Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 4
Temps de recherche: 0.034s

fertilité

Les bourdons, les papillons, les coléoptères, les mouches, les vint mille espèces d'abeilles dans le monde œuvrent tous à la pollinisation des fleurs mais les abeilles domestiques viennent au premier rang des transporteurs de pollen par leur nombre et leur ardeur au travail. Indissociables, abeilles et fleurs ont tissé au fil de millions d'années une relation mutuellement bénéfique, et leur évolution conjointe est en partie responsable de la diversité des espèces de plantes à fleurs que l'on connaît de nos jours. Quelques deux cent milles espèces de fleurs qualifiées de "mellitophiles" doivent à l'abeille leur pollinisation.

Auteur: Tourneret Eric

Info: Le peuple des abeilles

[ interactions ] [ insectes ]

 

Commentaires: 0

mécanisation

Un bipode auto-équilibrant à base d'adaptateurs à 28 pôles ; une installation de réduction électrochimique, intégrée à des entrepôts séparés d'extraits énergétiques spéciaux mis dans des batteries de stockage, pour activation ultérieure de milliers de pompes hydrauliques et pneumatiques, avec moteurs accouplés ; 62 000 milles de capillaires ; des millions de signaux de signalisation, systèmes ferroviaires et transporteurs, des concasseurs et les grues (dont les bras sont de magnifiques systèmes à 23 articulations avec procédés d'autosurveillance et de lubrification), avec un système téléphonique universellement réparti (ne nécessitant aucun service pendant 70 ans si bien géré). Le tout mécanisme extraordinairement complexe, guidé avec une précision totale depuis une tourelle où sont installés des télémètres auto-enregistreurs télescopiques et microscopiques, un spectroscope et cetera, admission et l'échappement d'air conditionné avec alimentation principale pour le carburant. Dans les quelques pouces cubes qui abritent le mécanisme de la tourelle, il y a aussi place pour deux diaphragmes d'enregistrement directionnels à ondes sonores, un système de classement et de référence instantané, et un laboratoire d'analyse conçu de façon experte et suffisamment vaste non seulement pour contenir les enregistrements minutieux de chaque dernier événement continu ayant jusqu'à 70 ans d'expérience ou plus, mais pour étendre, par calcul et fabrication abstraite, cette expérience avec une précision relative dans tous les coins de l'univers observé. Il existe également un département de prévision et de traçage tactique pour la réduction des possibilités et des probabilités à venir à des bons niveaux généraux pour des choix futurs spécifiques adéquats.

Auteur: Buckminster Fuller R.

Info: Nine Chains to the Moon Chapter 4 (p. 18) Doubleday & Company, Inc. Garden City, New York, USA. 1971

[ futurisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

archétypes narratifs

Si tous les contes merveilleux sont aussi uniformes, cela ne signifie-t-il pas qu’ils proviennent tous de la même source ? […] il semble en effet qu’il en soit ainsi. Cependant, le problème des sources ne doit pas être posé de façon étroitement géographique. Dire "une source unique" ne signifie pas forcément que les contes ont pour origine, par exemple, l’Inde, et qu’à partir de là ils se sont répandus dans le monde entier, prenant au cours de leurs voyages des formes différentes, – selon ce que certains admettent. La source unique peut-être, aussi bien, psychologique, sous un aspect historico-social. […]

Enfin, la source unique peut se trouver dans la réalité. Entre la réalité et le conte, il existe certains points de passage : la réalité se reflète indirectement dans les contes. Un de ces points de passage est constitué par les croyances qui se sont développées à un certain niveau de l’évolution culturelle ; il est très possible qu’il y ait un lien, régi par des lois, entre les formes archaïques de la culture et la religion d’une part, et entre la religion et les contes d’autre part. Une culture meurt, une religion meurt, et leur contenu se transforme en conte. Les traces des représentations religieuses archaïques que conservent les contes sont si évidentes qu’on peut les isoler avant toute étude historique, comme nous l’avons déjà indiqué plus haut. Mais étant donné qu’il est plus facile d’expliquer une telle hypothèse historiquement, nous établirons, en guise d’exemple, un bref parallèle entre contes et croyances. Les contes présentent les transporteurs aériens d’Ivan sous trois formes fondamentales : le cheval volant, les oiseaux, le bateau volant. Ces formes représentent justement les porteurs de l’âme des morts, le cheval dominant chez les peuples pasteurs et agriculteurs, l’aigle chez les peuples chasseurs, et le bateau chez ceux qui vivent au bord de la mer. On peut donc penser qu’un des principaux fondements structurels des contes, le voyage, est le reflet de certaines représentations sur les voyages de l’âme dans l’autre monde.

Auteur: Propp Vadimir

Info: Morphologie du conte, À l'origine des contes, p. 131

[ réel-imaginaire ] [ historique ] [ psychopompes ]

 

Commentaires: 0

Ajouté à la BD par miguel

macromolécules

(Q) - Combien de protéines ont été identifiées à ce jour ?

(R) - À la date d'arrêt de mes connaissances, en septembre 2021, le nombre de protéines identifiées dans le protéome humain et dans divers organismes ne cesse de croître en raison des efforts de recherche continus. Il est difficile de fournir un chiffre exact car l'identification des protéines est un domaine actif de la recherche scientifique et de nouvelles protéines sont découvertes en permanence.

Toutefois, à cette époque, on estimait que le protéome humain se composait de dizaines de milliers de protéines. Le projet du protéome humain (HPP), une initiative de recherche internationale, vise à identifier et à caractériser toutes les protéines codées par le génome humain. Le HPP a réalisé des progrès significatifs dans la cartographie du protéome humain, mais une couverture complète est encore en cours.

Il est important de noter que le nombre de protéines identifiées varie en fonction de l'organisme étudié. Il existe des millions de séquences de protéines connues dans divers organismes, y compris les humains, les animaux, les plantes, les bactéries et les virus.

Comme mes connaissances ne sont pas à jour, je recommande de se référer à la littérature scientifique actuelle ou à des bases de données telles que UniProt ou Protein Data Bank (PDB) pour obtenir les informations les plus précises et les plus récentes sur le nombre de protéines identifiées.

(Q) - Comment les protéines sont-elles classées ?

(R) - Les protéines sont classées en fonction de divers critères, notamment leur structure, leur fonction et leurs relations évolutives. Voici quelques méthodes de classification des protéines couramment utilisées :

1 Classification structurelle : Les protéines peuvent être classées en fonction de leurs caractéristiques structurelles. Le système de classification structurelle le plus courant est la classification structurelle des protéines (SCOP) ou la base de données CATH (Class, Architecture, Topology, Homologous superfamily). Ces systèmes classent les protéines dans des hiérarchies en fonction de leur pliage global, de l'organisation des domaines et des motifs structurels.

2 Classification fonctionnelle : Les protéines peuvent être classées en fonction de leurs fonctions biologiques. Cette classification est souvent large et englobe des catégories fonctionnelles telles que les enzymes, les transporteurs, les récepteurs, les protéines structurelles, les protéines de signalisation et bien d'autres encore. Les systèmes de classification fonctionnelle sont généralement basés sur le rôle de la protéine dans les processus cellulaires.

3 Classification basée sur l'homologie : Les protéines peuvent être classées sur la base de leurs relations évolutives et de leurs similitudes de séquence. Cette classification repose sur la comparaison des séquences protéiques et l'identification des protéines homologues qui partagent un ancêtre commun. Elle est généralement réalisée à l'aide d'algorithmes tels que BLAST (Basic Local Alignment Search Tool) ou HMM (Hidden Markov Models).

4 Classification selon l'ontologie des gènes (GO) : L'ontologie des gènes est un système de classification largement utilisé qui attribue des annotations fonctionnelles aux protéines sur la base de trois catégories : fonction moléculaire, processus biologique et composant cellulaire. Les termes GO fournissent un vocabulaire normalisé pour décrire les fonctions des protéines et leur implication dans les processus biologiques.

5 Classification par famille et par super-famille : Les protéines peuvent être classées en familles et superfamilles sur la base de caractéristiques structurelles et séquentielles communes. Les familles de protéines sont constituées de protéines présentant une grande similitude de séquence et partageant souvent des relations fonctionnelles et évolutives. Les superfamilles englobent des familles de protéines apparentées qui partagent des similitudes structurelles et fonctionnelles, mais qui peuvent avoir divergé au cours de l'évolution.

These are just a few examples of protein classification methods, and there are other specialized systems based on specific properties or research areas. It's important to note that proteins can belong to multiple classification categories simultaneously, as they can have similar structures, functions, or evolutionary origins. Classification systems serve as useful tools for organizing and understanding the vast diversity of proteins found in living organisms.

(Q) - Il y a donc une sorte de classification complexe et intriquée, n'est-ce pas ?

 (R) - Oui, la classification des protéines peut en effet être complexe en raison des divers facteurs pris en compte et des interrelations entre les différents systèmes de classification. Les protéines sont des molécules très diverses, dotées de caractéristiques uniques, et leur classification reflète cette complexité.

Les différentes méthodes de classification se recoupent et se complètent souvent, ce qui permet une compréhension globale de la structure, de la fonction et de l'évolution des protéines. Par exemple, les systèmes de classification structurelle tels que SCOP ou CATH prennent en compte l'organisation globale des plis et des domaines des protéines, tandis que les systèmes de classification fonctionnelle se concentrent sur les rôles et les activités biologiques des protéines. La classification basée sur l'homologie tient compte des relations évolutives et des similitudes de séquence, et la classification par ontologie génique fournit un vocabulaire normalisé pour décrire les fonctions des protéines.

En outre, les protéines peuvent appartenir à plusieurs catégories au sein d'un système de classification. Par exemple, une protéine peut avoir une structure spécifique et être classée dans un pli particulier, tout en faisant partie d'une famille de protéines sur la base de la similarité des séquences et des caractéristiques fonctionnelles. Cette classification multidimensionnelle permet aux chercheurs d'explorer différents aspects des protéines et de mieux comprendre leurs propriétés et leurs relations.

Dans l'ensemble, la nature complexe de la classification des protéines reflète la nature complexe des protéines elles-mêmes et les efforts déployés pour organiser et comprendre leurs divers attributs. Ces systèmes de classification fournissent des cadres pour l'étude des protéines et facilitent la communication et le partage des connaissances entre les chercheurs dans ce domaine.

(Q) - Peut-on dire qu'il y a aussi, dans ces différentes classifications, quelque chose qui pourrait ressembler à un pôle phénétique et à un pôle cladistique ?

(R) - Oui, dans le domaine de la classification des protéines, il y a des éléments qui peuvent être associés aux approches phénétiques (aussi connues sous le nom de taxonomie numérique) et cladistiques.

Classification phénétique : La classification phénétique met l'accent sur les similitudes et les différences globales entre les protéines, souvent sur la base d'une analyse numérique ou statistique de leurs caractéristiques. Elle se concentre sur des traits ou des caractéristiques quantifiables et vise à regrouper les protéines sur la base d'une ressemblance globale. Dans le contexte de la classification des protéines, les approches phénétiques peuvent impliquer le regroupement des protéines sur la base de mesures de similarité telles que l'alignement des séquences, l'alignement structurel ou la comparaison d'autres propriétés physicochimiques.

Classification cladistique : La classification cladistique, quant à elle, est basée sur les relations évolutives et les ancêtres partagés. Elle cherche à identifier des groupes monophylétiques (clades) qui comprennent un ancêtre commun et tous ses descendants. La cladistique repose sur l'analyse phylogénétique, qui consiste à comparer des séquences de protéines ou d'autres données moléculaires pour reconstruire des arbres ou des réseaux évolutifs. Les cladogrammes qui en résultent décrivent les relations évolutives entre les protéines et peuvent aider à les classer en groupes sur la base de leur histoire évolutive.

Dans la pratique, les approches phénétiques et cladistiques sont souvent utilisées en combinaison, en exploitant différents types de données et d'analyses pour obtenir une compréhension plus complète de la classification des protéines. Les systèmes de classification structurelle tels que SCOP ou CATH, par exemple, intègrent à la fois les principes phénétiques et cladistiques. Ils prennent en compte les similitudes structurelles (aspect phénétique) mais visent également à refléter les relations évolutives et les ancêtres partagés (aspect cladistique) en regroupant les protéines dans des catégories hiérarchiques basées sur leurs plis, leurs domaines et leurs connexions évolutives.

En intégrant à la fois les perspectives phénétiques et cladistiques, les systèmes de classification des protéines peuvent saisir à la fois les similitudes et les différences globales entre les protéines (pôle phénétique) et leur histoire évolutive et leurs liens de parenté (pôle cladistique). Cela permet d'obtenir un cadre de classification plus nuancé et plus informatif dans le domaine de la science des protéines.

(Q) - ok merci : existe-t-il aussi une classification tridimensionnelle ?

(R) - Oui, il existe une classification tridimensionnelle (3D) des protéines basée sur leurs propriétés structurelles. La classification 3D consiste à classer les protéines en fonction de leurs structures tridimensionnelles plutôt qu'en fonction de leur séquence ou de leurs similitudes fonctionnelles. Ce type de classification est particulièrement pertinent en biologie structurale et en modélisation moléculaire.

Dans la classification 3D, les protéines sont regroupées en fonction de leur pli global, de l'arrangement des éléments structurels secondaires et de l'arrangement spatial des atomes. Elle tient compte de la disposition et de l'orientation spécifiques des domaines protéiques, des motifs et d'autres caractéristiques structurelles.

La classification structurelle des protéines (SCOP) et la base de données CATH (Class, Architecture, Topology, Homologous superfamily), que j'ai mentionnées précédemment, fournissent des classifications hiérarchiques qui incluent des informations structurelles en 3D. Ces classifications classent les protéines dans différentes catégories en fonction de leur pliage global et de leur organisation structurelle.

En outre, d'autres méthodes et algorithmes, tels que les outils d'alignement structurel, peuvent être utilisés pour comparer les structures des protéines et identifier les similitudes et les différences. Ces approches aident à regrouper ou à classer les protéines en groupes structurels 3D, ce qui permet aux chercheurs d'analyser et de comprendre les relations entre les structures des protéines d'une manière plus détaillée.

La classification 3D des protéines fournit des informations précieuses sur la diversité structurelle et les relations entre les protéines. Elle est particulièrement utile pour étudier la fonction des protéines, les mécanismes d'action, les interactions protéine-protéine et la conception de médicaments. En considérant les aspects tridimensionnels de la structure des protéines, les chercheurs peuvent mieux comprendre comment la structure des protéines est liée à la fonction et aux relations évolutives.

Auteur: chatGPT4

Info:

[ machine-homme ] [ chimie ] [ taxinomies ] [ typologies ]

 

Commentaires: 0

Ajouté à la BD par miguel