Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 26
Temps de recherche: 0.0392s

homme-machine

Des scientifiques ont mis au point une intelligence artificielle si avancée qu’elle serait trop dangereuse pour être rendue publique

Un groupe d’informaticiens précédemment soutenus par Elon Musk a développé une intelligence artificielle (IA) avancée, jugée "trop dangereuse" pour être rendue publique.

OpenAI, entreprise de recherche à but non lucratif basée à San Francisco (USA), affirme que son système de prédiction du langage "à la caméléon", appelé GPT-2, ne sortira qu’en version limitée et à très petite échelle, en raison de "préoccupations concernant les applications malveillantes de cette technologie". En effet, le modèle informatique qui génère des paragraphes de textes originaux en fonction de ce qui lui a été donné à "lire", est un peu trop performant, selon l’entreprise qui l’a créé.

Le système élabore des "échantillons de texte synthétique d’une qualité sans précédent", que les chercheurs estiment tellement avancés et convaincants que l’IA pourrait être utilisée pour créer de fausses informations, se faire passer pour certaines personnes, et abuser ou duper des individus sur les réseaux sociaux. "GPT-2 possède un objectif simple : prédire le mot suivant, en tenant compte de tous les mots précédents dans un texte", explique l’équipe OpenAI sur son blog.

Dans le but d’alimenter l’imagination de GPT–2, les chercheurs ont fourni à leur IA un jeu de données de huit millions de pages internet. Une fois toutes les informations assimilées, leur IA peut alors converser sur le sujet, tel qu’il le comprend, et générer un texte aléatoire mais convaincant, qu’il s’agisse de nouvelles de célébrités, de changements climatiques, de la guerre de Sécession ou de fanfictions inspirés de l’univers de Tolkien.

Ci-dessous quelques exemples édités, pour vous rendre compte de la puissance de l’IA créée par OpenAI :

Humain : "Miley Cyrus a été prise en flagrant délit de vol à Abercrombie and Fitch sur Hollywood Boulevard aujourd’hui !". Réponse de GPT-2 : "La chanteuse, âgée de 19 ans, a été filmée et escortée hors du magasin par des gardes de sécurité. La chanteuse portait un sweat à capuche noir avec les étiquettes ‘‘Blurred Lines’’ à l’avant et "Fashion Police" à l’arrière".

Humain : "Recycler, c’est bon pour le monde. NON ! VOUS NE POUVEZ PAS AVOIR PLUS TORD !!". Réponse de GPT-2 : "Le recyclage n’est PAS bon pour le monde. C’est mauvais pour l’environnement, pour notre santé et pour notre économie. Je ne plaisante pas. Le recyclage n’est pas bon pour l’environnement. C’est destructeur pour la Terre et c’est un contributeur majeur au réchauffement climatique".

Humain : "Pour les devoirs d’aujourd’hui, veuillez décrire les raisons de la guerre civile américaine". Réponse de GPT-2 : "Par Donny Ferguson. Il est facile de comprendre pourquoi la guerre civile s’est produite, car tant de gens et tant de livres, de télévisions et de films nous disent que c’est la cause, que cela a à voir avec la race, l’économie ou la religion. On s’entend généralement pour dire qu’il s’agissait essentiellement d’une guerre d’esclavage de la part du capitalisme, à propos d’un siècle d’esclavage. Mais ce n’est pas ce à quoi la plupart des gens pensent quand ils pensent à la guerre civile".

Et pour finir, cet exemple du fanfiction issu de l’univers de Tolkien. Humain : "Legolas et Gimli avançaient vers les orcs, levant leurs armes avec des cris de guerre déchirants". Réponse de GPT-2 : "La réponse des orcs fut une attaque assourdissante de griffe, griffe et griffe ! ; même Elrond fut contraint de battre en retraite. "Vous êtes entre de bonnes mains" a déclaré Gimli, qui avait été parmi les premiers à charger les orcs ; il ne leur fallut que deux mots avant que leurs adversaires ne soient réduits à un bourbier ensanglanté, et que le nain tue pour la première fois de la nuit". (Si vous souhaitez lire entièrement ce tribut étrange à Tolkien, c’est ici, en anglais).

