Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 175
Temps de recherche: 0.0759s

interaction

Le mystère de la vie affective des plantes
Les plantes sont-elles plus que des "légumes" ? Ont-elles des émotions ? Que ressentent-elles au contact humain ? Communiquent-elles ?
Aristote pensait que les plantes avaient une âme. Goethe qui était botaniste en plus de sa passion pour la poésie, avait fait des découvertes fondamentales sur la métamorphose des plantes et envisageait une certaine "essence spirituelle' derrière leur forme matérielle.
Bien des gens, moi le premier, trouvent ces affirmations chancelantes voire grotesques. Étant quelqu'un de très rationnel qui considère que seules les preuves scientifiques sont fiables, je me suis intéressé aux différentes expériences, peu connues du grand public, qui pourraient appuyer ces affirmations "philosophiques".
Certains tests cependant démontrent que les plantes peuvent éprouver des émotions, lire la pensée humaine et tentent même de communiquer avec nous ! Intrigués ? Ce n'est qu'un début...
New York. 1963. Cleve Backster, consultant auprès de la police, s'amuse avec un détecteur de mensonge et place les électrodes sur une feuille de dracaena. Il arrose la plante et s'attend à ce que l'aiguille du galvanomètre indique une résistance plus faible au courant électrique (à la suite d'une teneur en eau accrue) mais c'est précisément le contraire qui se produit. Perplexe, Backster teste ensuite la réaction de cette même feuille au contact du feu. A peine le briquet sorti de sa poche, l'aiguille enregistreuse bondit soudainement. Le tracé graphique lui rappelle curieusement celui d'un homme soumis à une question piège ou lorsqu'on le menace.
D'expériences en expériences, Backster devint convaincu que les plantes percevaient les sentiments humains. Une autre expérience fut entreprise à laquelle ont participé quelques agents de la police new-yorkaise, semblait démontrer que les plantes ont également une mémoire.
Six sujets, les yeux bandés, tiraient au hasard un papier plié. Sur l'un des papiers était rédigé l'ordre d'arracher et de détruire l'une des deux plantes se trouvant dans la pièce. Le crime était ensuite exécuté en secret, sans que ni les sujets, ni Backster lui-même, ne sachent qui était le coupable - le seul témoin était l'autre plante, celle qui n'était pas détruite. On fixait ensuite des électrodes sur la plante témoin et les suspects défilaient devant elle chacun leur tour. On observait alors que lorsque le coupable s'en approchait, l'aiguille du galvanomètre s'affolait. La plante "reconnaissait" celui qui avait tué l'un des siens. Backster émis l'idée qu'elle percevait la culpabilité que le criminel essayait de dissimuler.
La détection de mensonge
Lors d'une autre expérience, qui a été plusieurs fois répétée devant des jurys scientifiques, Backster réussit à transformer une plante en détecteur de mensonge. Des électrodes étaient placées sur une plante, et un homme - sans électrodes - s'asseyait devant elle. Backster disait à l'homme qu'il allait lui citer une série d'années en lui demandant si elles correspondaient à sa date de naissance, et qu'il fallait toujours répondre "non". Invariablement, Backster pouvait deviner l'année de naissance - qui correspondait sur le graphique à une courbe galvanique bien marquée.
Les émotions
Une autre expérience réalisée pour éliminer tout facteur humain et subjectif, consistait à placer dans une pièce close quelques crevettes vivantes sur un plateau. Lorsque le plateau basculait (en l'absence de toute intervention humaine) les crevettes tombaient dans une casserole d'eau bouillante. Dans une chambre voisine, close également, une plante branchée sur galvanomètre émettait au moment de la mort des crevettes un tracé soudainement turbulent.
Le tracé était différent de celui qui enregistrait une émotion, et Backster se demanda s'il ne correspondait pas à une sorte de perception par un groupe de cellules de la mort d'un autre groupe de cellules. De nouvelles expériences lui permirent d'établir que la même forme de réaction se retrouvait lors de la mort "perçue" par la plante, de bactéries, levures, cellules sanguines et spermatozoïdes.
Il semblerait même que lorsqu'une "empathie" (faculté intuitive de se mettre à la place d'autrui, de percevoir ce qu'il ressent) est établie entre une plante et son maître, ni la distance, ni les obstacles n'interrompent le "rapport". Des expériences lors desquelles le tracé de plantes était enregistré pendant que le "maître" voyageait, montraient des réactionss galvaniques correspondant aux moments mêmes des diverses péripéties du voyage. Pierre Paul Sauvin, un ingénieur électronicien américain, a constaté, en rentrant dans son laboratoire, après un week-end à la campagne, pendant lequel l'activité galvanique de ses plantes était automatiquement enregistrée, des paroxysmes correspondaient au moment même de ses ébats amoureux avec une amie.
Un psychologue moscovite V.N. Pouchkine a vérifié avec soin les expériences de Backster, et en arrivent à peu près aux mêmes conclusions. En tentant d'expliquer ce qui se passait, Pouchkine écrit :
Il se peut qu'entre deux systèmes d'information, les cellules de la plante et les cellules nerveuses, existe un lien. Le langage de la cellule de la plante peut être en rapport avec celui de la cellule nerveuse. Ainsi deux types de cellules totalement différentes les unes des autres peuvent "se comprendre".
La communication
Les plantes, aussi invraisemblable que cela puisse paraître, manifestent également un certain éclectisme musical. Plusieurs expériences dans ce domaine ont été réalisées avec une rigueur toute scientifique par une musicienne en collaboration avec un professeur de biologie, Francis F. Broman. Trois chambres ont été utilisées dans une expérience sur une multitude de plantes (philodendrons, radis, maïs, géranium, violettes africaines...). Toutes les plantes étaient placées dans des conditions identiques. La seule différence fut qu'une chambre expérimentale était totalement silencieuse, une autre contenait un haut-parleur émettant de la musique classique et une troisième, de la musique "rock".
On constatait - sans pouvoir expliquer le phénomène - que les plantes dans la seconde chambre se développaient en se penchant vers la source de musique classique, alors que celles dans la troisième se penchaient dans la direction opposée, comme si elles tentaient de fuir la musique moderne.
Selon le Dr Hashimoto, qui dirige un centre de recherches électroniques ainsi que les services de recherche de l'importante firme industrielle Fuji Electric Industries, il y aurait, au-delà du monde tridimensionnel que nous connaissons, un monde à quatre dimensions, non matériel et dominé par l'esprit. C'est dans ce monde-là que les plantes, et toutes les créatures vivantes, seraient en communication entre elles...
Li Hongzhi, fondateur du Falun Dafa (mouvement spirituel chinois) affirme : Nous vous disons que l'arbre est vivant lui aussi, non seulement il est doté de vie, mais aussi de l'activité d'une pensée supérieure (...) Les botanistes de tous les pays ont fait des recherches la dessus, y compris en Chine. Ce sujet n'est plus du domaine de la superstition. Dernièrement, j'ai dit que tout ce qui arrive maintenant à notre humanité, tout ce qui vient d'être inventé et découvert est déjà suffisant pour refondre les manuels d'enseignement actuels. Cependant, bornés par les conception traditionnelles, les gens refusent de le reconnaître, personne ne recueille et organise systématiquement ces informations.
Ces découvertes qui pendant longtemps n'étaient connues que de quelques initiés et spécialistes peuvent paraître déroutantes. Que croire ? A ce jour, personne ne connaît les vérités. Je me suis posé la problématique de la crédibilité des détecteurs de mensonge qui a vivement été critiqué. Des études récentes de fiabilité montrent un très grand taux d'erreurs si bien que les institutions scientifiques considèrent le détecteur de mensonge comme un outil non fiable...
Et vous, que pensez-vous de ces mystérieuses émotions végétales ? Sentez-vous coupable en offrant des fleurs ? Emettez-vous une certaine culpabilité quand vous pensez à leur possible "souffrance" ? Pensez-vous que parler à ses plantes influe sur leur développement ?
Des études montrent par exemple qu'employer une certaine douceur avec les carottes stimulerait leur croissance...

Auteur: Internet

Info: News Of Tomorrow, mercredi 21 juillet 2010

 

Commentaires: 0

solipsisme astral

Question : Bonjour à tous, quelqu'un a-t'il déjà rencontré son moi supérieur en SHC?

Denis Cottard
Sous toute réserve, ma compréhension de ce phénomène consiste à penser notre réalité comme un iceberg dont la partie émergée est le conscient. La partie immergée la plus conséquente est plongée dans le champ énergétique, mais à différents niveaux de celui-ci, ce qui fait qu'on peut se rencontrer à différents niveaux suivant le type d'accordage vibratoire qu'on opère et cet autre moi sera doté d'une apparence reconnaissable, d'une conscience, d'un savoir plus ou moins large et d'une capacité à l'exprimer différente. A certains de ces niveaux, notre moi participe à des réalités, disons, plus collectives et donc, peut être en possession d'informations et de compréhension que notre moi conscient ignore totalement. Durant le temps de la mise en présence, un partage ou une fusion momentanée des états de vie peut s'opérer ; mais à moins d'y être préparé et de s'organiser des mots clefs pour s'en souvenir lorsqu'on ne sera plus dans cet état, la mémoire s'en va comme s'en va la mémoire du rêve. Plus l'expérience se fera dans un niveau vibratoire éloigné du niveau conscient plus difficile en sera la mémorisation. Malgré tout, si on note tout de suite ces mots clefs, une partie de l'expérience peut être remémorée. Suffisamment en tout cas pour que l'expérience puisse être reproduite de plus en plus volontairement. C'est déconcertant de constater que notre moi puisse se prolonger à des niveaux insoupçonnés et même y agir sans que le conscient soit de la partie. Le fait de se rencontrer peut être considéré comme une invitation à participer davantage consciemment à ces niveaux d'implication.
(...)
Cette difficulté de mémorisation est liée au fait qu'en s'éloignant du niveau vibratoire de notre veille commune, le support de la pensée s'apparente de moins en moins au langage parce que de plus en plus en accès "direct" au réel. On ne se situe plus dans le concept ou dans l'interprétation du perçu, on est face au perçu lui-même, en toute évidence. Ce qui fait que où que se porte notre regard nous est renvoyé un potentiel signifiant quasi-infini puisque rien ne se cache, tout se lit à livre ouvert, c'est voir pour ce que c'est : voir c'est savoir. Cela nous amène à un niveau de compréhension qu'il n'est pas du tout évident de ramener à notre niveau de conscience habituel, pour le ranger dans notre stock de petites boîtes que sont tous ces concepts qu'on utilise couramment et qui nous maintiennent dans une perception pour le moins étriquée de l'existence.
(...)
Je reviens sur le caractère déconcertant - le mot est faible - de constater que notre moi puisse percevoir et agir à des niveaux dont le conscient n'a pas la moindre idée. Nous faisons de notre moi conscient, le nec plus ultra de nos outils, alors qu'il est en fait le plus primitif de tous et que son utilité première c'est de nous permettre de percevoir les dangers et nous permettre de courir plus vite pour y échapper. Tout ce qu'il échafaude peut se rapporter à cet instinct de survie. Tout ce qu'il conçoit fabrique, choisit... peut se rapporter à ce besoin de sécurité, et tant qu'il ne se sera pas découvert une autre dimension d'existence, l'homme continuera de se créer un monde toujours plus complexe mais toujours dominé par ceux qui lui semblent les plus forts, car c'est le réflexe (inconscient) du faible que de chercher la protection de plus fort que lui. Aujourd'hui, ces plus forts sont de toute évidence ceux qui semblent comprendre quelque chose à l'économie, quand l'écrasante majorité de la population qui n'a toujours pas compris ce qu'est l'argent demeure néanmoins pétrifiée par l'idée d'en manquer ou d'en vouloir plus.

Olivier Raimbault
@Denis Cottard : Ce que tu veux dire pourrait-il être résumé entre un moi qui serait celui de l'âme (ou du Soi) et un moi, le nôtre, celui qui écrit ces mots, qui est dans l'ego ou disons le mental ordinaire ? Donc il y a des ponts entre, ou il n'y en a pas. Il y a des transferts, ou il n'y en a pas. Il y a des imprégnations ou pas. Et les liaisons entre ces polarités créent ses états vibratoires, intermédiaires et nombreux, créent aussi nos singularités, nos coefficients de conscience.

Denis Cottard
@Olivier Raimbault : En fait dans ce genre d'expérience qui ressemble fort aux SHC, c'est ce mental ordinaire qui, se met à sortir de son contexte vibratoire habituel (Raoult parlerait d'eco-système), comme dans une bulle en fait et qui est amené à constater d'autres niveaux d'existence de lui-même qu'il ne soupçonnait pas. C'est juste le différentiel vibratoire qui provoque la théâtralisation sous la forme d'un autre soi. A mon sens, ce n'est pas de ponts dont il s'agit, puisqu'il n'y a toujours qu'un seul et même bonhomme, mais dont la réalité ne s'étend ni dans l'espace, ni dans le temps, mais dans la vibration. Le passage d'un état à l'autre est progressif, un peu comme au scanner, l'opérateur en jouant sur la fréquence de résonance parvient à mettre en évidence des tissus par degré de mollesse ou de dureté, mais il n'y a toujours qu'un seul bonhomme allongé dans l'appareil. Je prend un autre exemple : nous nous considérons généralement comme un système autonome , relativement fermé, capable de se mouvoir en toute liberté. Mais en adoptant le point de vue de l'air, on se rend compte qu'on est totalement ouvert puisque c'est même le rôle du sang que de véhiculer l'oxygène (de l'air) à chacune de nos cellules. Du point de vue des micro organismes, dès qu'on sort du corps de notre mère, nous sommes colonisés parce que nous ne sommes pas viables sans ces micro organismes. Tout cela, ce sont des points de vue qui sont plus ou moins étonnants, dérangeants, en fonction de notre culture, qui va sélectionner une infime poignée de point de vue pour fabriquer l'image que l'on a de soi. Notre conscience pensante, elle ne joue pas avec des signaux qui lui viennent de l'extérieur, elle joue avec l'infime poignée de points de vue qu'elle a sélectionnée. Contrairement à ce que nous croyons, nous ne sommes en prise directe qu'avec la façon dont nous nous représentons le monde. Donc, le transfert n'a pas lieu d'être puisque ça ne va pas d'un récipient A à un récipient B, il n'y a qu'un seul récipient, appelons-le, le Graal, si on veut (!), quand notre mental prend conscience de ces autres niveaux de réalités de lui-même, il va juste, soit oublier très vite parce qu'il ne sait rien en faire, ou au contraire, accepter qu'ils fassent partie de lui-même, et c'est là que des informations qui généralement font partie du lot des trucs qu'existent pas, deviennent des points de vue acceptés, donc utiles, et à ce titre ; ils font grandir notre compréhension des choses, élargissent le panel, la sélection. La plupart des gens ne tiennent compte que des informations qui leur viennent de leur sens, mais imagine que tu sois branché sur un niveau de toi qui perçois peu ou prou le champ d'énergie dans lequel on baigne : tu vas percevoir des choses avant qu'elles ne deviennent des faits. C'est intéressant à mon sens.

Olivier Raimbault
@Denis Cottard : je comprends très bien. C'est exactement ce que j'ai essayé de synthétiser. Le différentiel est tel qu'il peut donner l'impression d'un autre soi mais si le différentiel se réduit ou s'apprivoise par l'expérience et l'habitude, il n'y a plus d'autre soi. Il y a bien des échanges, transferts, équilibrages, quand bien même ça serait un seul moi vibrant différemment. Je pense que nous nous élaborons couramment dans une zone très restreinte de nous-mêmes, que nous pensons être le tout avant de découvrir, dans le meilleur des cas, qu'elle n'est qu'une zone, et petite.

Denis Cottard
@Olivier Raimbault : oui tout à fait !!!

Auteur: Cottard Denis

Info: Sur la groupe FB de Marc Auburn, explorateurs du réel, question du 24 juin 2020

[ incarnation ] [ point de singularité ] [ corps causal ] [ niveaux vibratoires ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers vibratoire

Les hippies avaient raison : Tout est vibrations, mec !

Pourquoi certaines choses sont-elles conscientes et d'autres apparemment pas ? Un oiseau est-il conscient ? Une batte ? Un cafard ? Une bactérie ? Un électron ?

Toutes ces questions sont autant d'aspects du récurrent problème sur l'âme et le corps, qui résiste depuis des milliers d'années à une conclusion généralement satisfaisante.

La problématique du corps et de l'esprit a fait l'objet d'un important changement de nom au cours des deux dernières décennies et est généralement reconnue aujourd'hui comme une "grande difficulté quand à la conscience", après que le philosophe David Chalmers de l'Université de New York ait travaillé sur ce concept dans un article devenu classique en 1995 et avec son ouvrage "The Conscious Mind : In Search of a Fundamental Theory", en 1996.

Posons-nous la question maintenant : Les hippies ont-ils vraiment résolu ce problème ? Mon collègue Jonathan Schooler de l'Université de Californie, Santa Barbara, et moi pensons que oui, avec cette intuition radicale qu'il s'agit bien de vibrations...

Au cours de la dernière décennie, nous avons développé une "théorie de la résonance de la conscience" qui suggère que la résonance, autrement dit les vibrations synchronisées, est au coeur non seulement de la conscience humaine mais aussi de la réalité physique en général.

Et les hippies là-dedans ? Eh bien, nous sommes d'accord que les vibrations, la résonance, représente le mécanisme clé derrière la conscience humaine, ainsi que la conscience animale plus généralement. Et, comme on le verra plus loin, c'est le mécanisme de base de toutes les interactions physiques.

Toutes les choses dans notre univers sont constamment en mouvement, vibrantes. Même les objets qui semblent stationnaires vibrent, oscillent, résonnent à différentes fréquences. La résonance est un type de mouvement, caractérisé par une oscillation entre deux états. Et en fin de compte, toute matière n'est qu'une vibration de divers domaines sous-jacents.

Un phénomène intéressant se produit lorsque différents objets/processus vibrants se rapprochent : ils commencent souvent, après un certain temps, à vibrer ensemble à la même fréquence. Ils se "synchronisent", parfois d'une manière qui peut sembler mystérieuse. C'est ce qu'on appelle aujourd'hui le phénomène d'auto-organisation spontanée. L'examen de ce phénomène conduit à une compréhension potentiellement profonde de la nature de la conscience et de l'univers en général.

TOUTES LES CHOSES RÉSONNENT À CERTAINES FRÉQUENCES

Stephen Strogatz donne divers exemples tirés de la physique, biologie, chimie et des neurosciences pour illustrer ce qu'il appelle la "synchronisation" dans son livre de 2003 également titré "Sync". Notamment :

- Les lucioles de certaines espèces se mettent à clignoter leurs petits feux en synchronisation lors de grands rassemblements de lucioles, d'une manière qui est être difficile à expliquer avec les approches traditionnelles.

- Les neurones "s'allument" à grande échelle dans le cerveau humain à des fréquences spécifiques, la conscience des mammifères étant généralement associée à divers types de synchronisation neuronale.

- Les lasers sont produits lorsque des photons de même puissance et de même fréquence sont émis ensemble.

- La rotation de la lune est exactement synchronisée avec son orbite autour de la Terre, de sorte que nous voyons toujours la même face. La résonance est un phénomène véritablement universel et au coeur de ce qui peut parfois sembler être des tendances mystérieuses vers l'auto-organisation.

Pascal Fries, neurophysiologiste allemand de l'Institut Ernst Strüngmann, a exploré dans ses travaux très cités au cours des deux dernières décennies la façon dont divers modèles électriques, en particulier les ondes gamma, thêta et bêta, travaillent ensemble dans le cerveau pour produire divers types de conscience humaine.

Ces noms font référence à la vitesse des oscillations électriques dans les différentes régions du cerveau, mesurée par des électrodes placées à l'extérieur du crâne. Les ondes gamma sont généralement définies comme étant d'environ 30 à 90 cycles par seconde (hertz), les thêta de 4 à 7 Hz et les bêta de 12,5 à 30 hz. Il ne s'agit pas de limites strictes - ce sont des règles empiriques - et elles varient quelque peu d'une espèce à l'autre.

Ainsi, thêta et bêta sont significativement plus lentes que les ondes gamma. Mais les trois travaillent ensemble pour produire, ou au moins faciliter (la relation exacte entre les schémas électriques du cerveau et la conscience est encore bien en débat), les différents types de conscience humaine.

Fries appelle son concept "communication par la cohérence" ou CTC. Pour Fries, c'est une question de synchronisation neuronale. La synchronisation, en termes de taux d'oscillation électrique partagés, permet une communication fluide entre les neurones et les groupes de neurones. Sans cohérence (synchronisation), les entrées arrivent à des phases aléatoires du cycle d'excitabilité des neurones et sont inefficaces, ou du moins beaucoup moins efficaces, pour communiquer.

Notre théorie de la résonance de la conscience s'appuie sur le travail de Fries et de beaucoup d'autres, dans une approche plus large qui peut aider à expliquer non seulement la conscience humaine et mammifère, mais aussi la conscience plus largement. Nous spéculons aussi métaphysiquement sur la nature de la conscience comme phénomène général pour toute matière.

EST-CE QUE TOUT EST AU MOINS UN PEU CONSCIENT ?

D'après le comportement observé des entités qui nous entourent, des électrons aux atomes en passant par les molécules, les bactéries, les paramécies, les souris, les chauves-souris, les rats, etc. Cela peut paraître étrange à première vue, mais le "panpsychisme" - l'idée que toute matière a une certaine conscience associée - est une position de plus en plus acceptée par rapport à la nature de la conscience.

Le panpsychiste soutient que la conscience (subjectivité) n'a pas émergé ; au contraire, elle est toujours associée à la matière, et vice versa (les deux faces d'une même médaille), mais l'esprit associé à la plupart de la matière dans notre univers est généralement très simple. Un électron ou un atome, par exemple, ne jouissent que d'une infime quantité de conscience. Mais comme la matière "se complexifie", l'esprit se complexifie, et vice versa.

Les organismes biologiques ont accéléré l'échange d'information par diverses voies biophysiques, y compris les voies électriques et électrochimiques. Ces flux d'information plus rapides permet d'atteindre des niveaux de conscience à l'échelle macroscopique plus élevés que ceux qui se produiraient dans des structures d'échelle similaire comme des blocs rocheux ou un tas de sable, simplement parce qu'il y a une connectivité beaucoup plus grande et donc plus "en action" dans les structures biologiques que dans un bloc ou un tas de sable. Roches et les tas de sable n'ont que des voies thermiques avec une bande passante très limitée.

Les blocs rocheux et les tas de sable sont de "simples agrégats" ou collections d'entités conscientes plus rudimentaires (probablement au niveau atomique ou moléculaire seulement), plutôt que des combinaisons d'entités micro-conscientes qui se combinent en une entité macro-consciente de niveau supérieur, ce qui est la marque de la vie biologique.

Par conséquent, le type de communication entre les structures résonnantes est essentiel pour que la conscience s'étende au-delà du type rudimentaire de conscience que nous nous attendons à trouver dans des structures physiques plus fondamentales.

La thèse centrale de notre approche est la suivante : les liens particuliers qui permettent à la macro-conscience de se produire résultent d'une résonance partagée entre de nombreux composants micro-conscients. La vitesse des ondes de résonance présentes est le facteur limitant qui détermine la taille de chaque entité consciente.

Au fur et à mesure qu'une résonance partagée s'étend à de plus en plus de constituants, l'entité consciente particulière devient plus grande et plus complexe. Ainsi, la résonance partagée dans un cerveau humain qui atteint la synchronisation gamma, par exemple, comprend un nombre beaucoup plus important de neurones et de connexions neuronales que ce n'est le cas pour les rythmes bêta ou thêta.

Des structures résonnantes qui résonnent de haut en bas.

Notre théorie de la résonance de la conscience tente de fournir un cadre unifié qui inclut la neuroscience et l'étude de la conscience humaine, mais aussi des questions plus fondamentales de neurobiologie et de biophysique. Elle va au cœur des différences qui comptent quand il s'agit de la conscience et de l'évolution des systèmes physiques.

C'est une question de vibrations, mais c'est aussi une question de type de vibrations et, surtout, de vibrations partagées.

Mets tout ça dans ta pipe. Et fume, mon pote.

Auteur: Tam Hunt

Info: https://blogs.scientificamerican.com, 5 décembre 2018

[ chair-esprit ] [ spéculation ]

 
Commentaires: 2
Ajouté à la BD par miguel

anthropomorphisme

Les plantes sont-elles frigides?

La plante évoque l'inertie. On dit "végéter" pour "stagner". Mais il y a quelques siècles encore, "végéter" signifiait le contraire. En latin, ce mot désigne la surabondance d'énergie qui pousse une plante à jaillir. Plus on la coupe, plus elle reverdit : la plante, c'est l'énergie sexuelle incarnée. Sur le plan étymologique en tout cas. Les termes latins dont le mot "végétal" dérive désignent à l'origine "force et croissance". Le mot silva (forêt) est attesté dès Cicéron dans le sens de "grande quantité" et d'"abondance de matière". Le mode d'être de la plante est celui d'une prolifération virtuellement infinie, en constante expansion. Quel plus beau modèle prendre pour l'humain que celui du lierre ou du lichen? A la différence des végétaux dont la vie se confond avec la croissance, la plupart des bêtes, une fois adultes atteignent leurs dimensions définitives, explique Dominique Brancher, ce qui explique peut-être pourquoi les plantes font si peur. Elles ne connaissent pas de limites. Elles ne respectent pas l'ordre. Est-ce la cause du stigmate qui les frappe en Occident ? Les plantes sont-elles victimes de spécisme, de sexisme ou de racisme?

Chercheuse à l'Université de Bâle, Dominique Brancher est l'auteure d'un livre qui entend rendre justice au règne végétal : on en a fait un règne dormant, voué à l'immobilité, à l'absence de pensée, de sentiments, de sensations... Quel dommage d'avoir ainsi perverti ce qui - à l'origine de notre culture - était considéré comme une forme de débordement vital. Trop vital. "Eclipsé par l'attention exclusive donnée au vaste débat sur la distinction entre l'animal et l'homme, [...] le végétal s'est vu relégué au rang de tiers-exclu", dit-elle, regrettant que le mot végéter soit devenu synonyme d'inertie. Mais pourquoi un tel revirement? Pour quelle raison notre culture a-t-elle ainsi châtré la plante? Dans un livre au titre explicite Quand l'esprit vient aux plantes (allusion ironique au poème de La Fontaine "Comment l'esprit vient aux filles"), Dominique Brancher retrace l'histoire de ce qu'elle désigne comme l'invention d'un sexisme anti-flore. Nous avons discriminé les végétaux comme l'ont été les femmes : en leur déniant tout désir. Comme l'ont été les "sauvages" : en leur déniant toute intelligence. Comme le sont encore les animaux : en les parquant dans des réserves. C'est pourquoi il faut lire son enquête sur la sexualité des plantes comme un révélateur de nos choix de vie.

Quand les plantes étaient humaines...

Aux origines présocratiques de notre culture, les cosmogonies imaginées par Thalès (né en 640 av. J.-C.), Héraclite (504 av. J.-C.) ou Empédocle (492 av. J.-C.) reposent sur un principe d'équation : nous sommes faits de la même matière que tout ce qui existe, fleur ou astres. Cette règle d'analogie poétique "dit la trame vitale qui tisse les êtres et confond leurs attributs et leurs formes. Les arbres "pondent" leurs fruits et les êtres humains se développent comme des plantes." Pour Empédocle, qui rédige sa théorie en vers fabuleux face au paysage volcanique de sa Sicile natale, il n'y a ni naissance ni mort. Tout chose se renouvelle sous l'effet d'une ardeur brûlante qui traverse la matière. "Toute chose pense", dit-il. Toute chose aime et hait. "Dans ses transmigrations, l'âme humaine épouse les métamorphoses de la matière car elle a "déjà été autrefois garçon et fille, buisson, oiseau ou poisson cheminant à la surface de l'eau" (Empédocle, VIII).". Dans cet univers foisonnant, les plantes ont du plaisir et souffrent comme les humains qui, eux-mêmes, viennent au monde mouillés par la rosée de leur larmes. Empédocle résume ainsi leur première apparition : "Or donc voici comment des hommes et des femmes trempés de pleurs, Feu, se séparant, fit jaillir les pousses dans la nuit" (Empédocle III, Les Origines).

Avec la "raison" vient l'inégalité

Mais cette vision-là du monde est trop poétique sans doute. Dès le 1er siècle avant J.-C., Nicolas de Damas écrit dans son ouvrage De Plantis : "Il faut rejeter ces idées grossières et nous mettre à dire la vérité". Platon (427 av. J.-C.), deux siècles avant lui, n'accorde aux plantes qu'une âme inférieure et en fait des animaux immobiles. Mais c'est Aristote (384 av. J.-C.) qui "réduit encore plus considérablement la dignité du végétal en lui laissant seulement une sorte d'âme (De Anima, A5, 411)". La classification qu'Aristote met en place devient le modèle dominant d'une pensée occidentale qui place l'homme au sommet de la hiérarchie. Dans ce nouvel ordre moral, "les plantes jouissent seulement d'une âme végétative", désormais privées d'entendement. Avec le christianisme, leur statut ne s'améliore pas, au contraire. "Selon l'agenda cloisonné de la Genèse, Dieu créa les plantes le troisième jour, les animaux le cinquième et l'homme le sixième". Dans l'échelle des êtres, le végétal est en bas. Deux attitudes prévalent à son égard. La première repousse les plantes du côté du péché. Le seconde, guère plus enviable, du côté du paradis. Dans les deux cas, la plante est vue comme une créature frigide.

La plante comme symbole du péché de gourmandise Bien qu'ils lui dénient toute capacité de percevoir et donc de jouir, les théologiens estiment en effet que la plante est gourmande. Ne passe-t-elle pas son temps à sucer la terre? Voilà pourquoi elle est au bas de cette Scala Naturae ("échelle de la nature") que de nombreux ouvrages du XVIe siècle décrivent en termes de menace : attention de ne pas tomber ! Chaque échelon figure un degré de déchéance. Quand l'homme commet le péché de luxure (sensualis), il est ravalé au rang d'animal. Quand il a trop d'appétit (vitalis), le voilà végétal. Quand il sombre dans la tristesse (acédie), il rétrograde en minéral. Le christianisme "est une religion qui déconsidère la vie organique au profit de la pensée rationnelle", rappelle Dominique Brancher. Aux yeux des chrétiens, l'homme ne peut prétendre à son statut supérieur qu'à la condition de ne rien avoir en commun avec la (vile) matière. Les bêtes qui forniquent, les rivières qui ondoient et les plantes qui têtent la glaise sans penser, avec une gloutonnerie "stupide et insensible" (Jean Pic de la Mirandole) sont des choses détestables, qui renvoient à la chute.

La plante comme symbole de l'asexualité

Mais il existe une autre attitude vis à vis des plantes : pour certains chrétiens, elles présentent cet avantage sur les animaux d'être "pures". Cela commence au XIIIe siècle, avec Innocent III : dans un texte intitulé De Contemptu mundi, le pape attribue aux plantes la "candeur de l'âme végétative". La plante n'est pas sexuée, dit-il (ignorant qu'il existe des espèces végétales où les mâles et les femelles sont distincts). "Dégagés des ardeurs charnelles qui abêtissent et abrutissent, les végétaux offrent ainsi la rédemption d'un nouvel Eden. Combien d'auteurs de la Contre-Réforme ne célèbrent-ils pas la pureté de la reproduction végétale?". Dominique Brancher cite par exemple Thomas Browne qui, dans les années 1630, déclare : "Je serais heureux, si nous pouvions procréer comme les arbres sans union et s'il existait un moyen de perpétuer le monde sans passer par le coït vulgaire et trivial. C'est l'acte le plus sot qu'un homme sage puisse commettre dans sa vie". Edifiant. La chercheuse enfonce le clou : "Aux yeux de la mystique flamande, la perfection végétale figure une complétude originelle que la Faute, en modifiant le corps physique des premiers hommes, a définitivement dérobé à l'humanité : "Au lieu d'hommes qu'ils devaient être, ils sont devenus des monstres divisés en deux sexes imparfaits, impuissants à produire leurs semblables seuls, comme se produisent les arbres et les plantes".

Savez-vous planter des choux?

Dans la tradition ouverte par Innocent III, tout un imaginaire puritain se cristallise aux XVIe et XVIe siècles autour des plantes. La botanique devient "une technique de maîtrise des instincts, explique Dominique Brancher. On en trouve les répercussions jusque chez Rousseau, "persuadé qu'à tout âge l'étude de la nature émousse le goût des amusements frivoles, prévient le tumulte des passions". "La campagne a toujours été considérée comme le séjour de l'innocence", renchérit Trembley. L'herborisation devient l'activité favorite des puritains. On associe le curé de campagne à un brave jardinier, expert en sirops pour la gorge. "La méconnaissance concertée de la sexualité des plantes, depuis Aristote jusqu'aux naturalistes de la Renaissance, entretient cette vision angélique." Heureusement, il existe à toute époque des empêcheurs de tourner en rond. Au XVIe siècle, en particulier, des voix dissidentes s'élèvent : non, la plante n'est pas sage. Nous ferions bien d'en prendre de la graine.

Auteur: Giard Agnes

Info: 4 janvier 2016

[ historique ] [ Grèce antique ]

 

Commentaires: 0

recherche fondamentale

Pourquoi nous pouvons cesser de nous inquiéter et aimer les accélérateur de particules

En plongeant dans les mystères de l'Univers, les collisionneurs sont entrés dans l'air du temps et ont exploité  merveilles et  craintes de notre époque.

Le scénario semble être le début d'une mauvaise bande dessinée de Marvel, mais il se trouve qu'il éclaire nos intuitions sur les radiations, la vulnérabilité du corps humain et la nature même de la matière. Grâce aux accélérateurs de particules, les physiciens peuvent étudier les particules subatomiques en les accélérant dans de puissants champs magnétiques, puis en retraçant les interactions qui résultent des collisions. En plongeant dans les mystères de l'Univers, les collisionneurs se sont inscrits dans l'air du temps et ont nourris des émerveillements et des craintes de notre époque.

Dès 2008, le Grand collisionneur de hadrons (LHC), exploité par l'Organisation européenne pour la recherche nucléaire (CERN), a été chargé de créer des trous noirs microscopiques qui permettraient aux physiciens de détecter des dimensions supplémentaires. Pour beaucoup, cela ressemblait à l'intrigue d'un film catastrophe de science-fiction. Il n'est donc pas surprenant que deux personnes aient intenté une action en justice pour empêcher le LHC de fonctionner, de peur qu'il ne produise un trou noir suffisamment puissant pour détruire le monde. Mais les physiciens firent valoir que l'idée était absurde et la plainte fut rejetée.

Puis, en 2012, le LHC détecta le boson de Higgs tant recherché, une particule nécessaire pour expliquer comment les particules acquièrent une masse. Avec cette réalisation majeure, le LHC est entré dans la culture populaire ; il a figuré sur la pochette de l'album Super Collider (2013) du groupe de heavy metal Megadeth, et a été un élément de l'intrigue de la série télévisée américaine The Flash (2014-).

Pourtant, malgré ses réalisations et son prestige, le monde de la physique des particules est si abstrait que peu de gens en comprennent les implications, la signification ou l'utilisation. Contrairement à une sonde de la NASA envoyée sur Mars, les recherches du CERN ne produisent pas d'images étonnantes et tangibles. Au lieu de cela, l'étude de la physique des particules est mieux décrite par des équations au tableau noir et des lignes sinueuses appelées diagrammes de Feynman. Aage Bohr, lauréat du prix Nobel dont le père Niels a inventé le modèle Bohr de l'atome, et son collègue Ole Ulfbeck sont même allés jusqu'à nier l'existence physique des particules subatomiques, qui ne sont rien d'autre que des modèles mathématiques.

Ce qui nous ramène à notre question initiale : que se passe-t-il lorsqu'un faisceau de particules subatomiques se déplaçant à une vitesse proche de celle de la lumière rencontre la chair du corps humain ? Peut-être parce que les domaines de la physique des particules et de la biologie sont conceptuellement très éloignés, ce ne sont pas seulement les profanes qui manquent d'intuition pour répondre à cette question, mais aussi certains physiciens professionnels. Dans une interview réalisée en 2010 sur YouTube avec des membres de la faculté de physique et d'astronomie de l'université de Nottingham, plusieurs experts universitaires ont admis qu'ils n'avaient aucune idée de ce qui se passerait si l'on introduisait une main à l'intérieur du faisceau de protons du LHC. Le professeur Michael Merrifield l'exprima de manière succincte : "C'est une bonne question. Je ne connais pas la réponse. Ce serait probablement néfaste pour la santé". Le professeur Laurence Eaves se montra également prudent avant de tirer des conclusions. "À l'échelle de l'énergie que nous percevons, ce ne serait pas si perceptible que cela, déclara-t-il, sans doute avec un brin d'euphémisme britannique. Est-ce que je mettrais ma main dans le faisceau ? Je n'en suis pas sûr."

De telles expériences de pensée peuvent être des outils utiles pour explorer des situations qui ne peuvent pas être étudiées en laboratoire. Il arrive cependant que des accidents malencontreux donnent lieu à des études de cas : occasions pour les chercheurs d'étudier des scénarios qui ne peuvent pas être induits expérimentalement pour des raisons éthiques. Etude de cas ici avec un échantillon d'une personne et qui ne comporte pas de groupe de contrôle. Mais, comme l'a souligné en son temps le neuroscientifique V S Ramachandran dans Phantoms in the Brain (1998), il suffit d'un seul cochon qui parle pour prouver que les cochons peuvent parler. Le 13 septembre 1848, par exemple, une barre de fer transperça la tête de Phineas Gage, un cheminot américain, et modifia profondément sa personnalité, ce qui constitue une première preuve de l'existence d'une base biologique de la personnalité.

Et puis le 13 juillet 1978, un scientifique soviétique du nom d'Anatoli Bugorski plongea sa tête dans un accélérateur de particules. Ce jour-là, Bugorski vérifiait un équipement défectueux sur le synchrotron U-70 - le plus grand accélérateur de particules d'Union soviétique - lorsqu'un mécanisme de sécurité a lâché et qu'un faisceau de protons se déplaçant à une vitesse proche de celle de la lumière lui a traversé la tête, à la manière de Phineas Gage. Il est possible qu'à ce moment de l'histoire, aucun autre être humain n'ait jamais été confronté à un faisceau de rayonnement concentré à une énergie aussi élevée. Bien que la protonthérapie - un traitement du cancer utilisant des faisceaux de protons pour détruire les tumeurs - ait été mise au point avant l'accident de Bugorski, l'énergie de ces faisceaux ne dépasse généralement pas 250 millions d'électronvolts (une unité d'énergie utilisée pour les petites particules). Bugorski aurait pu subir de plein fouet les effets d'un faisceau d'une énergie plus de 300 fois supérieure, soit 76 milliards d'électrons-volts.

Le rayonnement de protons est en effet très rare. Les protons provenant du vent solaire et des rayons cosmiques sont stoppés par l'atmosphère terrestre, et le rayonnement de protons est si rare dans la désintégration radioactive qu'il n'a été observé qu'en 1970. Les menaces plus familières, telles que les photons ultraviolets et les particules alpha, ne pénètrent pas dans le corps au-delà de la peau, sauf en cas d'ingestion d'une substance radioactive. Le dissident russe Alexandre Litvinenko, par exemple, fut tué par des particules alpha qui ne pénètrent même pas le papier lorsqu'il ingéra à son insu du polonium-210 radioactif livré par un assassin. Mais lorsque les astronautes d'Apollo, protégés par des combinaisons spatiales, furent exposés à des rayons cosmiques contenant des protons et à des formes de rayonnement encore plus exotiques, ils signalèrent des éclairs de lumière visuelle, signe avant-coureur de ce qui allait arriver à Bugorski le jour fatidique de son accident. Selon une interview publiée dans le magazine Wired en 1997, Bugorski a immédiatement vu un flash lumineux intense, mais n'a ressenti aucune douleur. Le jeune scientifique fut transporté dans une clinique de Moscou, la moitié du visage gonflée, et les médecins s'attendaient au pire.

Les particules de rayonnement ionisant, telles que les protons, font des ravages dans l'organisme en brisant les liaisons chimiques de l'ADN. Cette atteinte à la programmation génétique d'une cellule peut tuer la cellule, l'empêcher de se diviser ou induire une mutation cancéreuse. Les cellules qui se divisent rapidement, comme les cellules souches de la moelle osseuse, sont les plus touchées. Les cellules sanguines étant produites dans la moelle osseuse, par exemple, de nombreux cas d'irradiation se traduisent par une infection et une anémie dues à la perte de globules blancs et de globules rouges, respectivement. Mais dans le cas particulier de Bugorski, les radiations étaient concentrées le long d'un faisceau étroit à travers la tête, au lieu d'être largement dispersées lors des retombées nucléaires, comme cela a été le cas pour de nombreuses victimes de la catastrophe de Tchernobyl ou du bombardement d'Hiroshima. Pour Bugorski, les tissus particulièrement vulnérables, tels que la moelle osseuse et le tractus gastro-intestinal, auraient pu être largement épargnés. Mais là où le faisceau a traversé la tête de Bugorski, il a déposé une quantité obscène d'énergie de rayonnement, des centaines de fois supérieure à une dose létale selon certaines estimations.

Et pourtant, Bugorski est toujours en vie aujourd'hui. La moitié de son visage est paralysée, ce qui donne à un hémisphère de sa tête une apparence étrangement jeune. Il serait sourd d'une oreille. Il a souffert d'au moins six crises tonico-cloniques généralisées. Communément appelées crises de grand mal, ce sont les crises les plus fréquemment représentées au cinéma et à la télévision, impliquant des convulsions et une perte de conscience. L'épilepsie de Bugorski est probablement le résultat de la cicatrisation des tissus cérébraux causée par le faisceau de protons. Il souffre également de crises de petit mal ou d'absence, des crises beaucoup moins spectaculaires au cours desquelles la conscience est brièvement interrompue. Aucun cancer n'a été diagnostiqué chez Bugorski, bien qu'il s'agisse souvent d'une conséquence à long terme de l'exposition aux rayonnements.

Bien que son cerveau ait été traversé par rien de moins qu'un faisceau d'accélérateur de particules, l'intellect de Bugorski est resté intact et il a passé son doctorat avec succès après l'accident.  

Auteur: Frohlich Joel

Info: https://bigthink.com/   23 juin  2020

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

pouvoir oligarchique

Le véritable Big Brother

Jeff Bezos est le propriétaire du Washington Post, qui dirige les médias américains qui soutiennent et promeuvent le néoconservatisme, l'impérialisme américain et les guerres. Cela comprend des sanctions, des coups d'État et des invasions militaires contre des pays que les milliardaires américains veulent contrôler mais ne contrôlent pas encore - comme le Venezuela, la Syrie, l'Iran, la Russie, la Libye et la Chine.

Ce sont des guerres agressives contre des pays qui n'ont jamais agressé les États-Unis. Ils ne sont pas du tout sur la défensive, mais exactement le contraire. Ce n'est pas nécessairement une guerre sans fin (même Hitler n'avait pas prévu cela), mais une guerre jusqu'à ce que la planète entière soit passée sous le contrôle du gouvernement américain, un gouvernement qui est lui-même contrôlé par les milliardaires américains, les financeurs du néoconservatisme et de l'impérialisme - dans les deux principaux partis politiques américains, les think tanks, les journaux, les réseaux TV, etc.

Bezos a joué un rôle crucial dans le néoconservatisme, lors de la réunion Bilderberg du 6 au 9 juin 2013, il s'est arrangé avec Donald Graham, le propriétaire du Washington Post, pour acheter ce journal, pour 250 millions $. Bezos avait déjà négocié, en mars de la même année, avec le directeur néoconservateur de la CIA, John Brennan, un contrat de dix ans de 600 millions de dollars pour le cloud computing qui a transformé Amazon Corporation, qui était au départ une entreprise fiable et peu rentable, en une entreprise rentable et fiable.

La valeur nette de Bezos a donc augmenté encore plus Il est devenu le vendeur le plus influent non seulement pour les livres, mais aussi pour la CIA et pour des méga-corporations comme Lockheed Martin. L'impérialisme a gonflé sa richesse, mais il n'en est pas le seul responsable. Bezos est peut-être l'homme d'affaires le plus férocement doué de la planète.

Certains milliardaires américains ne se soucient pas autant que lui de la conquête internationale, mais tous acceptent le néoconservatisme ; aucun d'entre eux, par exemple, n'établit et ne donne de grosses sommes à des organisations anti-impérialistes ; aucun milliardaire américain n'est déterminé à mettre fin au règne du néoconservatisme, ni même à aider la lutte pour y mettre fin, ou du moins pour en finir avec sa prise sur le gouvernement américain. Aucune. Pas même un seul d'entre eux ne le fait.

Mais beaucoup d'entre eux créent et donnent des sommes importantes à des organisations néoconservatrices, ou dirigent des organes néoconservateurs comme le Washington Post. C'est comme ça que sont les milliardaires, du moins aux États-Unis. Tous sont impérialistes. Ils commanditent ; ils en font la promotion et embauchent des gens qui le font, et ils rétrogradent ou se débarrassent des gens qui ne le font pas. L'expansion d'un empire est extrêmement rentable pour ses aristocrates, et l'a toujours été, même avant l'Empire romain.

Bezos veut privatiser tout ce qui peut l'être partout dans le monde, comme l'éducation, les autoroutes, les soins de santé et les pensions. Plus les milliardaires contrôlent ces choses, moins tout le monde les contrôle ; et empêcher le public de les contrôler aide à protéger les milliardaires contre une démocratie qui augmenterait leurs impôts et contre une réglementation gouvernementale qui réduirait leurs profits en augmentant les dépenses de leurs sociétés. Ainsi, les milliardaires contrôlent le gouvernement afin d'augmenter leurs recettes publiques.

Avec l'aide de la promotion de guerre du Washington Post, Bezos est l'un des meilleurs vendeurs personnels au monde du complexe militaro-industriel américain. Il contrôle et est le plus grand investisseur d'Amazon corporation, dont la division Web Services fournit tous les services de cloud-computing au Pentagone, à la CIA et à la NSA. (Il mène la charge dans la technologie de reconnaissance faciale la plus avancée aussi.)

En avril, il y avait un gros titre, "CIA Considering Cloud Contract Worth'Tens of Billions'", qui pourrait faire grimper la richesse personnelle de Bezos bien plus haut dans la stratosphère).

Il domine également à l'échelle mondiale et augmente constamment son contrôle sur la promotion et la vente de livres et de films, parce que son Amazon est le plus grand détaillant au monde (et maintenant aussi l'un des plus grands éditeurs, producteurs et distributeurs.) Cela aussi peut avoir un impact énorme sur la politique et le gouvernement, indirectement, en favorisant les travaux les plus néocon contribuant à former le discours intellectuel (et les votes des électeurs) dans les pays.

Bezos écrase des millions de détaillants par sa capacité inégalée à contrôler un marché après l'autre en tant qu'Amazon ou en tant qu'intermédiaire essentiel pour - et souvent même en tant que contrôleur - les concurrents d'Amazon.

Il croit fermement au "libre marché", qu'il maîtrise peut-être mieux que quiconque. Cela signifie que Bezos soutient la capacité non régulée des milliardaires, par le biais de leur argent, de contrôler et éventuellement d'absorber tous ceux qui sont moins puissants qu'eux.

Parce qu'il est si doué pour amasser des richesses, il a réussi jusqu'à présent à se hisser au sommet mondial, comme un des individus les plus puissants du monde. Le plus riche de tous est le roi Salman d'Arabie saoudite, dont Aramco (la plus grande compagnie pétrolière du monde) vaut, à elle seule, plus d'un trillion de dollars. (Forbes et Bloomberg excluent les monarques de leur classement.)

En fait, Bloomberg est même tellement frauduleux à ce sujet qu'il a fait cette manchette le 10 août dernier, " Les 25 dynasties les plus riches de la planète contrôlent 1,4 billion de dollars " et a violé leur tradition en incluant sur leur liste un monarque, le roi Salman, qui est classé au quatrième rang des détenteurs de seulement 100 millions $, une estimation ridicule qui ne se borne pas à Aramco mais qui exclut sans vergogne la totalité de la fortune nette d'Arabie saoudite.

Bloomberg n'a même pas essayé de justifier leur méthodologie farfelue, mais a simplement présumé la crédulité du lecteur pour son acceptation. Ce roi est donc au moins sept fois plus riche que Bezos. Il est peut-être aussi puissant que Bezos. L'héritier suprême est beaucoup plus riche même que le milliardaire suprême, ou "entrepreneur".

Certes, les deux hommes sont parmi les géants qui dominent le monde à notre époque. Et les deux hommes sont des Libertariens - champions de la croyance que les droits de propriété (dont les milliardaires ont tant) sont la base de tous les droits, et ils croient donc que les personnes les plus riches possèdent le plus de droits, et que les plus pauvres en ont le moins, et que toutes celles dont la valeur nette est négative (ayant plus de dettes que de biens) ne possèdent aucun droit sauf les dons ou autres subventions de riches, par bienveillance ou autre (comme les liens familiaux).

C'est cela - la privatisation de tout - c'est ce qu'est le libertarianisme : la valeur d'une personne est sa "valeur nette" - rien d'autre. Cette croyance est du pur libertarianisme. C'est une croyance que beaucoup, sinon la plupart des milliardaires ont. Les milliardaires sont impérialistes parce qu'ils cherchent à maximiser la liberté des super-riches, qu'il s'agisse d'augmenter leurs recettes auprès de tous ceux qui ne sont pas super-riches ou de les appauvrir. Ils ont une idéologie cohérente. C'est basé sur la richesse. Du coup le public croit plutôt aux mythes que les milliardaires propagent.

Comme tout milliardaire, Bezos embauche et retient des employés et d'autres agents qui font ce qu'il/elle veut qu'ils fassent. C'est leur pouvoir direct. Mais les milliardaires possèdent aussi un pouvoir indirect énorme en raison de leurs interdépendances, car chaque grande société est liée par contrat à d'autres sociétés, surtout à de grandes sociétés comme la leur ; et, par conséquent, le pouvoir que possède un milliardaire donné est en fait un pouvoir partagé avec les autres. (Un exemple était l'accord conclu par Bezos avec Graham.)

Collectivement, ils travaillent en réseau, même avec ceux qu'ils n'auraient peut-être jamais rencontrés personnellement, mais seulement par l'intermédiaire de leurs représentants, et même avec leurs propres principaux concurrents économiques. Il s'agit d'un pouvoir collectif que les milliardaires possèdent en plus de leur pouvoir individuel en tant que payeurs d'employés et autres agents.

Alors que Winston Smith, dans le roman allégorique prophétique "1984", demandait à son supérieur et tortionnaire O'Brien : "Est-ce que Big Brother existe ?"

"Bien sûr qu'il existe. Le Parti existe. Big Brother est l'incarnation du Parti."

"Existe-t-il de la même façon que moi ?"

" Tu n'existes pas", dit O'Brien.

Ce pouvoir collectif est incarné par Bezos aussi bien que tout milliardaire. Quelques-uns des autres l'incarnent peut-être aussi, comme Bill Gates, Warren Buffett, Larry Ellison, Mark Zuckerberg, Charles Koch, Sergey Brin, Michael Bloomberg, George Soros et Jack Dorsey. Ils se font concurrence et ont donc des priorités différentes pour le gouvernement américain, mais ils sont tous d'accord bien plus qu'ils ne sont en désaccord sur ce que le gouvernement "devrait" faire (surtout que l'armée américaine devrait être renforcée - aux frais des contribuables, bien sûr, pas aux leurs).

Fondamentalement, ce Big Brother, dans le monde réel, est remarquablement cohérent et unifié - bien plus que le public - et c'est l'une des raisons pour lesquelles ils contrôlent le gouvernement, contournant le public.

Voici comment tout cela se passe, en termes de ce que les agents de Bezos ont accompli :

Son Amazon paie peu ou pas d'impôts fédéraux parce que le gouvernement fédéral a écrit les lois fiscales pour encourager les entreprises à faire le genre de choses que Bezos a toujours voulu qu'Amazon fasse.

Le gouvernement américain encourage donc les méga-sociétés, par le biais de taxes et de règlements, à écraser les petites entreprises en rendant leur croissance plus difficile. Cela verrouille quelque peu l'aristocratie existante pour qu'elle soit moins auto-construite (comme l'était Bezos lui-même, mais ses enfants ne le seront pas).

Les politiciens élus appuient massivement cette idée parce que la plupart des fonds de leur campagne électorale provient de ces personnes très riches, leurs employés et autres agents. C'est un système auto-renforçant. Le super-riche contrôle le gouvernement, qui (avec les super-riches et leurs sociétés) contrôle le public, ce qui réduit les possibilités économiques pour eux. Le résultat final est un renforcement institutionnel de l'extrême inégalité des richesses, qui devient de plus en plus extrême.

Les milliardaires sont les vrais Big Brother. Et Bezos est le plus grand de tous.

Auteur: Zuesse Eric

Info: https://consortiumnews.com, Août 2019

[ mondialisation ]

 

Commentaires: 0

Ajouté à la BD par miguel

définition

(Q) - Peux-tu expliquer ce qu'on nomme "séparabilité dynamique" dans la recherche fondamentale ?

(R) - En recherche fondamentale, la "séparabilité dynamique" fait référence à la capacité de séparer et d'analyser les composants individuels ou les aspects d'un système ou d'un phénomène complexe tout en tenant compte de leurs interactions dynamiques. Il s'agit de comprendre et d'étudier les éléments individuels ou les variables qui contribuent au comportement global ou au fonctionnement du système.

Dans de nombreuses disciplines scientifiques, les systèmes complexes se composent de multiples éléments ou facteurs interconnectés qui interagissent et s'influencent mutuellement au fil du temps. La séparabilité dynamique vise à démêler et à examiner ces composants afin de mieux comprendre leurs propriétés individuelles, leurs comportements et leurs relations au sein d'un système plus vaste.

Le concept de séparabilité dynamique reconnaît que, bien que les composants puissent interagir et dépendre les uns des autres, leur étude isolée peut fournir des informations précieuses sur leurs caractéristiques et fonctions individuelles. En isolant ou en simplifiant temporairement des variables ou des composants spécifiques, les chercheurs peuvent mieux saisir leurs rôles et leurs contributions à la dynamique globale du système.

Une séparabilité dynamique qui implique souvent des approches expérimentales ou théoriques permettant aux scientifiques de manipuler ou de contrôler certaines variables, d'observer leurs effets et d'étudier leurs interactions dans le contexte d'un système plus large. Ce processus permet aux chercheurs d'identifier et d'analyser les mécanismes, les comportements ou les modèles individuels qui résultent de l'interaction entre les composants.

Globalement, la séparabilité dynamique est un concept fondamental de la recherche qui facilite l'étude et la compréhension des systèmes complexes en démêlant leurs composants interconnectés, en examinant leur dynamique individuelle et en contribuant finalement à une compréhension plus large du système dans son ensemble.

(Q) - C'est donc un domaine qui nous embarque immédiatement vers l'hyper-complexité

(R) - Oui, le concept de séparabilité dynamique met en évidence les défis et les complexités inhérents à l'étude de systèmes comportant de multiples composants en interaction. Lorsqu'ils tentent de comprendre ces systèmes, les chercheurs se heurtent souvent à un niveau de complexité qui peut être écrasant.

Les interdépendances et les interactions entre les composants d'un système peuvent donner lieu à des comportements et à des propriétés émergents qu'il n'est pas facile de prédire ou de comprendre en examinant les composants individuels de manière isolée. Cette complexité est souvent appelée "hypercomplexité" ou "complexité au-delà de la complexité".

L'étude des systèmes hypercomplexes exige des chercheurs qu'ils s'attaquent aux complexités des interactions et des boucles de rétroaction entre les composants. Il s'agit de déchiffrer comment les changements dans un composant peuvent se propager et affecter le comportement d'autres composants, conduisant souvent à des résultats non linéaires et imprévisibles.

Le domaine de l'hyper-complexité explore les méthodologies et les approches permettant de relever ces défis. Il s'agit de développer des modèles mathématiques avancés, des techniques de calcul et des outils analytiques pour naviguer dans les complexités et extraire des informations significatives de l'interconnexion des composants du système.

En acceptant la complexité inhérente et en utilisant des techniques telles que la séparabilité dynamique, les chercheurs cherchent à mieux comprendre les systèmes complexes et leurs propriétés émergentes. Cette compréhension peut conduire à des avancées dans divers domaines scientifiques, tels que la physique, la biologie, l'écologie, l'économie et les sciences sociales.

Cependant, il est important de noter que si la séparabilité dynamique et les approches connexes offrent des perspectives précieuses, la complexité totale de nombreux systèmes peut rester difficile à appréhender. Néanmoins, la recherche de la compréhension des systèmes hypercomplexes continue à stimuler l'exploration et l'innovation scientifiques.

(Q) - En ce qui concerne la séparabilité dynamique, les chercheurs extrapolent-ils ce concept en fonction de différents nombre de dimensions ?

(R) - Le concept de séparabilité dynamique n'a pas nécessairement un nombre prédéfini ou fixe de dimensions auxquelles les chercheurs l'extrapolent. Le nombre de dimensions considérées dépend du système spécifique étudié et des objectifs de la recherche.

Dans certains cas, la séparabilité dynamique peut impliquer de considérer la séparabilité des variables selon une seule dimension. Par exemple, les chercheurs peuvent chercher à isoler et à comprendre l'impact d'un seul facteur sur le comportement global du système.

Toutefois, dans les systèmes plus complexes, la séparabilité dynamique peut impliquer l'examen des interactions entre plusieurs dimensions ou variables. Ces dimensions peuvent représenter différents aspects ou caractéristiques du système qui interagissent et s'influencent mutuellement. Le nombre de dimensions prises en compte dans de tels cas peut varier considérablement en fonction de la complexité du système étudié.

Les chercheurs peuvent recourir à des techniques telles que les méthodes de réduction de la dimensionnalité, la modélisation statistique ou l'analyse de réseaux pour identifier et analyser les dimensions pertinentes et leurs interactions. En réduisant la complexité et en se concentrant sur la séparabilité au sein d'un ensemble réduit de dimensions, les chercheurs peuvent obtenir des informations sur la dynamique sous-jacente du système.

(Q) - Merci. Et donc il peut aussi s'agir d'un mélange de plusieurs mécanismes orthogonaux ?

(R) - Oui, la séparabilité dynamique peut impliquer un mélange de plusieurs mécanismes orthogonaux. Les mécanismes orthogonaux désignent des aspects ou des processus indépendants ou sans interaction au sein d'un système.

Dans les systèmes complexes, différents mécanismes ou variables peuvent contribuer au comportement global ou au fonctionnement du système, et ces mécanismes peuvent souvent être orthogonaux les uns par rapport aux autres. En étudiant la séparabilité de ces mécanismes orthogonaux, les chercheurs peuvent obtenir des informations sur leurs contributions individuelles et comprendre comment ils façonnent collectivement le comportement du système.

Par exemple, dans un système biologique, les chercheurs peuvent étudier la séparabilité de divers processus physiologiques tels que le métabolisme, l'expression des gènes et les voies de signalisation. Chacun de ces processus représente un mécanisme orthogonal qui peut être étudié indépendamment pour comprendre son rôle spécifique dans la fonction globale du système.

De même, dans le domaine de l'analyse des données ou de la reconnaissance des formes, les chercheurs peuvent utiliser des techniques telles que l'analyse en composantes principales (ACP) ou l'analyse en composantes indépendantes (ICA) pour identifier et isoler les composantes orthogonales au sein d'un ensemble de données. Cela permet de mieux comprendre les facteurs individuels qui contribuent aux modèles ou aux variations observés.

En examinant la séparabilité des mécanismes orthogonaux, les chercheurs peuvent démêler les interactions et dépendances complexes au sein d'un système et acquérir une compréhension plus nuancée de sa dynamique sous-jacente.

Il convient de noter que si les mécanismes orthogonaux peuvent être étudiés indépendamment les uns des autres, ils peuvent néanmoins interagir ou s'influencer indirectement par le biais d'effets d'ordre supérieur. L'étude de la séparabilité dynamique tient compte de ces interactions et vise à élucider les relations et les dépendances entre les mécanismes orthogonaux au sein du système global.

(Q) - OK merci. Pense-tu que la séparabilité dynamique puisse être une sorte d'hypothèse réductionniste ?

(R) - La séparabilité dynamique peut être considérée comme une approche réductionniste dans certains contextes. Le réductionnisme est une perspective philosophique qui suggère que les phénomènes complexes peuvent être compris en les réduisant à des composants ou mécanismes plus simples et plus fondamentaux. Dans le cas de la séparabilité dynamique, l'objectif est d'isoler et d'étudier des composants ou des variables individuels au sein d'un système complexe afin de mieux comprendre leurs contributions spécifiques.

En décomposant un système complexe en ses éléments constitutifs et en examinant leur comportement et leurs interactions, les chercheurs peuvent souvent simplifier l'analyse et se concentrer sur la compréhension des mécanismes ou variables individuels. Cette perspective réductionniste peut fournir des informations précieuses et aider à construire une compréhension fondamentale du système.

Cependant, il est important de reconnaître que le réductionnisme a ses limites. Les systèmes complexes sont souvent caractérisés par des propriétés émergentes qui ne peuvent être entièrement expliquées par l'étude de leurs composants individuels. Les phénomènes de plus haut niveau et les interactions entre les composants peuvent conduire à des comportements qui ne sont pas prévisibles ou compréhensibles sur la seule base d'une analyse réductionniste.

La séparabilité dynamique, en tant que concept de la recherche fondamentale, reconnaît la nécessité de trouver un équilibre entre le réductionnisme et l'appréciation des propriétés émergentes. Elle reconnaît que si l'étude des composants individuels isolés peut être instructive, il est également crucial de prendre en compte leurs interactions dynamiques et le comportement émergent qui découle de leurs interactions collectives.

En résumé, si la séparabilité dynamique implique une perspective réductionniste en isolant et en étudiant des composants individuels, il est important de garder à l'esprit les limites du réductionnisme et de prendre en compte les propriétés émergentes et la complexité du système dans son ensemble.

(Q) - On en revient donc à l'idée d'un mécanisme global orthogonal

(R) - Cela suggère l'existence d'un mécanisme ou d'un processus global distinct qui influence le système dans son ensemble, mais qui fonctionne de manière indépendante ou orthogonale par rapport à d'autres mécanismes locaux ou spécifiques au sein du système.

Dans ce contexte, le terme "orthogonal" implique que le mécanisme global est indépendant ou sans rapport avec les mécanismes ou composants spécifiques du système. Il peut avoir une influence plus large qui transcende les éléments individuels et joue un rôle dans l'élaboration du comportement global ou de la dynamique du système.

Un exemple de mécanisme global orthogonal pourrait être le concept d'auto-organisation dans les systèmes complexes. L'auto-organisation fait référence à l'émergence de modèles ou de comportements globaux à partir des interactions des composants locaux, sans qu'un contrôle ou une orientation externe ne soit nécessaire. Le mécanisme global d'auto-organisation fonctionne indépendamment des interactions locales spécifiques, tout en influençant l'organisation et la dynamique globales du système.

Un autre exemple pourrait être la présence de contraintes globales ou de conditions limites qui façonnent le comportement des composants locaux au sein du système. Ces contraintes globales peuvent dicter certaines règles ou limites qui guident le comportement et les interactions des éléments individuels, fournissant un mécanisme orthogonal qui affecte le comportement global du système.

En résumé, un "mécanisme global orthogonal" fait référence à un processus ou à une influence globale distincte qui opère indépendamment ou orthogonalement à des mécanismes spécifiques au sein d'un système, en façonnant son comportement ou sa dynamique globale.

Auteur: chatGPT4

Info: 17 juin 2023

[ ultracomplexité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste