension de l'espace qui l'engloberait sans qu'il en ait conscience...
Il est inévitable que l'aveugle de naissance commence par se faire de certaines choses une représentation inexacte : ces "fourvoiements de l'imagination" constituent des étapes indispensables à l'élaboration de l'intelligence, qu'on soit aveugle ou non. En outre, ils peuvent avoir leur poésie. Un psychologue russe (cité par Pierre Villey dans son ouvrage Le monde des aveugles) mentionne l'exemple d'un jeune aveugle de naissance qui se représentait absolument tous les objets comme en mouvement, jusqu'aux plus immobiles : "pour lui les pierres sautent, les couleurs jouent et rient, les arbres se battent, gémissent, pleurent". Cette représentation peut prêter à sourire, mais après tout, la science et la philosophie ne nous ont-elles pas enseigné que l'immobilité du monde n'était qu'une illusion de la perception, découlant de l'incomplétude de notre point de vue ? A ce titre, l'imagination de ce garçon semblait lui avoir épargné certaines illusions dont l'humanité a eu tant de mal à se déprendre : par exemple, quoiqu'il ne sut rien du mouvement des corps célestes, on raconte que, lorsqu'on lui posa la question : "le soleil et la lune se meuvent-ils ?", il répondit par l'affirmative, sans aucune hésitation.
L'aveugle de naissance peut se représenter la plupart des objets en les palpant. Quand ceux-ci sont trop imposants, des maquettes ou des reproductions peuvent s'y substituer. "J'ai su comment était foutue la Tour Eiffel en ayant un porte-clefs entre les mains... " se souvient Sophie Massieu. Tant que l'objet demeure hors de sa portée, hors du champ de son expérience, il n'est pas rare que l'aveugle s'en fasse une image fantaisiste en se fondant sur la sonorité du mot ou par associations d'idées. Ce défaut n'est pas propre aux aveugles, et "chez chacun, l'imagination devance l'action des sens", pour reprendre l'expression de Pierre Villey. Mais ce défaut peut avoir des conséquences nettement plus fâcheuses chez l'aveugle de naissance, car s'il se contente de ces représentations inexactes et ne cherche pas à les corriger, il risque de méconnaître le monde qui l'entoure et de s'isoler dans un royaume fantasque construit selon les caprices de son imagination. L'aveugle-né n'a pas le choix : il doit s'efforcer de se représenter le monde le plus fidèlement possible, sous peine d'y vivre en étranger...
Imaginer les individus
Très tôt, l'aveugle va trouver des expédients pour se représenter le monde qui l'entoure, à commencer par les gens qu'il côtoie. Leur voix, pour commencer, constitue pour lui une mine d'informations précieuses : l'aveugle prête autant attention à ce que dit son interlocuteur qu'à la manière dont il le dit. La voix révèle un caractère, le ton une humeur, l'accent une origine... "On peut dire ce qu'on veut, mais notre voix parle de nous à notre insu." explique Christine Cloux (36 ans, informaticienne). Certains aveugles considèrent qu'il est beaucoup plus difficile de déguiser les expressions de sa voix que celles de son visage, et pour eux, c'est la voix qui est le miroir de l'âme : "Un monde d'aveugle aurait ses Lavater [auteur de"L'Art de connaître les hommes par la physionomie"]. Une phonognomie y tiendrait lieu de notre physiognomie." écrit Pierre Villey dans Le monde des aveugles. Mais à trop se fier au caractère révélateur d'une voix, l'aveugle s'expose parfois à de cruelles désillusions... Villey cite le cas d'une jeune aveugle qui s'était éprise d'une actrice pour le charme de sa voix : "Instruite des déportements peu recommandables de son idole elle s'écrie dans un naïf élan de désespoir : "Si une pareille voix est capable de mentir, à quoi pourrons-nous donc donner notre confiance ?".
De nombreux autres indices peuvent renseigner l'aveugle sur son interlocuteur : une poignée de main en dit long (Sophie Massieu affirme haïr "les poignées de main pas franches, mollasses...", qu'elle imagine comparables à un regard fuyant) ; le son des pas d'un individu peut renseigner sur sa corpulence et sa démarche ; les odeurs qu'il dégage peuvent donner de précieux renseignements sur son mode de vie - autant d'indices que le voyant néglige souvent, en se focalisant principalement sur les informations que lui fournit sa vue. Quant à l'apparence physique en elle-même, la perspicacité de l'aveugle atteint ici ses limites : "Il y a des choses qu'on sait par le toucher mais d'autres nous échappent : on a la forme du visage, mais on n'a pas la finesse des traits, explique Sophie Massieu. On peut toujours demander aux copines "tiens, il me plaît bien, à quoi il ressemble ?" Bon, il faut avoir des bonnes copines... " Certains aveugles de naissance sont susceptibles de se laisser influencer par les goûts de la majorité voyante : Jane Hervé mentionne la préférence d'une aveugle de naissance pour les blonds aux yeux bleus :"Je crois que les blonds sont beaux. Peut-être que c'est rare...". "D'une façon générale, je pense que la manière dont nous imaginons les choses que nous ne pouvons pas percevoir tient beaucoup à la manière dont on nous en parle, explique Sophie Massieu. Si la personne qui vous le décrit trouve ça beau, vous allez trouvez ça beau, si elle trouve ça moche, vous allez trouver ça moche...". De ce point de vue, l'aveugle dépend - littéralement - du regard des autres : "Mes amis et ma famille verbalisent beaucoup ce qu'ils voient, alors ils sont en quelque sorte mon miroir parlant..." confie Christine Cloux.
Imaginer l'espace
On a cru longtemps que l'étendue était une notion impossible à concevoir pour un aveugle. Platner, un médecin philosophe du siècle dernier, en était même arrivé à la conclusion que, pour l'aveugle-né, c'était le temps qui devait faire office d'espace : "Eloignement et proximité ne signifient pour lui que le temps plus ou moins long, le nombre plus ou moins grand d'intermédiaires dont il a besoin pour passer d'une sensation tactile à une autre.". Cette théorie est très poétique - on se prend à imaginer, dans un monde d'aveugles-nés, des cartes en relief où la place dévolue à chaque territoire ne serait pas proportionnelle à ses dimensions réelles mais à son accessibilité, au temps nécessaire pour le parcourir... Dans les faits, cependant, cette théorie nous en dit plus sur la manière dont les voyants imaginent le monde des aveugles que sur le contraire. Car s'il faut en croire les principaux intéressés, ils n'ont pas spécialement de difficulté à se figurer l'espace.
"Tout est en 3D dans ma tête, explique Christine Cloux. Si je suis chez moi, je sais exactement comment mon appartement est composé : je peux décrire l'étage inférieur sans y aller, comme si j'en avais une maquette. Vraiment une maquette, pas un dessin ou une photo. De même pour les endroits que je connais ou que j'explore : les gares, des quartiers en ville, etc. Plus je connais, plus c'est précis. Plus j'explore, plus j'agrandis mes maquettes et j'y ajoute des détails."La représentation de l'espace de l'aveugle de naissance se fait bien sous formes d'images spatiales, mais celles-ci n'en sont pas pour autant des images-vues : il faudrait plutôt parler d'images-formes, non visuelles, où l'aveugle projette à l'occasion des impressions tactiles. Pour décrire cette perception, Jane Hervé utilise une comparaison expressive :"les sensations successives et multiples constituent une toile impressionniste - tramée de mille touchers et sensations - suggérant la forme sentie, comme les taches d'or étincelant dans la mer composant l'Impression, soleil devant de Claude Monet."
A l'époque des Lumières, certains commentateurs, stupéfaits par les pouvoirs de déduction des aveugles, s'imaginaient que ceux-ci étaient capables de voir avec le bout de leurs doigts (ils étaient trompés, il faut dire, par certains aveugles qui prétendaient pouvoir reconnaître les couleurs d'un vêtement simplement en touchant son étoffe). Mais les aveugles de naissance eux-mêmes ne sont pas à l'abri de ce genre de méprises : Jane Hervé cite le cas d'une adolescente de 18 ans - tout à fait intelligente par ailleurs - qui pensait que le regard des voyants pouvait contourner les obstacles - exactement comme la main permet d'enserrer entièrement un petit objet pour en connaître la forme. Elle pensait également que les voyants pouvaient voir de face comme de dos, qu'ils étaient doués d'une vision panoramique : "Elle imaginait les voyants comme des Janus bifaces, maîtres du regard dans toutes les directions.". L'aveugle du Puiseaux dont parle Diderot dans sa Lettre sur les aveugles, ne sachant pas ce que voulait dire le mot miroir, imaginait une machine qui met l'homme en relief, hors de lui-même. Chacun imagine l'univers perceptif de l'autre à partir de son univers perceptif propre : le voyant croit que l'aveugle voit avec les doigts, l'aveugle que le voyant palpe avec les yeux. Comme dans la parabole hindoue où des individus plongés dans l'obscurité tentent de déduire la forme d'un éléphant en se fondant uniquement sur la partie du corps qu'ils ont touché (untel qui a touché la trompe prétend que l'éléphant a la forme d'un tuyau d'eau, tel autre qui a touché l'oreille lui prête la forme d'un éventail...) - semblablement les êtres humains imaginent un inconnu radical à partir de ce qu'ils connaissent, quand bien même ces repères se révèlent impropres à se le représenter.
Parmi les notions spatiales particulièrement difficiles à appréhender pour un aveugle, il y a la perspective - le fait que la taille apparente d'un objet diminue proportionnellement à son éloignement pour le sujet percevant. "En théorie je comprends ce qu'est la perspective, mais de là à parvenir à réaliser un dessin ou à en comprendre un, c'est autre chose - c'est d'ailleurs la seule mauvaise note que j'ai eu en géométrie, explique Christine Cloux. Par exemple, je comprends que deux rails au loin finissent par ne former qu'une ligne. Mais ce n'est qu'une illusion, car en réalité il y a toujours deux rails, et dans ma tête aussi. Deux rails, même très loin, restent deux rails, sans quoi le train va avoir des ennuis pour passer..." Noëlle Roy, conservatrice du musée Valentin Haüy, se souvient d'une aveugle âgée, qui, effleurant avec ses doigts une reproduction en bas-relief du tableau l'Angélus de Millet, s'était étonnée que les deux paysans au premier plan soient plus grands que le clocher dont la silhouette se découpe sur l'horizon. Quand on lui expliqua que c'était en vertu des lois de la perspective, les personnages se trouvant au premier plan et le clocher très loin dans la profondeur de champ, la dame s'étonna qu'on ne lui ait jamais expliqué cela... On peut se demander comment cette dame aurait réagi si, recouvrant l'usage de la vue suite à une opération chirurgicale, elle avait aperçu la minuscule silhouette d'un individu dans le lointain : aurait-elle pensé que c'était là sa taille réelle et que cet individu, s'approchant d'elle, n'en serait pas plus grand pour autant ? Jane Hervé cite le témoignage d'une aveugle de 62 ans qui a retrouvé la vue suite à une opération : "Tout était déformé, il n'y avait plus aucune ligne droite, tout était concave... Les murs m'emprisonnaient, les toitures des maisons paraissaient s'effondrer comme après un bombardement. Ce que je voyais ovale, je le sentais rond avec mes mains. Ce que je distinguais à distance, je le sentais sur moi. J'avais des vertiges permanents. "On peut s'imaginer le cauchemar que représente une perception du monde où la vision et la sensation tactile ne concordent pas, où les sens envoient au cerveau des signaux impossibles à concilier... D'autres aveugles de naissance, ayant recouvré l'usage de la vue suite à une opération, dirent avoir l'impression que les objets leur touchaient les yeux : ils eurent besoin de plusieurs jours pour saisir la distance et de plusieurs semaines pour apprendre à l'évaluer correctement. Cela nous rappelle que notre vision du monde en trois dimensions n'a rien d'innée, qu'elle résulte au contraire d'un apprentissage et qu'il y entre une part considérable de construction intellectuelle.

Auteur: Molard Arthur

Info: http://www.jeanmarcmeyrat.ch/blog/2011/05/12/le-monde-tel-que-limaginent-ceux-qui-nont-jamais-vu

[ réflexion ] [ vacuité ] [ onirisme ] [ mimétisme ] [ synesthésie ] [ imagination ]

 
Mis dans la chaine

Commentaires: 0

méta-moteur

Le comportement de cet animal est programmé mécaniquement.

Des interactions biomécaniques, plutôt que des neurones, contrôlent les mouvements de l'un des animaux les plus simples. Cette découverte offre un aperçu de la façon dont le comportement animal fonctionnait avant l'apparition des neurones.

L'animal extrêmement simple Trichoplax adhaerens se déplace et réagit à son environnement avec agilité et avec un but apparent, mais il n'a pas de neurones ou de muscles pour coordonner ses mouvements. De nouveaux travaux montrent que les interactions biomécaniques entre les cils de l'animal suffisent à en expliquer ses mouvements.

Le biophysicien Manu Prakash se souvient très bien du moment où, tard dans la nuit, dans le laboratoire d'un collègue, il y a une douzaine d'années, il a regardé dans un microscope et a rencontré sa nouvelle obsession. L'animal sous les lentilles n'était pas très beau à voir, ressemblant plus à une amibe qu'à autre chose : une tache multicellulaire aplatie, de 20 microns d'épaisseur et de quelques millimètres de diamètre, sans tête ni queue. Elle se déplaçait grâce à des milliers de cils qui recouvraient sa face inférieure pour former la "plaque velue collante" qui lui a inspiré son nom latin, Trichoplax adhaerens.

Cette étrange créature marine, classée dans la catégorie des placozoaires, dispose pratiquement d'une branche entière de l'arbre de l'évolution de la vie pour elle-même, ainsi que du plus petit génome connu du règne animal. Mais ce qui a le plus intrigué Prakash, c'est la grâce, l'agilité et l'efficacité bien orchestrées avec lesquelles les milliers ou les millions de cellules du Trichoplax se déplacent.

Après tout, une telle coordination nécessite habituellement des neurones et des muscles - et le Trichoplax n'en a pas.

Prakash s'est ensuite associé à Matthew Storm Bull, alors étudiant diplômé de l'université de Stanford, pour faire de cet étrange organisme la vedette d'un projet ambitieux visant à comprendre comment les systèmes neuromusculaires ont pu évoluer et comment les premières créatures multicellulaires ont réussi à se déplacer, à trouver de la nourriture et à se reproduire avant l'existence des neurones.

"J'appelle souvent ce projet, en plaisantant, la neuroscience sans les neurones", a déclaré M. Prakash.

Dans un trio de prétirés totalisant plus de 100 pages - publiés simultanément sur le serveur arxiv.org l'année dernière - lui et Bull ont montré que le comportement de Trichoplax pouvait être décrit entièrement dans le langage de la physique et des systèmes dynamiques. Les interactions mécaniques qui commencent au niveau d'un seul cilium, puis se multiplient sur des millions de cellules et s'étendent à des niveaux supérieurs de structure, expliquent entièrement la locomotion coordonnée de l'animal tout entier. L'organisme ne "choisit" pas ce qu'il doit faire. Au contraire, la horde de cils individuels se déplace simplement - et l'animal dans son ensemble se comporte comme s'il était dirigé par un système nerveux. Les chercheurs ont même montré que la dynamique des cils présente des propriétés qui sont généralement considérées comme des signes distinctifs des neurones.

Ces travaux démontrent non seulement comment de simples interactions mécaniques peuvent générer une incroyable complexité, mais ils racontent également une histoire fascinante sur ce qui aurait pu précéder l'évolution du système nerveux.

"C'est un tour de force de la biophysique", a déclaré Orit Peleg, de l'université du Colorado à Boulder, qui n'a pas participé aux études. Ces découvertes ont déjà commencé à inspirer la conception de machines mécaniques et de robots, et peut-être même une nouvelle façon de penser au rôle des systèmes nerveux dans le comportement animal. 

La frontière entre le simple et le complexe

Les cerveaux sont surestimés. "Un cerveau est quelque chose qui ne fonctionne que dans le contexte très spécifique de son corps", a déclaré Bull. Dans les domaines connus sous le nom de "robotique douce" et de "matière active", la recherche a démontré que la bonne dynamique mécanique peut suffire à accomplir des tâches complexes sans contrôle centralisé. En fait, les cellules seules sont capables de comportements remarquables, et elles peuvent s'assembler en systèmes collectifs (comme les moisissures ou les xénobots) qui peuvent accomplir encore plus, le tout sans l'aide de neurones ou de muscles.

Mais est-ce possible à l'échelle d'un animal multicellulaire entier ?

Le Trichoplax fut un cas d'étude parfait : assez simple pour être étudié dans les moindres détails, mais aussi assez compliqué pour offrir quelque chose de nouveau aux chercheurs. En l'observant, "vous regardez simplement une danse", a déclaré Prakash. "Elle est d'une incroyable complexité". Elle tourne et se déplace sur des surfaces. Elle s'accroche à des plaques d'algues pour les piéger et les consommer comme nourriture. Elle se reproduit asexuellement en se divisant en deux.

"Un organisme comme celui-ci se situe dans un régime intermédiaire entre quelque chose de réellement complexe, comme un vertébré, et quelque chose qui commence à devenir complexe, comme les eucaryotes unicellulaires", explique Kirsty Wan, chercheur à l'université d'Exeter en Angleterre, qui étudie la locomotion ciliaire.

Ce terrain intermédiaire entre les cellules uniques et les animaux dotés de muscles et de systèmes nerveux semblait être l'endroit idéal pour que Prakash et Bull posent leurs questions. "Pour moi, un organisme est une idée", a déclaré Prakash, un terrain de jeu pour tester des hypothèses et un berceau de connaissances potentielles.

Prakash a d'abord construit de nouveaux microscopes permettant d'examiner le Trichoplax par en dessous et sur le côté, et a trouvé comment suivre le mouvement à grande vitesse de ses cils. (Ce n'était pas un terrain entièrement nouveau pour lui, puisqu'il était déjà célèbre pour ses travaux sur le Foldscope, un microscope facile à assembler et dont la fabrication coûte moins d'un dollar). Il pouvait alors voir et suivre des millions de cils individuels, chacun apparaissant comme une minuscule étincelle dans le champ de vision du microscope pendant une fraction de seconde à la fois. "Vous ne voyez que les empreintes lorsqu'elles se posent sur la surface", a déclaré Prakash.

Lui-même - et plus tard Bull, qui a rejoint son laboratoire il y a six ans - ont passé des heures à observer l'orientation de ces petites empreintes. Pour que ces motifs complexes soient possibles, les scientifiques savaient que les cils devaient être engagés dans une sorte de communication à longue distance. Mais ils ne savaient pas comment.

Ils ont donc commencé à rassembler les pièces du puzzle, jusqu'à ce que, l'année dernière, ils décident enfin qu'ils avaient leur histoire.

Une marche en pilote automatique

Au départ, Prakash et Bull s'attendaient à ce que les cils glissent sur des surfaces, avec une fine couche de liquide séparant l'animal du substrat. Après tout, les cils sont généralement vus dans le contexte des fluides : ils propulsent des bactéries ou d'autres organismes dans l'eau, ou déplacent le mucus ou les fluides cérébrospinaux dans un corps. Mais lorsque les chercheurs ont regardé dans leurs microscopes, ils ont constaté que les cils semblaient marcher, et non nager.

Bien que l'on sache que certains organismes unicellulaires utilisent les cils pour ramper, ce type de coordination n'avait jamais été observé à cette échelle. "Plutôt qu'utiliser les cils pour propulser un fluide, il s'agit de mécanique, de friction, d'adhésion et de toutes sortes de mécanismes solides très intéressants", a-t-elle déclaré.

Prakash, Bull et Laurel Kroo, une étudiante diplômée en génie mécanique de Stanford, ont donc entrepris de caractériser la démarche des cils. Ils ont suivi la trajectoire de l'extrémité de chaque cilium au fil du temps, l'observant tracer des cercles et pousser contre des surfaces. Ils ont défini trois types d'interactions : le glissement, au cours duquel les cils effleurent à peine la surface ; la marche, lorsque les cils adhèrent brièvement à la surface avant de se détacher ; et le calage, lorsque les cils restent coincés contre la surface.

Dans leurs modèles, l'activité de marche émergeait naturellement de l'interaction entre les forces motrices internes des cils et l'énergie de leur adhésion à la surface. Le bon équilibre entre ces deux paramètres (calculé à partir de mesures expérimentales de l'orientation, de la hauteur et de la fréquence des battements des cils) permettant une locomotion régulière, chaque cilium se collant puis se soulevant, comme une jambe. Un mauvais équilibre produisant les phases de glissement ou de décrochage.

Nous pensons généralement, lorsque quelque chose se passe comme ça, qu'il y a un signal interne semblable à une horloge qui dit : "OK, allez-y, arrêtez-vous, allez-y, arrêtez-vous", a déclaré Simon Sponberg, biophysicien à l'Institut de technologie de Géorgie. "Ce n'est pas ce qui se passe ici. Les cils ne sont pas rythmés. Il n'y a pas une chose centrale qui dit 'Go, go, go' ou autre. Ce sont les interactions mécaniques qui mettent en place quelque chose qui va, qui va, qui va."

De plus, la marche pourrait être modélisée comme un système excitable, c'est-à-dire un système dans lequel, sous certaines conditions, les signaux se propagent et s'amplifient au lieu de s'atténuer progressivement et de s'arrêter. Un neurone est un exemple classique de système excitable : De petites perturbations de tension peuvent provoquer une décharge soudaine et, au-delà d'un certain seuil, le nouvel état stimulé se propage au reste du système. Le même phénomène semble se produire ici avec les cils. Dans les expériences et les simulations, de petites perturbations de hauteur, plutôt que de tension, entraînent des changements relativement importants dans l'activité des cils voisins : Ils peuvent soudainement changer d'orientation, et même passer d'un état de stase à un état de marche. "C'est incroyablement non linéaire", a déclaré Prakash.

En fait, les modèles de cils de Prakash, Bull et Kroo se sont avérés très bien adaptés aux modèles établis pour les potentiels d'action au sein des neurones. "Ce type de phénomène unique se prête à une analogie très intéressante avec ce que l'on observe dans la dynamique non linéaire des neurones individuels", a déclaré Bull. Sponberg est d'accord. "C'est en fait très similaire. Il y a une accumulation de l'énergie, et puis pop, et puis pop, et puis pop".

Les cils s'assemblent comme des oiseaux

Forts de cette description mathématique, Prakash et Bull ont examiné comment chaque cilium pousse et tire sur ses voisins lors de son interaction avec la surface, et comment toute ces activités indépendantes peuvent se transformer en quelque chose de synchronisé et cohérent.

Ils ont mesuré comment la démarche mécanique de chaque cilium entraînait de petites fluctuations locales de la hauteur du tissu. Ils ont ensuite écrit des équations pour expliquer comment ces fluctuations pouvaient influencer le comportement des cellules voisines, alors même que les cils de ces cellules effectuaient leurs propres mouvements, comme un réseau de ressorts reliant de minuscules moteurs oscillants.

Lorsque les chercheurs ont modélisé "cette danse entre élasticité et activité", ils ont constaté que les interactions mécaniques - de cils poussant contre un substrat et de cellules se tirant les unes les autres - transmettaient rapidement des informations à travers l'organisme. La stimulation d'une région entraînait des vagues d'orientation synchronisée des cils qui se déplaçaient dans le tissu. "Cette élasticité et cette tension dans la physique d'un cilium qui marche, maintenant multipliées par des millions d'entre eux dans une feuille, donnent en fait lieu à un comportement mobile cohérent", a déclaré Prakash.

Et ces modèles d'orientation synchronisés peuvent être complexes : parfois, l'activité du système produit des tourbillons, les cils étant orientés autour d'un seul point. Dans d'autres cas, les cils se réorientent en quelques fractions de seconde, pointant d'abord dans une direction puis dans une autre - se regroupant comme le ferait un groupe d'étourneaux ou un banc de poissons, et donnant lieu à une agilité qui permet à l'animal de changer de direction en un clin d'œil.

"Nous avons été très surpris lorsque nous avons vu pour la première fois ces cils se réorienter en une seconde", a déclaré M. Bull.

Ce flocage agile est particulièrement intriguant. Le flocage se produit généralement dans des systèmes qui se comportent comme des fluides : les oiseaux et les poissons individuels, par exemple, peuvent échanger librement leurs positions avec leurs compagnons. Mais cela ne peut pas se produire chez Trichoplax, car ses cils sont des composants de cellules qui ont des positions fixes. Les cils se déplacent comme "un troupeau solide", explique Ricard Alert, physicien à l'Institut Max Planck pour la physique des systèmes complexes.

Prakash et Bull ont également constaté dans leurs simulations que la transmission d'informations était sélective : Après certains stimuli, l'énergie injectée dans le système par les cils se dissipe tout simplement, au lieu de se propager et de modifier le comportement de l'organisme. Nous utilisons notre cerveau pour faire cela tout le temps, pour observer avec nos yeux et reconnaître une situation et dire : "Je dois soit ignorer ça, soit y répondre", a déclaré M. Sponberg.

Finalement, Prakash et Bull ont découvert qu'ils pouvaient écrire un ensemble de règles mécaniques indiquant quand le Trichoplax peut tourner sur place ou se déplacer en cercles asymétriques, quand il peut suivre une trajectoire rectiligne ou dévier soudainement vers la gauche, et quand il peut même utiliser sa propre mécanique pour se déchirer en deux organismes distincts.

"Les trajectoires des animaux eux-mêmes sont littéralement codées" via ces simples propriétés mécaniques, a déclaré Prakash.

Il suppose que l'animal pourrait tirer parti de ces dynamiques de rotation et de reptation dans le cadre d'une stratégie de "course et culbute" pour trouver de la nourriture ou d'autres ressources dans son environnement. Lorsque les cils s'alignent, l'organisme peut "courir", en continuant dans la direction qui vient de lui apporter quelque chose de bénéfique ; lorsque cette ressource semble s'épuiser, Trichoplax peut utiliser son état de vortex ciliaire pour se retourner et tracer une nouvelle route.

Si d'autres études démontrent que c'est le cas, "ce sera très excitant", a déclaré Jordi Garcia-Ojalvo, professeur de biologie systémique à l'université Pompeu Fabra de Barcelone. Ce mécanisme permettrait de faire le lien entre beaucoups d'échelles, non seulement entre la structure moléculaire, le tissu et l'organisme, mais aussi pour ce qui concerne écologie et environnement.

En fait, pour de nombreux chercheurs, c'est en grande partie ce qui rend ce travail unique et fascinant. Habituellement, les approches des systèmes biologiques basées sur la physique décrivent l'activité à une ou deux échelles de complexité, mais pas au niveau du comportement d'un animal entier. "C'est une réussite...  vraiment rare", a déclaré M. Alert.

Plus gratifiant encore, à chacune de ces échelles, la mécanique exploite des principes qui font écho à la dynamique des neurones. "Ce modèle est purement mécanique. Néanmoins, le système dans son ensemble possède un grand nombre des propriétés que nous associons aux systèmes neuro-mécaniques : il est construit sur une base d'excitabilité, il trouve constamment un équilibre délicat entre sensibilité et stabilité et il est capable de comportements collectifs complexes." a déclaré Sponberg.

"Jusqu'où ces systèmes mécaniques peuvent-ils nous mener ?... Très loin." a-t-il ajouté.

Cela a des implications sur la façon dont les neuroscientifiques pensent au lien entre l'activité neuronale et le comportement de manière plus générale. "Les organismes sont de véritables objets dans l'espace", a déclaré Ricard Solé, biophysicien à l'ICREA, l'institution catalane pour la recherche et les études avancées, en Espagne. Si la mécanique seule peut expliquer entièrement certains comportements simples, les neuroscientifiques voudront peut-être examiner de plus près comment le système nerveux tire parti de la biophysique d'un animal pour obtenir des comportements complexes dans d'autres situations.

"Ce que fait le système nerveux n'est peut-être pas ce que nous pensions qu'il faisait", a déclaré M. Sponberg.

Un pas vers la multicellularité

"L'étude de Trichoplax peut nous donner un aperçu de ce qu'il a fallu faire pour développer des mécanismes de contrôle plus complexes comme les muscles et les systèmes nerveux", a déclaré Wan. "Avant d'arriver à ça, quelle est le meilleur truc à suivre ? Ca pourrait bien être ça".

Alert est d'accord. "C'est une façon si simple d'avoir des comportements organisationnels tels que l'agilité que c'est peut-être ainsi qu'ils ont émergé au début et  au cours de l'évolution, avant que les systèmes neuronaux ne se développent. Peut-être que ce que nous voyons n'est qu'un fossile vivant de ce qui était la norme à l'époque".

Solé considère que Trichoplax occupe une "twilight zone... au centre des grandes transitions vers la multicellularité complexe". L'animal semble commencer à mettre en place "les conditions préalables pour atteindre la vraie complexité, celle où les neurones semblent être nécessaires."

Prakash, Bull et leurs collaborateurs cherchent maintenant à savoir si Trichoplax pourrait être capable d'autres types de comportements ou même d'apprentissage. Que pourrait-il réaliser d'autre dans différents contextes environnementaux ? La prise en compte de sa biochimie en plus de sa mécanique ouvrirait-elle vers un autre niveau de comportement ?

Les étudiants du laboratoire de Prakash ont déjà commencé à construire des exemples fonctionnels de ces machines. Kroo, par exemple, a construit un dispositif de natation robotisé actionné par un matériau viscoélastique appelé mousse active : placée dans des fluides non newtoniens comme des suspensions d'amidon de maïs, elle peut se propulser vers l'avant.

"Jusqu'où voulez-vous aller ? a demandé Peleg. "Pouvez-vous construire un cerveau, juste à partir de ce genre de réseaux mécaniques ?"

Prakash considère que ce n'est que le premier chapitre de ce qui sera probablement une saga de plusieurs décennies. "Essayer de vraiment comprendre cet animal est pour moi un voyage de 30 ou 40 ans", a-t-il dit. "Nous avons terminé notre première décennie... C'est la fin d'une époque et le début d'une autre".

Auteur: Internet

Info: https://www.quantamagazine.org/before-brains-mechanics-may-have-ruled-animal-behavior. Jordana Cepelewicz, 16 mars 2022. Trad Mg

[ cerveau rétroactif ] [ échelles mélangées ] [ action-réaction ] [ plus petit dénominateur commun ] [ grégarisme ] [ essaims ] [ murmurations mathématiques ]

 

Commentaires: 0

Ajouté à la BD par miguel

consumérisme

Comment réguler l’exploitation de notre attention ? Dans Les marchands d’attention (The Attention Merchants, 2017, Atlantic Books, non traduit), le professeur de droit, spécialiste des réseaux et de la régulation des médias, Tim Wu (@superwuster), 10 ans après avoir raconté l’histoire des télécommunications et du développement d’internet dans The Master Switch (où il expliquait la tendance de l’industrie à créer des empires et le risque des industries de la technologie à aller dans le même sens), raconte, sur 400 pages, l’histoire de l’industrialisation des médias américains et de la publicité de la fin du XIXe siècle à aujourd’hui. En passant d’une innovation médiatique l’autre, des journaux à la radio, de la télé à l’internet, Wu tisse une très informée histoire du rapport de l’exploitation commerciale de l’information et du divertissement. Une histoire de l’industrialisation des médias américains qui se concentre beaucoup sur leurs innovations et leurs modèles d’affaires, c’est-à-dire qui s’attarde à montrer comment notre attention a été convertie en revenus, comment nous avons été progressivement cédés à la logique du commerce – sans qu’on n’y trouve beaucoup à redire d’ailleurs.

"La compétition pour notre attention n’a jamais cherché à nous élever, au contraire."

Tout le long de cette histoire, Tim Wu insiste particulièrement sur le fait que la capture attentionnelle produite par les médias s’est faite par-devers nous. La question attentionnelle est souvent présentée comme le résultat d’une négociation entre l’utilisateur, le spectateur, et le service ou média qu’il utilise… mais aucun d’entre nous n’a jamais consenti à la capture attentionnelle, à l’extraction de son attention. Il souligne notamment que celle-ci est plus revendue par les médias aux annonceurs, qu’utilisée par les médias eux-mêmes. Il insiste également à montrer que cette exploitation vise rarement à nous aider à être en contrôle, au contraire. Elle ne nous a jamais apporté rien d’autre que toujours plus de contenus insignifiants. Des premiers journaux à 1 cent au spam publicitaire, l’exploitation attentionnelle a toujours visé nos plus vils instincts. Elle n’a pas cherché à nous élever, à nous aider à grandir, à développer nos connaissances, à créer du bien commun, qu’à activer nos réactions les plus instinctives. Notre exploitation commerciale est allée de pair avec l’évolution des contenus. Les journaux qui ont adopté le modèle publicitaire, ont également inventé des rubriques qui n’existaient pas pour mieux les servir : comme les faits divers, les comptes-rendus de procès, les récits de crimes… La compétition pour notre attention dégrade toujours les contenus, rappelle Tim Wu. Elle nous tourne vers "le plus tapageur, le plus sinistre, le plus choquant, nous propose toujours l’alternative la plus scandaleuse ou extravagante". Si la publicité a incontestablement contribué à développer l’économie américaine, Wu rappelle qu’elle n’a jamais cherché à présenter une information objective, mais plutôt à déformer nos mécanismes de choix, par tous les moyens possibles, même par le mensonge. L’exploitation attentionnelle est par nature une course contre l’éthique. Elle est et demeure avant tout une forme d’exploitation. Une traite, comme disait le spécialiste du sujet Yves Citton, en usant volontairement de ce vocabulaire marqué au fer.

Wu souligne que l’industrie des contenus a plus été complice de cette exploitation qu’autre chose. La presse par exemple, n’a pas tant cherché à contenir ou réguler la publicité et les revenus qu’elle générait, qu’à y répondre, qu’à évoluer avec elle, notamment en faisant évoluer ses contenus pour mieux fournir la publicité. Les fournisseurs de contenus, les publicitaires, aidés des premiers spécialistes des études comportementales, ont été les courtiers et les ingénieurs de l’économie de l’attention. Ils ont transformé l’approche intuitive et improvisée des premières publicités en machines industrielles pour capturer massivement l’attention. Wu rappelle par exemple que les dentifrices, qui n’existaient pas vraiment avant les années 20, vont prendre leur essor non pas du fait de la demande, mais bien du fait de l’offensive publicitaire, qui s’est attaquée aux angoisses inconscientes des contemporains. Plus encore que des ingénieurs de la demande, ces acteurs ont été des fabricants de comportements, de moeurs…

L’histoire de l’exploitation de notre attention souligne qu’elle est sans fin, que "les industries qui l’exploitent, contrairement aux organismes, n’ont pas de limite à leur propre croissance". Nous disposons de très peu de modalités pour limiter l’extension et la croissance de la manipulation attentionnelle. Ce n’est pas pour autant que les usagers ne se sont pas régulièrement révoltés, contre leur exploitation. "La seule dynamique récurrente qui a façonné la course des industries de l’attention a été la révolte". De l’opposition aux premiers panneaux publicitaires déposés en pleine ville au rejet de services web qui capturent trop nos données ou exploitent trop notre attention, la révolte des utilisateurs semble avoir toujours réussi à imposer des formes de régulations. Mais l’industrie de l’exploitation attentionnelle a toujours répondu à ces révoltes, s’adaptant, évoluant au gré des rejets pour proposer toujours de nouvelles formes de contenus et d’exploitation. Parmi les outils dont nous nous sommes dotés pour réguler le développement de l’économie de l’attention, Wu évoque trop rapidement le travail des associations de consommateurs (via par exemple le test de produits ou les plaintes collectives…) ou celui des régulateurs définissant des limites au discours publicitaire (à l’image de la création de la Commission fédérale du commerce américaine et notamment du bureau de la protection des consommateurs, créée pour réguler les excès des annonceurs, que ce soit en améliorant l’étiquetage des produits ou en interdisant les publicités mensongères comme celles, nombreuses, ventant des produits capables de guérir des maladies). Quant à la concentration et aux monopoles, ils ont également toujours été surveillés et régulés, que ce soit par la création de services publics ou en forçant les empires des médias à la fragmentation.

L’attention, un phénomène d’assimilation commercial et culturel L’invention du prime time à la radio puis à la télé a été à la fois une invention commerciale et culturelle, fusionnant le contenu au contenant, l’information/divertissement et la publicité en inventant un rituel d’attention collective massive. Il n’a pas servi qu’à générer une exposition publicitaire inédite, il a créé un phénomène social, une conscience et une identité partagée, tout en rendant la question de l’exposition publicitaire normale et sociale.

Dans la succession des techniques qu’ont inventés les médias de masse pour mobiliser et orienter les foules que décrit Tim Wu, on constate qu’une sorte de cycle semble se reproduire. Les nouvelles technologies et les nouveaux formats rencontrent des succès très rapides. Puis, le succès rencontre des résistances et les audiences se délitent vers de nouvelles techniques ou de nouveaux formats proposés par des concurrents. On a l’impression d’être dans une course poursuite où chaque décennie pourrait être représentée par le succès d’un support phare à l’image des 28 courts chapitres qui scandent le livre. L’essor de la télévision par exemple est fulgurant : entre 1950 et 1956 on passe de 9% à 72% des maisons équipées et à la fin des années 50, on l’a regarde déjà 5 heures par jour en moyenne. Les effets de concentration semblent très rapides… et dès que la fatigue culturelle pointe, que la nouveauté s’émousse, une nouvelle vague de propositions se développe à la fois par de nouveaux formats, de nouvelles modalités de contrôle et de nouveaux objets attentionnels qui poussent plus loin l’exploitation commerciale des publics. Patiemment, Wu rappelle la très longue histoire des nouveaux formats de contenus : la naissance des jeux, des journaux télé, des soirées spéciales, du sport, des feuilletons et séries, de la télé-réalité aux réseaux sociaux… Chacun ayant généré une nouvelle intrication avec la publicité, comme l’invention des coupures publicitaires à la radio et à la télé, qui nécessitaient de réinventer les contenus, notamment en faisant monter l’intrigue pour que les gens restent accrochés. Face aux outils de révolte, comme l’invention de la télécommande ou du magnétoscope, outils de reprise du contrôle par le consommateur, les industries vont répondre par la télévision par abonnement, sans publicité. Elles vont aussi inventer un montage plus rapide qui ne va cesser de s’accélérer avec le temps.

Pour Wu, toute rébellion attentionnelle est sans cesse assimilée. Même la révolte contre la communication de masse, d’intellectuels comme Timothy Leary ou Herbert Marcuse, sera finalement récupérée.

De l’audience au ciblage

La mesure de l’audience a toujours été un enjeu industriel des marchands d’attention. Notamment avec l’invention des premiers outils de mesure de l’audimat permettant d’agréger l’audience en volumes. Wu prend le temps d’évoquer le développement de la personnalisation publicitaire, avec la socio-géo-démographie mise au point par la firme Claritas à la fin des années 70. Claritas Prizm, premier outil de segmentation de la clientèle, va permettre d’identifier différents profils de population pour leur adresser des messages ciblés. Utilisée avec succès pour l’introduction du Diet Coke en 1982, la segmentation publicitaire a montré que la nation américaine était une mosaïque de goûts et de sensibilités qu’il fallait adresser différemment. Elle apporte à l’industrie de la publicité un nouvel horizon de consommateurs, préfigurant un ciblage de plus en plus fin, que la personnalisation de la publicité en ligne va prolonger toujours plus avant. La découverte des segments va aller de pair avec la différenciation des audiences et la naissance, dans les années 80, des chaînes câblées qui cherchent à exploiter des populations différentes (MTV pour la musique, ESPN pour le sport, les chaînes d’info en continu…). L’industrie du divertissement et de la publicité va s’engouffrer dans l’exploitation de la fragmentation de l’audience que le web tentera de pousser encore plus loin.

Wu rappelle que la technologie s’adapte à ses époques : "La technologie incarne toujours l’idéologie, et l’idéologie en question était celle de la différence, de la reconnaissance et de l’individualité". D’un coup le spectateur devait avoir plus de choix, plus de souveraineté… Le visionnage lui-même changeait, plus inattentif et dispersé. La profusion de chaînes et le développement de la télécommande se sont accompagnés d’autres modalités de choix comme les outils d’enregistrements. La publicité devenait réellement évitable. D’où le fait qu’elle ait donc changé, devenant plus engageante, cherchant à devenir quelque chose que les gens voudraient regarder. Mais dans le même temps, la télécommande était aussi un moyen d’être plus branché sur la manière dont nous n’agissons pas rationnellement, d’être plus distraitement attentif encore, à des choses toujours plus simples. "Les technologies conçues pour accroître notre contrôle sur notre attention ont parfois un effet opposé", prévient Wu. "Elles nous ouvrent à un flux de sélections instinctives et de petites récompenses"… En fait, malgré les plaintes du monde de la publicité contre la possibilité de zapper, l’état d’errance distrait des spectateurs n’était pas vraiment mauvais pour les marchands d’attention. Dans l’abondance de choix, dans un système de choix sans friction, nous avons peut-être plus perdu d’attention qu’autre chose.

L’internet a démultiplié encore, par de nouvelles pratiques et de nouveaux médiums, ces questions attentionnelles. L’e-mail et sa consultation sont rapidement devenus une nouvelle habitude, un rituel attentionnel aussi important que le prime time. Le jeu vidéo dès ses débuts a capturé toujours plus avant les esprits.

"En fin de compte, cela suggère aussi à quel point la conquête de l’attention humaine a été incomplète entre les années 1910 et les années 60, même après l’entrée de la télévision à la maison. En effet, même s’il avait enfreint la sphère privée, le domaine de l’interpersonnel demeurait inviolable. Rétrospectivement, c’était un territoire vierge pour les marchands d’attention, même si avant l’introduction de l’ordinateur domestique, on ne pouvait pas concevoir comment cette attention pourrait être commercialisée. Certes, personne n’avait jamais envisagé la possibilité de faire de la publicité par téléphone avant même de passer un appel – non pas que le téléphone ait besoin d’un modèle commercial. Ainsi, comme AOL qui a finalement opté pour la revente de l’attention de ses abonnés, le modèle commercial du marchand d’attention a été remplacé par l’un des derniers espaces considérés comme sacrés : nos relations personnelles." Le grand fournisseur d’accès des débuts de l’internet, AOL, a développé l’accès aux données de ses utilisateurs et a permis de développer des techniques de publicité dans les emails par exemple, vendant également les mails de ses utilisateurs à des entreprises et leurs téléphones à des entreprises de télémarketing. Tout en présentant cela comme des "avantages" réservés à ses abonnés ! FB n’a rien inventé ! "

La particularité de la modernité repose sur l’idée de construire une industrie basée sur la demande à ressentir une certaine communion". Les célébrités sont à leur tour devenues des marchands d’attention, revendant les audiences qu’elles attiraient, à l’image d’Oprah Winfrey… tout en transformant la consommation des produits qu’elle proposait en méthode d’auto-récompense pour les consommateurs.

L’infomercial a toujours été là, souligne Wu. La frontière entre divertissement, information et publicité a toujours été floue. La télé-réalité, la dernière grande invention de format (qui va bientôt avoir 30 ans !) promettant justement l’attention ultime : celle de devenir soi-même star.

Le constat de Wu est amer. "Le web, en 2015, a été complètement envahi par la malbouffe commerciale, dont une grande partie visait les pulsions humaines les plus fondamentales du voyeurisme et de l’excitation." L’automatisation de la publicité est le Graal : celui d’emplacements parfaitement adaptés aux besoins, comme un valet de chambre prévenant. "Tout en promettant d’être utile ou réfléchi, ce qui a été livré relevait plutôt de l’intrusif et pire encore." La télévision – la boîte stupide -, qui nous semblait si attentionnellement accablante, paraît presque aujourd’hui vertueuse par rapport aux boucles attentionnelles sans fin que produisent le web et le mobile.

Dans cette histoire, Wu montre que nous n’avons cessé de nous adapter à cette capture attentionnelle, même si elle n’a cessé de se faire à notre détriment. Les révoltes sont régulières et nécessaires. Elles permettent de limiter et réguler l’activité commerciale autour de nos capacités cognitives. Mais saurons-nous délimiter des frontières claires pour préserver ce que nous estimons comme sacré, notre autonomie cognitive ? La montée de l’internet des objets et des wearables, ces objets qui se portent, laisse supposer que cette immixtion ira toujours plus loin, que la régulation est une lutte sans fin face à des techniques toujours plus invasives. La difficulté étant que désormais nous sommes confrontés à des techniques cognitives qui reposent sur des fonctionnalités qui ne dépendent pas du temps passé, de l’espace ou de l’emplacement… À l’image des rythmes de montage ou des modalités de conception des interfaces du web. Wu conclut en souhaitant que nous récupérions "la propriété de l’expérience même de la vie". Reste à savoir comment…

Comment répondre aux monopoles attentionnels ?

Tim Wu – qui vient de publier un nouveau livre The Curse of Bigness : antitrust in the new Gilded age (La malédiction de la grandeur, non traduit) – prône, comme d’autres, un renforcement des lois antitrusts américaines. Il y invite à briser les grands monopoles que construisent les Gafam, renouvelant par là la politique américaine qui a souvent cherché à limiter l’emprise des monopoles comme dans le cas des télécommunications (AT&T), de la radio ou de la télévision par exemple ou de la production de pétrole (Standard Oil), pour favoriser une concurrence plus saine au bénéfice de l’innovation. À croire finalement que pour lutter contre les processus de capture attentionnels, il faut peut-être passer par d’autres leviers que de chercher à réguler les processus attentionnels eux-mêmes ! Limiter le temps d’écran finalement est peut-être moins important que limiter la surpuissance de quelques empires sur notre attention !

La règle actuelle pour limiter le développement de monopoles, rappelle Wu dans une longue interview pour The Verge, est qu’il faut démontrer qu’un rachat ou une fusion entraînera une augmentation des prix pour le consommateur. Outre, le fait que c’est une démonstration difficile, car spéculative, "il est pratiquement impossible d’augmenter les prix à la consommation lorsque les principaux services Internet tels que Google et Facebook sont gratuits". Pour plaider pour la fragmentation de ces entreprises, il faudrait faire preuve que leur concentration produit de nouveaux préjudices, comme des pratiques anticoncurrentielles quand des entreprises absorbent finalement leurs concurrents. Aux États-Unis, le mouvement New Brandeis (qui fait référence au juge Louis Brandeis acteur majeur de la lutte contre les trusts) propose que la régulation favorise la compétition.

Pour Wu par exemple, la concurrence dans les réseaux sociaux s’est effondrée avec le rachat par Facebook d’Instagram et de WhatsApp. Et au final, la concurrence dans le marché de l’attention a diminué. Pour Wu, il est temps de défaire les courtiers de l’attention, comme il l’explique dans un article de recherche qui tente d’esquisser des solutions concrètes. Il propose par exemple de créer une version attentionnelle du test du monopoleur hypothétique, utilisé pour mesurer les abus de position dominante, en testant l’influence de la publicité sur les pratiques. Pour Tim Wu, il est nécessaire de trouver des modalités à l’analyse réglementaire des marchés attentionnels.

Dans cet article, Wu s’intéresse également à la protection des audiences captives, à l’image des écrans publicitaires des pompes à essence qui vous délivrent des messages sans pouvoir les éviter où ceux des écrans de passagers dans les avions… Pour Wu, ces nouvelles formes de coercition attentionnelle sont plus qu’un ennui, puisqu’elles nous privent de la liberté de penser et qu’on ne peut les éviter. Pour lui, il faudrait les caractériser comme un "vol attentionnel". Certes, toutes les publicités ne peuvent pas être caractérisées comme telles, mais les régulateurs devraient réaffirmer la question du consentement souligne-t-il, notamment quand l’utilisateur est captif ou que la capture cognitive exploite nos biais attentionnels sans qu’on puisse lutter contre. Et de rappeler que les consommateurs doivent pouvoir dépenser ou allouer leur attention comme ils le souhaitent. Que les régulateurs doivent chercher à les protéger de situations non consensuelles et sans compensation, notamment dans les situations d’attention captive ainsi que contre les intrusions inévitables (celles qui sont augmentées par un volume sonore élevé, des lumières clignotantes, etc.). Ainsi, les publicités de pompe à essence ne devraient être autorisées qu’en cas de compensation pour le public (par exemple en proposant une remise sur le prix de l’essence)…

Wu indique encore que les réglementations sur le bruit qu’ont initié bien des villes peuvent être prises pour base pour construire des réglementations de protection attentionnelle, tout comme l’affichage sur les autoroutes, également très réglementé. Pour Tim Wu, tout cela peut sembler peut-être peu sérieux à certain, mais nous avons pourtant imposé par exemple l’interdiction de fumer dans les avions sans que plus personne aujourd’hui n’y trouve à redire. Il est peut-être temps de prendre le bombardement attentionnel au sérieux. En tout cas, ces défis sont devant nous, et nous devrons trouver des modalités pour y répondre, conclut-il.

Auteur: Guillaud Hubert

Info: 27 décembre 2018, http://internetactu.blog.lemonde.fr

[ culture de l'epic fail ] [ propagande ] [ captage de l'attention ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel

aliénisme

La cause de la dépression n’est probablement pas celle que vous pensez

La dépression a souvent été imputée à de faibles niveaux de sérotonine dans le cerveau. Cette réponse est insuffisante, mais des alternatives apparaissent et modifient notre compréhension de la maladie.

Les gens pensent souvent savoir ce qui cause la dépression chronique. Des enquêtes indiquent que plus de 80 % de la population attribue la responsabilité à un " déséquilibre chimique " dans le cerveau. Cette idée est répandue dans la psychologie populaire et citée dans des documents de recherche et des manuels de médecine. L'écoute de Prozac, un livre qui décrit la valeur révolutionnaire du traitement de la dépression avec des médicaments visant à corriger ce déséquilibre, a passé des mois sur la liste des best-sellers du New York Times.

La substance chimique cérébrale déséquilibrée en question est la sérotonine, un neurotransmetteur important aux effets légendaires de " bien-être ". La sérotonine aide à réguler les systèmes cérébraux qui contrôlent tout, de la température corporelle au sommeil, en passant par la libido et la faim. Depuis des décennies, il est également présenté comme le produit pharmaceutique le plus efficace dans la lutte contre la dépression. Les médicaments largement prescrits comme le Prozac (fluoxétine) sont conçus pour traiter la dépression chronique en augmentant les niveaux de sérotonine.

Pourtant, les causes de la dépression vont bien au-delà de la carence en sérotonine. Les études cliniques ont conclu à plusieurs reprises que le rôle de la sérotonine dans la dépression avait été surestimé. En effet, l’ensemble de la théorie du déséquilibre chimique pourrait être erroné, malgré le soulagement que le Prozac semble apporter à de nombreux patients.

Une revue de la littérature parue dans Molecular Psychiatry en juillet a sonné le glas le plus récent et peut-être le plus fort de l’hypothèse de la sérotonine, du moins dans sa forme la plus simple. Une équipe internationale de scientifiques dirigée par Joanna Moncrieff de l'University College London a examiné 361 articles dans six domaines de recherche et en a soigneusement évalué 17. Ils n’ont trouvé aucune preuve convaincante que des niveaux plus faibles de sérotonine provoquaient ou étaient même associés à la dépression. Les personnes souffrant de dépression ne semblaient pas avoir une activité sérotoninergique inférieure à celle des personnes non atteintes. Les expériences dans lesquelles les chercheurs abaissaient artificiellement les niveaux de sérotonine des volontaires n’entraînaient pas systématiquement une dépression. Les études génétiques semblaient également exclure tout lien entre les gènes affectant les niveaux de sérotonine et la dépression, même lorsque les chercheurs essayaient de considérer le stress comme un cofacteur possible.

" Si vous pensez toujours qu'il s'agissait simplement d'un déséquilibre chimique de la sérotonine, alors oui, c'est assez accablant", a déclaré Taylor Braund , neuroscientifique clinicien et chercheur postdoctoral au Black Dog Institute en Australie, qui n'a pas participé à l'étude. nouvelle étude. (" Le chien noir " était le terme utilisé par Winston Churchill pour désigner ses propres humeurs sombres, que certains historiens pensent être une dépression.)

La prise de conscience que les déficits de sérotonine en eux-mêmes ne provoquent probablement pas la dépression a amené les scientifiques à se demander ce qui pouvait en être la cause. Les faits suggèrent qu’il n’y a peut-être pas de réponse simple. En fait, cela amène les chercheurs en neuropsychiatrie à repenser ce que pourrait être la dépression.

Traiter la mauvaise maladie

L’intérêt porté à la sérotonine dans la dépression a commencé avec un médicament contre la tuberculose. Dans les années 1950, les médecins ont commencé à prescrire de l’iproniazide, un composé développé pour cibler la bactérie Mycobacterium tuberculosis vivant dans les poumons. Le médicament n’était pas particulièrement efficace pour traiter les infections tuberculeuses, mais il a béni certains patients avec un effet secondaire inattendu et agréable. "Leur fonction pulmonaire et tout le reste ne s'améliorait pas beaucoup, mais leur humeur avait tendance à s'améliorer", a déclaré Gerard Sanacora, psychiatre clinicien et directeur du programme de recherche sur la dépression à l'Université de Yale.

(Photo : Pour évaluer les preuves selon lesquelles les déséquilibres en sérotonine provoquent la dépression, la chercheuse en psychiatrie Joanna Moncrieff de l'University College London a organisé une récapitulation qui a examiné des centaines d'articles dans six domaines de recherche.) 

Perplexes face à ce résultat, les chercheurs ont commencé à étudier le fonctionnement de l'iproniazide et des médicaments apparentés dans le cerveau des rats et des lapins. Ils ont découvert que les médicaments empêchaient le corps des animaux d'absorber des composés appelés amines, parmi lesquels se trouve la sérotonine, un produit chimique qui transmet les messages entre les cellules nerveuses du cerveau.

Plusieurs psychologues éminents, parmi lesquels les regrettés cliniciens Alec Coppen et Joseph Schildkraut, se sont emparés de l'idée que la dépression pourrait être causée par un déficit chronique de sérotonine dans le cerveau. L’hypothèse de la dépression liée à la sérotonine a ensuite inspiré des décennies de développement de médicaments et de recherche neuroscientifique. À la fin des années 1980, cela a conduit à l’introduction de médicaments inhibiteurs sélectifs du recaptage de la sérotonine (ISRS), comme le Prozac. (Ces médicaments augmentent les niveaux d'activité de la sérotonine en ralentissant l'absorption du neurotransmetteur par les neurones.)  Aujourd'hui, l'hypothèse de la sérotonine reste l'explication la plus souvent donnée aux patients souffrant de dépression lorsqu'on leur prescrit des ISRS.

Mais des doutes sur le modèle sérotoninergique circulaient au milieu des années 1990. Certains chercheurs ont remarqué que les ISRS ne répondaient souvent pas aux attentes et n’amélioraient pas de manière significative les performances de médicaments plus anciens comme le lithium. " Les études ne concordaient pas vraiment ", a déclaré Moncrieff.

Au début des années 2000, peu d’experts pensaient que la dépression était causée uniquement par un manque de sérotonine, mais personne n’a jamais tenté une évaluation complète de ces preuves. Cela a finalement incité Moncrieff à organiser une telle étude, " afin que nous puissions avoir une idée si cette théorie était étayée ou non ", a-t-elle déclaré.

Elle et ses collègues ont découvert que ce n’était pas le cas, mais l’hypothèse de la sérotonine a toujours des adeptes. En octobre dernier – quelques mois seulement après la parution de leur étude – un article publié en ligne dans Biological Psychiatry prétendait offrir une validation concrète de la théorie de la sérotonine. D'autres chercheurs restent cependant sceptiques, car l'étude n'a porté que sur 17 volontaires. Moncrieff a rejeté les résultats comme étant statistiquement insignifiants.

Un déséquilibre chimique différent

Bien que les niveaux de sérotonine ne semblent pas être le principal facteur de dépression, les ISRS montrent une légère amélioration par rapport aux placebos dans les essais cliniques. Mais le mécanisme à l’origine de cette amélioration reste insaisissable. "Ce n'est pas parce que l'aspirine soulage les maux de tête que les déficits en aspirine dans le corps provoquent des maux de tête", a déclaré John Krystal , neuropharmacologue et directeur du département de psychiatrie de l'Université de Yale. " Comprendre pleinement comment les ISRS produisent des changements cliniques est encore un travail en cours. "

Les spéculations sur la source de ce bénéfice ont donné naissance à des théories alternatives sur les origines de la dépression.

Malgré le terme " sélectif " dans leur nom, certains ISRS modifient les concentrations relatives de produits chimiques autres que la sérotonine. Certains psychiatres cliniciens pensent que l’un des autres composés pourrait être la véritable force induisant ou soulageant la dépression. Par exemple, les ISRS augmentent les niveaux circulants de tryptophane, un acide aminé, un précurseur de la sérotonine qui aide à réguler les cycles de sommeil. Au cours des 15 dernières années, ce produit chimique est devenu un candidat sérieux pour prévenir la dépression. "Les études sur la déplétion en tryptophane fournissent des preuves assez solides", a déclaré Michael Browning , psychiatre clinicien à l'Université d'Oxford.

Un certain nombre d' études sur l'épuisement du tryptophane ont révélé qu'environ les deux tiers des personnes récemment remises d'un épisode dépressif rechuteront lorsqu'elles suivront un régime artificiellement pauvre en tryptophane. Les personnes ayant des antécédents familiaux de dépression semblent également vulnérables à une carence en tryptophane. Et le tryptophane a pour effet secondaire d’augmenter les niveaux de sérotonine dans le cerveau.

Des preuves récentes suggèrent également que le tryptophane et la sérotonine pourraient contribuer à la régulation des bactéries et autres microbes se développant dans l’intestin, et que les signaux chimiques émis par ce microbiote pourraient affecter l’humeur. Bien que les mécanismes exacts liant le cerveau et l’intestin soient encore mal compris, ce lien semble influencer le développement du cerveau. Cependant, comme la plupart des études sur la déplétion en tryptophane ont jusqu’à présent été limitées, la question est loin d’être réglée.

D'autres neurotransmetteurs comme le glutamate, qui joue un rôle essentiel dans la formation de la mémoire, et le GABA, qui empêche les cellules de s'envoyer des messages, pourraient également être impliqués dans la dépression, selon Browning. Il est possible que les ISRS agissent en modifiant les quantités de ces composés dans le cerveau.

Moncrieff considère la recherche d'autres déséquilibres chimiques à l'origine de la dépression comme une tentative de changement de marque plutôt que comme une véritable nouvelle ligne de recherche. " Je dirais qu’ils souscrivent toujours à quelque chose comme l’hypothèse de la sérotonine ", a-t-elle déclaré – l’idée selon laquelle les antidépresseurs agissent en inversant certaines anomalies chimiques dans le cerveau. Elle pense plutôt que la sérotonine a des effets si répandus dans le cerveau que nous pourrions avoir du mal à dissocier son effet antidépresseur direct des autres changements dans nos émotions ou sensations qui remplacent temporairement les sentiments d’anxiété et de désespoir.

Réponses génétiques

Toutes les théories sur la dépression ne reposent pas sur des déficits en neurotransmetteurs. Certains recherchent des coupables au niveau génétique.

Lorsque la première ébauche de séquence à peu près complète du génome humain a été annoncée en 2003, elle a été largement saluée comme le fondement d’une nouvelle ère en médecine. Au cours des deux décennies qui ont suivi, les chercheurs ont identifié des gènes à l’origine d’un large éventail de troubles, dont environ 200 gènes associés à un risque de dépression. (Plusieurs centaines de gènes supplémentaires ont été identifiés comme pouvant augmenter le risque.)

"Il est vraiment important que les gens comprennent qu'il existe une génétique à la dépression", a déclaré Krystal. "Jusqu'à très récemment, seuls les facteurs psychologiques et environnementaux étaient pris en compte."

Notre connaissance de la génétique est cependant incomplète. Krystal a noté que des études sur des jumeaux suggèrent que la génétique pourrait expliquer 40 % du risque de dépression. Pourtant, les gènes actuellement identifiés ne semblent expliquer qu’environ 5 %.

De plus, le simple fait d’avoir les gènes de la dépression ne garantit pas nécessairement qu’une personne deviendra déprimée. Les gènes doivent également être activés d’une manière ou d’une autre, par des conditions internes ou externes.

"Il existe parfois une fausse distinction entre les facteurs environnementaux et les facteurs génétiques", a déclaré Srijan Sen, neuroscientifique à l'Université du Michigan. "Pour les caractères d'intérêt les plus courants, les facteurs génétiques et environnementaux jouent un rôle essentiel."

Le laboratoire de Sen étudie les bases génétiques de la dépression en cartographiant le génome des sujets et en observant attentivement comment les individus présentant des profils génétiques différents réagissent aux changements dans leur environnement. (Récemment, ils se sont penchés sur le stress provoqué par la pandémie de Covid-19.) Différentes variations génétiques peuvent affecter la réaction des individus à certains types de stress, tels que le manque de sommeil, la violence physique ou émotionnelle et le manque de contact social, en devenant déprimé.

Les influences environnementales comme le stress peuvent aussi parfois donner lieu à des changements " épigénétiques " dans un génome qui affectent l’expression ultérieure des gènes. Par exemple, le laboratoire de Sen étudie les changements épigénétiques dans les capuchons situés aux extrémités des chromosomes, appelés télomères, qui affectent la division cellulaire. D'autres laboratoires examinent les modifications des étiquettes chimiques appelées groupes de méthylation qui peuvent activer ou désactiver les gènes. Les changements épigénétiques peuvent parfois même se transmettre de génération en génération. "Les effets de l'environnement sont tout aussi biologiques que les effets des gènes", a déclaré Sen. " Seule la source est différente. "

Les études de ces gènes pourraient un jour aider à identifier la forme de traitement à laquelle un patient répondrait le mieux. Certains gènes peuvent prédisposer un individu à de meilleurs résultats avec une thérapie cognitivo-comportementale, tandis que d'autres patients pourraient mieux s'en sortir avec un ISRS ou de la kétamine thérapeutique. Cependant, il est beaucoup trop tôt pour dire quels gènes répondent à quel traitement, a déclaré Sen.

Un produit du câblage neuronal

Les différences dans les gènes d’une personne peuvent la prédisposer à la dépression ; il en va de même pour les différences dans le câblage neuronal et la structure de leur cerveau. De nombreuses études ont montré que les individus diffèrent dans la manière dont les neurones de leur cerveau s’interconnectent pour former des voies fonctionnelles, et que ces voies influencent la santé mentale.

Lors d'une récente conférence, une équipe dirigée par Jonathan Repple, chercheur en psychiatrie à l'Université Goethe de Francfort, en Allemagne, a décrit comment elle a scanné le cerveau de volontaires gravement déprimés et a découvert qu'ils différaient structurellement de ceux d'un groupe témoin non déprimé. Par exemple, les personnes souffrant de dépression présentaient moins de connexions au sein de la " substance blanche " des fibres nerveuses de leur cerveau. (Cependant, il n'y a pas de seuil de matière blanche pour une mauvaise santé mentale : Repple note que vous ne pouvez pas diagnostiquer la dépression en scannant le cerveau de quelqu'un.)

Après que le groupe déprimé ait subi six semaines de traitement, l'équipe de Repple a effectué une autre série d'échographies cérébrales. Cette fois, ils ont constaté que le niveau général de connectivité neuronale dans le cerveau des patients déprimés avait augmenté à mesure que leurs symptômes diminuaient. Pour obtenir cette augmentation, le type de traitement que les patients recevaient ne semblait pas avoir d'importance, du moment que leur humeur s'améliorait.

Une explication possible de ce changement est le phénomène de neuroplasticité. "La neuroplasticité signifie que le cerveau est réellement capable de créer de nouvelles connexions, de modifier son câblage", a déclaré Repple. Si la dépression survient lorsqu'un cerveau a trop peu d'interconnexions ou en perd certaines, alors exploiter les effets neuroplastiques pour augmenter l'interconnexion pourrait aider à améliorer l'humeur d'une personne.

Inflammation chronique

Repple prévient cependant qu'une autre explication des effets observés par son équipe est également possible : peut-être que les connexions cérébrales des patients déprimés ont été altérées par l'inflammation. L'inflammation chronique entrave la capacité du corps à guérir et, dans le tissu neuronal, elle peut progressivement dégrader les connexions synaptiques. On pense que la perte de ces connexions contribue aux troubles de l’humeur.

De bonnes preuves soutiennent cette théorie. Lorsque les psychiatres ont évalué des populations de patients souffrant de maladies inflammatoires chroniques comme le lupus et la polyarthrite rhumatoïde, ils ont constaté que " tous présentaient des taux de dépression supérieurs à la moyenne ", a déclaré Charles Nemeroff, neuropsychiatre à l'Université du Texas Austin. Bien sûr, savoir qu'ils souffrent d'une maladie dégénérative incurable peut contribuer aux sentiments de dépression du patient, mais les chercheurs soupçonnent que l'inflammation elle-même est également un facteur.

Des chercheurs médicaux ont découvert que provoquer une inflammation chez certains patients peut déclencher une dépression. L'interféron alpha, qui est parfois utilisé pour traiter l'hépatite C chronique et d'autres affections, provoque une réponse inflammatoire majeure dans tout le corps en inondant le système immunitaire de protéines appelées cytokines, des molécules qui facilitent les réactions allant d'un léger gonflement au choc septique. L’afflux soudain de cytokines inflammatoires entraîne une perte d’appétit, de la fatigue et un ralentissement de l’activité mentale et physique – autant de symptômes d’une dépression majeure. Les patients prenant de l’interféron déclarent souvent se sentir soudainement, parfois sévèrement, déprimés.

Si une inflammation chronique négligée est à l’origine de la dépression chez de nombreuses personnes, les chercheurs doivent encore déterminer la source de cette inflammation. Les maladies auto-immunes, les infections bactériennes, le stress élevé et certains virus, dont celui qui cause le Covid-19, peuvent tous induire des réponses inflammatoires persistantes. L’inflammation virale peut s’étendre directement aux tissus du cerveau. La mise au point d’un traitement anti-inflammatoire efficace contre la dépression peut dépendre de la connaissance de laquelle de ces causes est à l’œuvre.

On ne sait pas non plus si le simple traitement de l’inflammation pourrait suffire à soulager la dépression. Les cliniciens tentent encore de déterminer si la dépression provoque une inflammation ou si l’inflammation conduit à la dépression. "C'est une sorte de phénomène de poule et d'œuf", a déclaré Nemeroff.

La théorie du parapluie

De plus en plus, certains scientifiques s’efforcent de recadrer le terme " dépression " pour en faire un terme générique désignant un ensemble de pathologies connexes, tout comme les oncologues considèrent désormais le " cancer " comme faisant référence à une légion de tumeurs malignes distinctes mais similaires. Et tout comme chaque cancer doit être prévenu ou traité de manière adaptée à son origine, les traitements de la dépression peuvent devoir être adaptés à chaque individu. 

S’il existe différents types de dépression, ils peuvent présenter des symptômes similaires – comme la fatigue, l’apathie, les changements d’appétit, les pensées suicidaires et l’insomnie ou un sommeil excessif – mais ils peuvent résulter de mélanges complètement différents de facteurs environnementaux et biologiques. Les déséquilibres chimiques, les gènes, la structure cérébrale et l’inflammation pourraient tous jouer un rôle à des degrés divers. "Dans cinq ou dix ans, nous ne parlerons plus de la dépression comme d'un phénomène unitaire", a déclaré Sen.

Pour traiter efficacement la dépression, les chercheurs en médecine devront peut-être développer une compréhension nuancée de la manière dont elle peut survenir. Nemeroff s'attend à ce qu'un jour, la référence en matière de soins ne soit pas seulement un traitement, mais un ensemble d'outils de diagnostic capables de déterminer la meilleure approche thérapeutique pour la dépression d'un patient individuel, qu'il s'agisse d'une thérapie cognitivo-comportementale, de changements de style de vie, de neuromodulation, d'évitement. déclencheurs génétiques, thérapie par la parole, médicaments ou une combinaison de ceux-ci.

Cette prédiction pourrait frustrer certains médecins et développeurs de médicaments, car il est beaucoup plus facile de prescrire une solution universelle. Mais " apprécier la véritable complexité de la dépression nous amène sur un chemin qui, en fin de compte, aura le plus d’impact ", a déclaré Krystal. Dans le passé, dit-il, les psychiatres cliniciens étaient comme des explorateurs qui atterrissaient sur une petite île inconnue, installaient leur campement et s’installaient confortablement. "Et puis nous avons découvert qu'il y avait tout un continent énorme."



 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Joanna Thompson, 26 janvier 2023

[ corps-esprit ] [ thérapie holistique idiosyncrasique ]

 

Commentaires: 0

Ajouté à la BD par miguel