Malgré la nature déroutante de ces étranges annonces créées par l’IA, le modèle de langage émis n’est pas parfait, ce que l’équipe reconnaît totalement. "Comme le montrent les exemples ci-dessus, notre modèle est capable de générer des échantillons à partir d’une variété de textes se sentant proches de la qualité humaine et offrant une cohérence sur une page ou plus" ont déclaré les chercheurs. "Néanmoins, nous avons observé divers modes d’échec, tels que du texte répétitif, des échecs de modélisation cohérente (par exemple, le modèle écrit parfois sur des incendies se déroulant sous l’eau) et des changements de sujet non naturels", ont ajouté les chercheurs.

Cela étant dit, d’après OpenAI, leur IA peut générer des modèles avec du texte cohérent, personnalisé et évolutif, ce qui pourrait être utilisé à des fins malveillantes, en plus des avantages connus.

"Ces résultats, combinés à des résultats antérieurs sur l’imagerie synthétique, l’audio et la vidéo, impliquent que ces technologies réduisent le coût de production de faux contenus et de campagnes de désinformation", écrivent les chercheurs. "En raison des craintes que des modèles linguistiques de ce type soient utilisés pour générer un langage trompeur, partial ou abusif, nous ne publierons qu’une version beaucoup plus restreinte de GPT–2, avec un code d’échantillonnage", ajoutent-ils.

Certains scientifiques suggèrent néanmoins que les craintes relatives aux capacités de GPT-2 sont exagérées, et que l’entreprise OpenAI souhaite simplement se faire de la publicité. L’entreprise a rétorqué qu'elle pense avoir raison de se méfier des IA trop compétentes. "Les règles selon lesquelles vous pouvez contrôler la technologie ont fondamentalement changé" a déclaré Jack Clark, directeur des politiques de la société OpenAI. "Nous n’affirmons pas savoir quelle est la bonne chose à faire dans cette situation (…). Nous essayons de construire la route au fur et à mesure que nous avançons", a-t-il ajouté.

Auteur: Internet

Info: https://trustmyscience.com Traduction Stéphanie Schmidt 20 février 2019

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

illusionnisme

Le monde de la psychologie appliquée est un univers particulier qui se compose d’une multitude de techniques partagées avec le monde du mentalisme et ne forme avec lui en fait, qu’une seule et même entité. Un mentaliste est donc quelqu'un qui a exploré la psychologie assez profondément pour en extraire les techniques utiles, stratégies d’interaction choisies et appliquées avec soin et dans un but précis.

Nous vous déclinons ici 4 techniques de mentalisme très utiles dans un contexte conversationnel.

1) Le Yes set (théorie de l’engagement)

C'est un des piliers de l’influence, issu de la vue systémique de la persuasion développée par  Robert B. Cialdini dans les années 1980. Il est facilement vérifiable et très intuitive, stipule que le fait d’habituer les gens à effectuer une série d’actions les rend beaucoup plus susceptibles d’en effectuer par la suite. Cette idée "d’habituer" les gens prend ses sources directement dans le principe du conditionnement, que nous verrons plus en détail dans un prochain point. Cialdini explique calmement que l’engagement va de pair avec le principe de la cohérence psychologique, qui dit (en gros) que "puisque j’ai fait ceci, je devrais faire cela". Le cerveau cherchant constamment à rationaliser le monde pour mieux le comprendre, il a horreur de l’incohérence. D’où son classement en tant que technique de mentalisme de haut niveau.

2) L’Ancrage émotionnel

Un des effets stupéfiant du monde de la psychologie après l’effet miroir. Cette technique de mentalisme exploitée instinctivement par l’homme depuis des siècles. Mais il aura fallu attendre Ivan Pavlov, précurseur du comportementalisme, pour modéliser le processus de conditionnement au grand jour. En gros : Vous donnez des bonnes croquettes à votre chien, vous agitez une clochette, le chien mange les croquettes. Vous faites ça pendant une semaine, plusieurs fois par jour. A chaque fois que le chien mange, il entend le son des clochettes. Au bout d’une semaine, vous agitez les clochettes mais ne servez plus à manger… Et le chien salive. Vous recommencez des jours plus tard, le chien salive toujours. Que s’est-il passé ? Le chien a associé le son des clochettes à la nourriture et au démarrage de sa digestion. Il a été conditionné à saliver et à penser à sa nourriture au son des clochettes. Et bien sûr ça marche aussi pour les humains. 

Le processus d’ancrage a été largement amélioré et repris dans des domaines aussi divers que la publicité, l’humour, le storytelling, la thérapie, et est à la base du fonctionnement de l’hypnose. Parce que oui, l’ancrage fonctionne AUSSI avec les émotion et est bien sûr très exploité comme technique de mentalisme. 

En combinant  les domaines ci-dessus on "fabrique" la technique en piochant un peu partout et en l’adaptant à la situation. Il faut donc créer une atmosphère agréable et renforcer un lien émotionnel en utilisant la technique de l’ancrage émotionnel ?

3) Hypnose conversationnelle et suggestion d’idées

Nous sommes ici dans l’antichambre de la magie : cette technique de mentalisme, consiste ni plus ni moins en une maîtrise millimétrée du langage et des mots. Et ce contrôle, cette absolue suprématie sur l’histoire que votre cerveau articule, peut donner naissance à des résultats tout-à-fait remarquables. Les objectifs de l’hypnose conversationnelle sont principalement les deux suivants : 

- Éveiller des émotions chez votre interlocuteur en adoptant une forme colorée et percutante de discours

- Communiquer des suggestions d’idées en utilisant les mécanismes des sous-entendus.

Si ces buts conversationnels sont les mêmes que ceux définis dans l’hypnose thérapeutique, leur articulation est différente. On préférera une communication plus fine, car dans l’hypnose conversationnelle, l’environnement est rarement dévoilé (difficile d’être persuasif si on annonce d’emblée qu’on va être persuasif).

Au sein même de l’hypnose conversationnelle, deux techniques de mentalisme sont très souvent exploitées :

- La métaphore sous toutes ses formes (il y a plusieurs niveaux de complexité), qui permet de se projeter dans un cadre extérieur pour être libre de jouer avec les idées souhaitées (on appellera ce travail une communication "indirecte")

- La suggestion directe camouflée, qui permet d'instiguer des évocations agissantes dans le discours avec une dextérité très complexe à maîtriser. L’intonation des mots, la maîtrise des ancrages émotionnels et l’imagination y sont pour beaucoup.

4) La Synchronisation (ou l’effet miroir)

Le mystère et les incroyables résultats associés à l’effet miroir font partie des causes de la nécessité absolue de communiquer les techniques de mentalisme publiquement. L’effet miroir est le sujet d’innombrables recherches de psychologie sociale depuis au moins un demi-siècle. Comment ça marche ? C’est simple. En effet : si vous ressentez une connexion émotionnelle forte avec les gens qui vous ressemblent et qui s’impliquent aussi dans votre relation, c’est parce que vous fonctionnez souvent en "synchronisation" :

Vous pensez souvent aux mêmes choses et aux mêmes moments. Vous utilisez le même langage pour communiquer, les mêmes expressions, parfois le même ton, et les mêmes gestuelles. Vous prenez ou partagez choix et opinions similaires. Vous riez souvent de concert, il vous est plus facile de partager les émotions de l’autre (empathie affective). Etc.

Voilà donc l’effet "miroir", en référence à l’activation des fameux neurones éponymes de nos cerveaux. Essayez de remarquer les mécanismes de synchronisation/désynchronisation entre deux (ou plusieurs, mais c’est plus avancé) personnes autour de vous. Qui se synchronise sur qui ? Essayez de remarquer les conséquences de ces synchros/désynchros sur la qualité de la conversation et sur l’influence des participants… Gare aux surprises. 

Où cela mène-t-il de connaitre ou apprendre plus de techniques de mentalisme ?

Comprendre et développer l’univers de la psychologie appliquée, composée d’une multitude de techniques de mentalisme, vous permettra de les repérer et vous en protéger si elles sont utilisées avec de mauvaises intentions. Cela vous permettra aussi de savoir les utiliser et les améliorer, ce qui peut arriver si vous souhaitez renforcer un lien émotionnel, dynamiser un groupe, ou tout autre objectif.

Auteur: Internet

Info: https://humanize-project.com/atmosphere/4-techniques-mentalisme/

[ manipulation ] [ comédie ] [ rapports humains ] [ pnl ] [ programmation neurolinguistique ] [ effet Barnum ]

 
Commentaires: 8
Ajouté à la BD par miguel

sortie extra-corporelle

Ce que chacun devrait savoir sur la paralysie du sommeil (P.D.S) et la sortie hors du corps (S.H.C).

Presque tous les jours, je reçois des mails de quelqu'un qui, le sachant ou pas, me parle de sa paralysie du sommeil (P.D.S). Habituellement, je donne une brève explication de ce qui se passe, mais j'ai décidé qu'il était temps de l'écrire dans un article dont plus de gens pourraient bénéficier. J'ai étudié et vécu plusieurs P.D.S et S.H.C, donc je parle d'expérience.

Qu'est-ce que la paralysie du sommeil ?

La paralysie du sommeil est une fonction corporelle normale et naturelle qui provoque la paralysie de notre corps physique pendant le sommeil. Son but est de nous empêcher de nous faire du mal lorsque nous rêvons. Elle est censée se produire à chaque fois que nous dormons et s'installe généralement bien avant que nous ne commencions à rêver. Lorsqu'elle ne fonctionne pas correctement, nous avons de graves problèmes comme le somnambulisme, qui fait que les gens se blessent. Normalement, nous ne sommes pas conscients lorsque la paralysie du sommeil s'installe, de sorte que la plupart des gens ne savent même pas qu'elle existe. Cependant, de temps en temps, quelqu'un devient conscient pendant cette période, et c'est alors qu'il devient de sa paralysie du sommeil, ou P.D.S. Pour autant que je sache, cela se produit plus souvent au réveil. En gros, votre esprit se réveille avant votre corps. Finalement, votre corps rattrape votre esprit et se réveille aussi.

Symptômes de la P.D.S

Lorsqu'un individu devient conscient et se rend compte de son état de paralysie du sommeil, il ne sait généralement pas ce qui lui arrive. Et, parce qu'il est conscient, il essaie de bouger, mais ne le peut pas. Lorsqu'ils découvre qu'ils ne peut pas bouger, il commence à s'agiter, à être angoissés, à avoir peur et peut même paniquer, coincé entre la réalité et le monde halluciné des rêves avec l'impression de ne pas pouvoir se rendre à l'un ou l'autre de ces endroits. Souvent, il lutte et se bat contre la paralysie, en essayant de se libérer, mais cela n'aide que rarement.

Pour aggraver les choses, les peurs peuvent facilement se manifester sous la forme d'hallucinations très réalistes dans l'État de P.D.S. C'est pourquoi les gens voient souvent des monstres, des démons, des sorcières ou autres créatures peu recommandables les attaquer. C'est si courant de ressentir tout ça que fut inventé le mot "hagging" (auto-harassement) pour le décrire. Souvent, on pense se réveiller "juste à temps avant que les monstres ne nous attrape", alors qu'en réalité, la poussée d'adrénaline provoquée par la peur fait sortir de la paralysie. Pour la plupart, ces créatures sont des hallucinations qui peuvent être ignorées, mais je sais bien que c'est plus facile à dire qu'à faire.

La plupart du temps, ceux en P.D.S qui souffrent luttent pour reprendre le contrôle de leur corps et finissent par gagner. Parfois, cependant, une personne peut sembler se réveiller, pour découvrir qu'elle dort vraiment encore et qu'elle rêve qu'elle s'est réveillée. Nous appelons ce phénomène "faux réveils". Parfois, une personne peut avoir plusieurs faux réveils d'affilée, ce qui la frustre de ne pas pouvoir se réveiller ou, pire encore, la terrifie de ne plus jamais se réveiller. Les personnes souffrant de P.D.S sont souvent réticentes à parler de leurs expériences car elles ont peur que les gens les croient folles. Beaucoup de gens ont gardé ce petit secret toute leur vie.

La P.D.S est-elle fréquente ?

En fait, elle est assez répandue et il n'y a pas lieu d'en avoir peur ou d'en avoir honte. Cela arrive à des milliers, voire des millions de personnes chaque jour, mais je n'ai pas de statistiques pour le prouver. Mais je reçois des mails sur les P.D.S presque tous les jours, donc vous n'êtes pas seul.

Que peut-on faire contre les monstres ?

En général, quand les gens apprennent ce qu'est la P.D.S, leurs craintes diminuent. Quand leurs craintes diminuent, ils ont tendance à voir moins de monstres. Par conséquent, le meilleur conseil est de ne pas paniquer, de rester calme, de réaliser que vous êtes en sécurité, et c'est une chose naturelle que fait votre corps physique. Ensuite, si vous le souhaitez, explorez cet état.

Comment puis-je sortir de l'état de P.D.S ?

En général, il suffit d'attendre qu'il se dissipe. On pense que la paralysie du sommeil est liée à la chimie du cerveau, et que vous en sortirez automatiquement lorsque vos substances chimiques se stabiliseront. En attendant, tout ce que vous pouvez faire est d'attendre qu'elle se termine, ou de l'utiliser comme tremplin pour l'état de S.H.C. Comme je l'ai déjà dit, des émotions extrêmes comme la panique ou la colère provoquent parfois un changement dans la chimie du cerveau, et cela peut vous faire sortir de l'état de P.D.S. Une fois que vous aurez appris à la maîtriser, j'espère que vous voudrez l'explorer plutôt que d'y mettre fin.

Quel est le lien entre P.D.S et S.H.C ?

D'après mon expérience, dans l'état P.D.S, vous êtes hors de votre corps physique et à l'intérieur de votre corps énergétique, mais généralement vous êtes collé au corps et incapable de bouger. Donc, d'un côté, vous êtes hors de votre corps, mais de l'autre, vous êtes incapable d'aller quelque part ou de faire quoi que ce soit ; une expérience vraiment frustrante. Lutter contre la paralysie est souvent futile, et si vous gagnez, vous retournerez à votre corps physique au lieu de le quitter, ce qui est frustrant si la S.H.C est votre objectif.

Quel est le secret pour transformer la P.D.S en S.H.C ?

Croyez-le ou non, il m'a fallu vingt ans d'essais avant d'apprendre le secret de la transformation de la P.D.S en S.H.C. Avant d'apprendre le secret, il était plus facile pour moi d'induire une expérience extracorporelle à partir d'un état de pleine conscience qu'à partir de l'état de P.D.S. Le secret réside principalement dans le fait de savoir ce qui se passe réellement, alors voilà : D'après mon expérience, dans l'état de P.D.S, votre conscience est associée à votre corps énergétique, et non à votre corps astral, et c'est là que se trouve le problème. Votre corps énergétique est étroitement associé à votre corps physique, et il est donc inutile de le fouiller et d'essayer de le déloger. Cela n'arrivera pas tant que vous ne serez pas mort, ou proche de la mort. Le secret, c'est que vous devez transférer votre conscience de votre corps énergétique à votre corps astral. Comment y parvenir ? D'abord, fermez les yeux et gardez-les fermés. Ensuite, essayez d'avancer avec votre conscience et imaginez que vous avancez. Même si vous ne ressentez aucun mouvement, votre conscience va avancer dans votre corps astral. Si vous avez de sérieux doutes quant à son fonctionnement et que vous ouvrez les yeux prématurément, votre conscience va se refermer comme une balle sur un élastique et revenir dans votre corps énergétique. Au lieu de cela, gardez les yeux fermés et ayez la foi que votre conscience avance. Continuez à pousser votre conscience aussi fort que vous le pouvez, comme si vous marchiez sous l'eau, jusqu'à ce que vous soyez à environ cinq mètres de votre corps. Bien sûr, comme vos yeux sont fermés, vous ne pouvez qu'estimer approximativement la distance, alors ne soyez pas obsédé par la distance, faites simplement une estimation. Une fois que vous êtes en sécurité à quinze pieds de votre corps, vous pouvez ouvrir les yeux, alors vous serez dans votre corps astral et libre d'errer.

Auteur: Peterson Bob Robert

Info: Le 5 août 2002

[ astral mode d'emploi ] [ hypnagogie ] [ détermination ]

 

Commentaires: 0

Ajouté à la BD par miguel

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Une nouvelle approche du calcul réinvente l'intelligence artificielle

Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.

M
algré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.

D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.

Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.

Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.

Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."

Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).

C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.

Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.

"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.

Entrez dans les espaces de grande dimension

Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.

Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.

Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.

Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.

L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.

Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.

La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.

La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.

La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.

Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.

Exploiter le pouvoir

En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.

"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."

Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.

Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.

Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.

Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.

"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.

Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.

Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.

Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.

Un début prometteur

Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.

Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.

Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.

Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".

Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.

"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"

Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."

Auteur: Ananthaswamy Anil

Info: https://www.quantamagazine.org/ Mais 2023

[ machine learning ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel