Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 318
Temps de recherche: 0.0657s

incipit

Il faut comprendre qu'ils n'étaient pas des rêveurs professionnels. Les rêveurs professionnels sont des talents très bien payés, respectés et très recherchés. Comme la majorité d'entre nous, ces sept personnes rêvaient sans effort ni discipline. Rêver professionnellement, de manière à ce que ses rêves puissent être enregistrés et diffusés pour le divertissement des autres, est une proposition beaucoup plus exigeante. Elle exige la capacité de réguler les impulsions créatives semi-conscientes et de stratifier l'imagination, une combinaison extraordinairement difficile à réaliser. Un rêveur professionnel est à la fois le plus organisé de tous les artistes et le plus spontané. Un tisseur subtil de spéculations, pas un simple et maladroit individu comme vous ou moi. Ou ces sept dormeurs.

De tous, Ripley était la plus proche de posséder ce potentiel particulier. Elle avait quelque talent de rêve enraciné et une plus grande souplesse d'imagination que ses compagnons. Mais elle manquait d'inspiration réelle et de la puissante maturité de pensée caractéristique du tisseur de rêves.

Elle était très douée pour organiser les magasins et les cargaisons, pour ranger le carton A dans la chambre de stockage B ou pour faire correspondre les bordereaux. C'était dans l'entrepôt de l'esprit que son système de classement fonctionnait mal. Espoirs et craintes, spéculations et demi-créations glissaient au hasard de compartiment en compartiment.

L'adjudant Ripley avait besoin de plus de maîtrise d'elle-même. Les pensées rococo brutes attendaient en vain d'être exploitées, juste à la frontière de la réalisation. Un peu plus d'effort, une plus grande intensité de reconnaissance de soi et elle aurait fait une assez bonne pro-rêveuse. C'est du moins ce qu'elle pensait parfois.

Le capitaine Dallas maintenant, il semblait paresseux tout en étant le mieux organisé de tous. Il ne manquait pas non plus d'imagination. Sa barbe en était la preuve. Personne n'en conservait en hibernation. Personne, sauf Dallas. C'était une partie de sa personnalité, avait-il expliqué à plus d'un coéquipier curieux. Il ne se séparait pas plus de l'antique duvet facial qu'il ne se séparait de toute autre partie de son anatomie. Dallas était le capitaine de deux navires : le remorqueur interstellaire Nostromo, et son corps. Tous deux restaient inchangés, tant en rêve qu'à l'état de veille. Il avait donc une bonne capacité de régulation et un minimum d'imagination. Mais un rêveur professionnel a besoin de beaucoup plus qu'un minimum de cette dernière ; et c'est une carence, qui ne peut être compensée par une quantité disproportionnée de la première. Dallas n'était pas plus apte que Ripley en matière de tissage de rêve.

Kane était moins contrôlé que Dallas en terme d'action et de pensée aride et il possédait beaucoup moins d'imagination. C'était un bon dirigeant. Mais il ne deviendrait jamais capitaine. Il faut pour ça une certaine motivation et la capacité de commander les autres, deux qualités dont Kane n'avait pas la chance de bénéficier. Ses rêves étaient des ombres translucides et informe par rapport à ceux de Dallas, tout comme Kane était un écho plus fin et moins vibrant du capitaine. Cela ne le rendait pas moins sympathique. Mais faire tisseur de rêve exige une forme de surcroît d'énergie, et Kane en avait à peine assez pour la vie de tous les jours.

Les rêves de Parker n'étaient pas déplacés, mais ils étaient moins pastoraux que ceux de Kane. Il y avait peu d'imagination dans ces rêves. Ils étaient trop spécialisés et ne traitaient que rarement des choses humaines. On ne pouvait rien attendre d'autre d'un ingénieur de bord. Ils étaient directs, et parfois laids. A l'état de veille, ces restes profondément enfouis se montraient rarement lorsque l'ingénieur s'irritait ou se mettait en colère. La majeure partie du suintement et du mépris qui fermentait au fond de la citerne de son âme était bien cachée. Ses compagnons n'en avaient jamais vu flotter au-dessus ou au-delà de la distillerie Parker, personne n'avait jamais eu un aperçu de ce qui bouillonnait et brassait au fond de cette cuve.

Lambert était plus inspiration pour rêveurs que rêveuse elle-même. En hyper-sommeil, ses rêveries agitées étaient remplies de tracés inter-systèmes et de facteurs de charge annulés par des considérations de carburant. Il arrivait que l'imagination entre dans de telles structures de rêve, mais jamais d'une manière qui puisse faire couler le sang des autres.

Parker et Brett imaginaient souvent leurs propres systèmes en train de s'interpénétrer avec les siens. Ils considéraient la question des facteurs de charge et des juxtapositions spatiales d'une manière qui aurait exaspéré Lambert si elle en avait été consciente. Réflexions non autorisées qu'ils gardaient pour eux, enfermés dans leurs rêves diurnes ou nocturnes, de peur qu'ils ne la mettent de mauvaise humeur. Même si cela ne lui aurait pas fait de malt. Mais en tant que navigatrice du Nostromo, elle était la principale responsable de leur retour à la maison, et c'était la plus importante et la plus souhaitable des collaborations qu'un homme puisse imaginer.

Brett n'était répertorié que comme technicien en ingénierie. C'était une façon de dire qu'il était aussi intelligent et compétent que Parker, mais qu'il manquait d'ancienneté. Les deux hommes formaient une paire étrange, inégale et totalement différente pour des gens non avertis. Pourtant, ils coexistaient et fonctionnaient ensemble en douceur. Leur succès comme amis et collègues était dû en grande partie au fait que Brett ne s'était jamais immiscé dans la vie mentale de Parker. Le technard était aussi solennel et flegmatique dans sa façon de voir et de parler que Parker était volubile et instable. Parker pouvait râler pendant des heures sur la défaillance d'un circuit de micro-puce, renvoyant ses ancêtres à la terre dont les constituants de terre rare avaient été extraits. Alors que Brett ponctuait placide : "right".

Pour Brett, ce seul mot était bien plus qu'une simple déclaration d'opinion. C'était une affirmation de soi. Pour lui, le silence était la forme de communication la plus propre. Dans la loquacité résidait le délire.

Et puis il y avait Ash. Ash était l'officier scientifique, mais ce n'était pas ce qui rendait ses rêves si drôles : particulièrement drôles, super drôles ha-ha ! Ses rêves étaient les plus professionnellement organisés de tout l'équipage. De tous, c'est celui qui se rapprochait le plus de son état éveillé. Les rêves de Ash ne contenaient absolument aucune illusion.

Ce n'était pas surprenant si vous connaissiez vraiment Ash. Mais aucun de ses six coéquipiers ne le connaissait. Mais lui, Ash, se connaissait bien. Si on lui avait demandé, il aurait pu vous dire pourquoi il n'avait jamais pu devenir tisseur de rêves. Personne n'avait jamais pensé à lui demander, malgré le fait que l'officier scientifique ait bien montré combien le tissage de rêves semblait plus fascinant pour lui que pour n'importe lequel d'entre eux.

Oh, et il y avait aussi le chat. Il s'appelait Jones. Un chat domestique très ordinaire, ou, dans ce cas, un chat de vaisseau. Jones était un gros matou jaune aux origines incertaines et à la personnalité indépendante, depuis longtemps habitué aux aléas des voyages spatiaux et aux particularités des humains qui voyageaient dans l'espace. Il dormait lui aussi d'un sommeil froid et faisait de simples rêves de lieux chauds et sombres et de souris soumises à la gravité.

De tous les rêveurs à bord, il était le seul à être satisfait, bien qu'on ne puisse pas le qualifier d'innocent.

Il est dommage qu'aucun d'entre eux n'ait eu la qualification de tisseur de songes, car chacun d'eux disposait de plus de temps pour rêver dans le cadre de son travail que n'importe quelle douzaine de professionnels, ceci malgré le ralentissement de leur rythme de rêve par le sommeil froid. Tout ça de par la nécessité de leur principale occupation, le rêve. Un équipage de l'espace lointain ne peut rien faire dans les congélateurs, si ce n'est dormir et rêver. Ils resteraient peut-être à jamais des amateurs, mais ils étaient depuis longtemps devenus très compétents.

Ils étaient sept. Sept rêveurs tranquilles à la recherche d'un cauchemar.

Bien qu'il possède une sorte de conscience, le Nostromo ne rêvait pas. Il n'en avait pas besoin, pas plus qu'il n'avait besoin de l'effet de conservation des congélateurs. S'il rêvait, ces rêveries devaient être brèves et fugaces, car il ne dormait jamais. Il travaillait, entretenait, et faisait en sorte que son complément humain en hibernation ait toujours une longueur d'avance sur une mort, toujours prête, qui suivait le sommeil froid comme un vaste requin gris derrière un navire en mer.

Les preuves de la vigilance mécanique incessante du Nostromo se trouvaient partout sur le navire silencieux, dans les doux bourdonnements et les lumières qui formaient une sensibilité instrumentale qui imprégnait le tissu même du vaisseau, prolongeait les capteurs pour vérifier chaque circuit et chaque jambe de force. Elle avait aussi des capteurs à l'extérieur, surveillant le pouls du cosmos. Les capteurs s'étaient fixés sur une anomalie électromagnétique.

Une partie du cerveau de Nostromo était particulièrement habile à extraire le sens des anomalies. Il avait soigneusement mâché celle-ci, trouvé le goût déroutant, examiné les résultats de l'analyse et pris une décision. Des instruments endormis furent activés, des circuits dormants régulèrent à nouveau le flux d'électrons. Pour célébrer cette décision, des banques de lumières brillantes clignotèrent, signes de vie d'une respiration mécanique agitée.

Un bip sonore caractéristique retentit, bien qu'il n'y ait encore que des tympans artificiels pour entendre et reconnaître. C'était un son que l'on n'avait plus entendu sur le Nostromo depuis un certain temps, et il signifiait un événement peu fréquent.

Au milieu de tous ces clics et ces flashs, dispositifs qui conversent entre eux, se trouvait une pièce spéciale. Dans enceinte de métal blanc se trouvaient sept cocons métal-plastique de couleur neige.

Un nouveau bruit emplit la pièce, une expiration explosive la remplissait d'une atmosphère fraîchement nettoyée et respirable. L'humanité s'était volontairement placée dans cette position, faisant confiance à de petits dieux de fer blanc comme le Nostromo pour lui fournir le souffle de vie quand elle ne pouvait pas le faire elle-même. Des extensions de cet électronique mi-sensible testaient maintenant l'air nouvellement exsudé et le déclarèrent satisfaisant pour maintenir la vie de ces organismes minables, les hommes. D'autres lumières s'allumèrent, d'autres connexions se fermèrent. Sans fanfare, les couvercles des sept chrysalides s'ouvrirent, et les formes de chenilles qui s'y trouvaient commencèrent à émerger dans la lumière.

Auteur: Foster Alan Dean

Info: Alien, le 8e passager, Chapitre 1 : Sept rêveurs. Trad Mg. Il fut demandé à Foster, après le grand succès du film, d'en faire un livre.

[ novélisation ] [ science-fiction ] [ galerie de personnages ] [ maîtrise du rêveur ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

volatiles

Cette découverte scientifique est restée cachée dans un tiroir de musée pendant des décennies.  

Les oiseaux que nous allons rencontrer ne ressemblent à rien de ce que vous avez déjà vu.

Federico Degrange : Ils utilisent leur bec comme une hache pour tuer leurs proies.

Lichtman : Oh, mon Dieu.

Daniel Ksepka : Imaginez la plus grande chose que vous ayez jamais vue en vie en train de voler.

James Hansford : Ils sont colossaux. Ils pèsent environ 1 900 livres.

Alicia Grealy : Les œufs auraient été environ 150 fois plus gros qu'un œuf de poule.

Ksepka : Nous parlons donc de plumes d'environ deux pieds, ce qui est... c'est une grande plume.

Anusuya Chinsamy-Turan : La plupart des gens, vous savez, pensent à l'autruche - et ils pensent que c'est grand. Mais en fait, il y avait de vrais géants à une époque.

Lichtman : Nous parlons d'oiseaux qui pesaient autant qu'une voiture de sport, d'oiseaux qui étaient les plus grands prédateurs de leur époque, parcourant la jungle et dévorant des animaux de la taille d'un petit cheval, d'oiseaux si gargantuesques qu'on pouvait les confondre avec un avion.

Pourtant, ces oiseaux sont passés sous le radar de la paléontologie, en tout cas si on compare avec de nombreux dinosaures. Ces géants ailés sont mystérieux et les scientifiques en apprennent chaque jour un peu plus sur eux.

Au cours des quatre prochains épisodes de Science, vite fait, je vais vous les présenter. Nous partons à la recherche des oiseaux les plus extrêmes qui aient jamais existé. Bienvenue dans la première partie d'une série de quatre épisodes sur les vrais grands oiseaux.

- Bonjour, je m'appelle Daniel Ksepka.

Lichtman : Dan est un paléontologue aviaire.

Ksepka : Et je suis conservateur des sciences au Musée Bruce.

Lichtman : Quelle est votre relation avec les grands oiseaux disparus ?

Ksepka : Je les aime et ils m'aiment.

[CLIP : bruits d'océan]

Lichtman : Ok, je veux que vous fermiez les yeux. Dan va planter le décor du premier monstre que nous allons rencontrer.

Ksepka : Imaginez que vous vous trouvez en Caroline du Sud, il y a 27 millions d'années. Vous regardez la mer.

[CLIP : bruit de tempête]

Ksepka : C'est une mer agitée. Et puis, juste suspendu dans les airs, vous savez, bloquant le soleil... se déploie la plus grande chose que vous ayez jamais vue vivante en train de voler, comme un double albatros - avec une envergure de plus de 6 mètres. Elle est magnifique, et vous survole. C'est probablement un grand moment de votre vie, vous savez, l'émerveillement de voir ça.

Lichtman : Cet oiseau s'appelle Pelagornis sandersi. Il n'a pas de nom commun.

Ksepka : Oh, je l'appelle simplement Pelagornis. 

Lichtman : Dan a été le premier à décrire scientifiquement le fossile. Et nous verrons pourquoi il l'a appelé P. sandersi dans une minute. L'histoire commence lorsque ce fossile est entré dans sa vie, sans crier gare.

Ksepka : Pelagornis était un accident de chance et de fortune.

Lichtman : Dan n'a pas trouvé le fossile. Il avait été déterré en Caroline du Sud dans les années 1980, bien avant que Dan ne pose les yeux dessus.

Ksepka : Ils faisaient des fouilles à l'aéroport de Charleston et quelqu'un est tombé sur des os. Les travaux ont été interrompus.

Lichtman : Et il a fait appel à des renforts. Le regretté Al Sanders, paléontologue au musée local de Charleston.

Ksepka : Il est venu avec une équipe et ils ont ramassé ce qui avait été trouvé. Et puis, vous savez, j'aurais pensé que quiconque aurait trouvé cela se serait arrêté net et en aurait fait sa priorité parce que c'était, vous savez, le plus grand oiseau volant de tous les temps.

Lichtman : C'est du moins ce qu'aurait fait un paléontologue aviaire. Mais Al Sanders était plutôt un spécialiste des fossiles de baleines. Il a donc ramené le fossile au musée et l'a mis de côté.

Ksepka : Et Al l'a rangé dans un tiroir au fond de ce genre d'armoire dans le musée.

Lichtman : Et il est resté là pendant une trentaine d'années. Un jour, Al a parlé à Dan des ossements.  

Ksepka : Oui, et je ne m'attendais pas à voir le plus grand oiseau jamais vu dans un tiroir quand j'y suis allé. J'aurais été content avec un canard ou quelque chose comme ça.

Lichtman : Dans ce tiroir qui prenait la poussière se trouvait un fossile vieux d'environ 27 millions d'années qui ne ressemblait à rien de ce que Dan avait vu auparavant.

Ksepka : J'ai sorti l'os de l'aile, je l'ai posé sur le sol, je me suis allongé à côté et j'ai pris une photo avec mon téléphone portable parce qu'il était plus long que mon bras - c'était l'un des trois os.

Lichtman : Dan l'a baptisé Pelagornis sandersi en l'honneur d'Al Sanders, inconscient conservateur de cette découverte colossale. Dan a entrepris de comprendre tout ce qu'il pouvait sur cet oiseau. Et il s'est rendu compte que l'envergure de l'oiseau n'était pas la seule chose étonnante à son sujet. L'oiseau n'était pas seulement grand. Il était bizarre.

Ksepka : Je n'arrivais pas à croire le crâne. Il ne ressemble pas du tout à un oiseau. Il ressemble presque à un petit alligator. Avec un bec d'un pied et demi de long, contenant des mâchoires, avec des sortes de fausses dents.

Lichtman : Elles sont fausses parce qu'elles ne sont pas faites de ce dont sont faites nos dents : de la dentine et de l'émail. Mais elles ont toujours du mordant.

Ksepka : Oui, ce sont en fait des projections d'os, de petites pointes d'os dont la taille varie. Il y a donc une petite, une moyenne et une grande dans l'ordre, et elles ondulent selon ce schéma.

Lichtman : Et c'était probablement parfaits pour percer et retenir des objets glissants...

Ksepka : Donc, quelque chose comme un poisson ou un calmar une fois attrapé.

Lichtman : Outre les fausses dents de poisson, les os de l'épaule de l'oiseau étaient également étranges. Les omoplates de l'oiseau étaient minuscules. L'articulation de l'épaule et l'os qui s'y rattache avaient une forme inhabituelle.

Ksepka : Il ne semble pas qu'elle puisse vraiment fonctionner comme un oiseau normal. Cet oiseau ne pouvait donc pas lever son aile au-dessus du niveau de son dos. Il ne bat donc pas comme une mouette. Ou comme un oiseau chanteur.

Lichtman : Imaginez un cardinal décollant du sol, poussant ses ailes vers le haut et vers le bas, vite et fort. Ce mastodonte se contente probablement de déployer ses ailes de 20 pieds et de laisser le vent faire le travail.

Ksepka : C'est comme un cerf-volant géant. Il s'est donc probablement élevé dans les airs, soit en faisant face au vent, soit en prenant un départ un peu maladroit, soit en utilisant l'élévation à son avantage...

Lichtman : Et une fois que cet oiseau était en l'air, Dan pense qu'il pouvait probablement s'élever sur de grandes distances.

Ksepka : Je ne serais pas surpris que le Pelagornis puisse traverser l'Atlantique et s'arrêter en Afrique ou en Europe, puis revenir dans le cadre de sa migration saisonnière.

Lichtman : Cette espèce, Pelagornis sandersi, n'a été trouvée qu'à Charleston, mais ses proches - les autres oiseaux de cette bande de fausses dents - sont présents partout.

Ksepka : On les trouve partout dans le monde. Nous avons trouvé des fossiles en Antarctique, en Nouvelle-Zélande, dans l'État de Washington et dans l'Oregon, en Europe, en Afrique, en Amérique du Sud. On en trouve littéralement sur tous les continents.

Lichtman : Entre sa taille gigantesque et ses dents, Pelagornis est peut-être l'un des oiseaux les plus étranges de l'histoire de la Terre. Et la question qui me vient à l'esprit est la suivante : comment cet oiseau est-il apparu ? Dan pense que l'apparition de ce groupe - les pélagornithidés - est peut-être liée à la disparition d'autres créatures volantes étranges et géantes.

Ksepka : Dans le cas des pélagornithidés, ce rôle particulier serait rempli par des reptiles volants au Crétacé. Certaines de ces espèces sont bien plus grandes que Pelagornis et disparaissent lors de la même extinction que les dinosaures nonaviens, ce qui permet à un nouveau groupe d'explorer le rôle d'animal volant de très grande taille. Et les pélagornithidés sont le premier groupe à s'en emparer.

Lichtman : Ils se sont engouffrés dans une niche ouverte. C'est ce que m'ont dit de nombreux chercheurs spécialisés dans les grands oiseaux avec lesquels je me suis entretenu pour cette série : ces oiseaux géants sont entrés en scène en partie parce que l'extinction massive a éliminé la concurrence. Et il ne s'agit pas seulement des dinosaures : d'autres reptiles et les premiers oiseaux se sont également éteints. Les survivants ont donc eu accès à des ressources et à des écosystèmes qui n'existaient pas auparavant. Au fil des ans, j'ai beaucoup entendu parler de la radiation des mammifères, qui ont connu leur heure de gloire après la disparition des dinosaures. Mais dans un monde post-dinosaures, les oiseaux ont également déployé leurs ailes et se sont spécialisés.

Ksepka : Une spectaculaire diffusion des oiseaux s'est produite au cours des quelques millions d'années qui ont suivi cette extinction massive. Les ancêtres des oiseaux modernes ont donc la possibilité d'explorer des habitats arboricoles, prédateurs ou aquatiques pour la première fois. Et ils deviennent vraiment - ils deviennent un peu sauvages.

Lichtman : Pelagornis n'est qu'un début. Nous avons d'autres oiseaux sauvages à rencontrer dans les prochains épisodes : des oiseaux qui se sont élevés tel le phénix après l'extinction des dinosaures et qui sont devenus différents de tous les oiseaux encore en vie aujourd'hui.

Ksepka : Par exemple, les oiseaux-éléphants étaient peut-être les plus grands oiseaux qui aient jamais vécu.

Alicia Grealy : Oui, certains pouvaient peser jusqu'à une tonne. C'est pour cela qu'on les appelle les oiseaux-éléphants, n'est-ce pas ?

Lichtman : C'est ce que nous verrons dans le prochain épisode de cette série en quatre parties.

Auteur: Internet

Info: Flora Lichtman, 31 mai 2023. Emission de radio, repris par https://www.scientificamerican.com/

[ oryctographie ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Les particules quantiques ne tournent pas. Alors d'où vient leur spin ?

Le fait que les électrons possèdent la propriété quantique du spin est essentiel pour notre monde tel que nous le connaissons. Pourtant, les physiciens ne pensent pas que ces particules tournent réellement. 

Les électrons sont des petits magiciens compétents. Ils semblent voltiger autour d'un atome sans suivre de chemin particulier, ils semblent souvent être à deux endroits à la fois, et leur comportement dans les micropuces en silicium alimente l'infrastructure informatique du monde moderne. Mais l'un de leurs tours les plus impressionnants est faussement simple, comme toute bonne magie. Les électrons semblent toujours tourner. Tous les électrons jamais observés, qu'ils se déplacent sur un atome de carbone dans votre ongle ou qu'ils se déplacent à toute vitesse dans un accélérateur de particules, ont l'air de faire constamment de petites pirouettes en se déplaçant dans le monde. Sa rotation ne semble jamais ralentir ou accélérer. Peu importe comment un électron est bousculé ou frappé, il semble toujours tourner à la même vitesse. Il possède même un petit champ magnétique, comme devrait le faire un objet en rotation doté d'une charge électrique. Naturellement, les physiciens appellent ce comportement "spin".

Mais malgré les apparences, les électrons ne tournent pas. Ils ne peuvent pas tourner. Prouver qu'il est impossible que les électrons tournent est un problème standard dans tout cours d'introduction à la physique quantique. Si les électrons tournaient suffisamment vite pour expliquer tout le comportement de rotation qu'ils affichent, leurs surfaces se déplaceraient beaucoup plus vite que la vitesse de la lumière (si tant est qu'ils aient des surfaces). Ce qui est encore plus surprenant, c'est que pendant près d'un siècle, cette contradiction apparente a été ignorée par la plupart des physiciens comme étant une autre caractéristique étrange du monde quantique, qui ne mérite pas qu'on s'y attarde.

Pourtant, le spin est profondément important. Si les électrons ne semblaient pas tourner, votre chaise s'effondrerait pour ne plus représenter qu'une fraction minuscule de sa taille. Vous vous effondreriez aussi - et ce serait le moindre de vos problèmes. Sans le spin, c'est tout le tableau périodique des éléments qui s'effondrerait, et toute la chimie avec. En fait, il n'y aurait pas de molécules du tout. Le spin n'est donc pas seulement l'un des meilleurs tours de magie des électrons, c'est aussi l'un des plus importants. Et comme tout bon magicien, les électrons n'ont jamais dit à personne comment ils faisaient ce tour. Mais aujourd'hui, une nouvelle explication du spin est peut-être en train de se profiler à l'horizon, une explication qui tire le rideau et montre comment la magie opère.

UNE DÉCOUVERTE VERTIGINEUSE

La rotation a toujours été une source de confusion. Même les premières personnes qui ont développé l'idée du spin pensaient qu'elle devait être fausse. En 1925, deux jeunes physiciens hollandais, Samuel Goudsmit et George Uhlenbeck, s'interrogeaient sur les derniers travaux du célèbre (et célèbre) physicien Wolfgang Pauli. Pauli, dans une tentative d'expliquer la structure des spectres atomiques et du tableau périodique, avait récemment postulé que les électrons avaient une "double valeur non descriptible classiquement". Mais Pauli n'avait pas dit à quelle propriété physique de l'électron sa nouvelle valeur correspondait, et Goudsmit et Uhlenbeck se demandaient ce que cela pouvait être.

Tout ce qu'ils savaient - tout le monde le savait à l'époque - c'est que la nouvelle valeur de Pauli était associée à des unités discrètes d'une propriété bien connue de la physique newtonienne classique, appelée moment angulaire. Le moment angulaire est simplement la tendance d'un objet en rotation à continuer de tourner. C'est ce qui fait que les toupies tournent et que les bicyclettes restent droites. Plus un objet tourne vite, plus il a de moment cinétique, mais la forme et la masse de l'objet ont aussi leur importance. Un objet plus lourd a plus de moment cinétique qu'un objet plus léger qui tourne aussi vite, et un objet qui tourne avec plus de masse sur les bords a plus de moment cinétique que si sa masse était concentrée en son centre.

Les objets peuvent avoir un moment angulaire sans tourner. Tout objet qui tourne autour d'un autre objet, comme la Terre qui tourne autour du soleil ou un trousseau de clés qui se balance autour de votre doigt sur un cordon, a un certain moment angulaire. Mais Goudsmit et Uhlenbeck savaient que ce type de moment angulaire ne pouvait pas être la source du nouveau nombre de Pauli. Les électrons semblent effectivement se déplacer autour du noyau atomique, retenus par l'attraction entre leur charge électrique négative et l'attraction positive des protons du noyau. Mais le moment angulaire que ce mouvement leur confère était déjà bien pris en compte et ne pouvait pas être le nouveau nombre de Pauli. Les physiciens savaient également qu'il existait déjà trois nombres associés à l'électron, qui correspondaient aux trois dimensions de l'espace dans lesquelles il pouvait se déplacer. Un quatrième nombre signifiait une quatrième façon dont l'électron pouvait se déplacer. Les deux jeunes physiciens pensaient que la seule possibilité était que l'électron lui-même tourne, comme la Terre qui tourne sur son axe autour du soleil. Si les électrons pouvaient tourner dans l'une des deux directions - dans le sens des aiguilles d'une montre ou dans le sens inverse - cela expliquerait la "bivalence" de Pauli.

Excités, Goudsmit et Uhlenbeck rédigent leur nouvelle idée et la montrent à leur mentor, Paul Ehrenfest. Ehrenfest, un ami proche d'Einstein et un formidable physicien à part entière, trouve l'idée intrigante. Tout en la considérant, il dit aux deux jeunes hommes enthousiastes d'aller consulter quelqu'un de plus âgé et de plus sage : Hendrik Antoon Lorentz, le grand manitou de la physique néerlandaise, qui avait anticipé une grande partie du développement de la relativité restreinte deux décennies plus tôt et qu'Einstein lui-même tenait en très haute estime.

Mais Lorentz est moins impressionné par l'idée de spin qu'Ehrenfest. Comme il l'a fait remarquer à Uhlenbeck, on sait que l'électron est très petit, au moins 3 000 fois plus petit qu'un atome - et on sait déjà que les atomes ont un diamètre d'environ un dixième de nanomètre, soit un million de fois plus petit que l'épaisseur d'une feuille de papier. L'électron étant si petit, et sa masse encore plus petite - un milliardième de milliardième de milliardième de gramme - il était impossible qu'il tourne assez vite pour fournir le moment angulaire que Pauli et d'autres recherchaient. En fait, comme Lorentz l'a dit à Uhlenbeck, la surface de l'électron devrait se déplacer dix fois plus vite que la vitesse de la lumière, une impossibilité absolue.

Défait, Uhlenbeck retourne voir Ehrenfest et lui annonce la nouvelle. Il demande à Ehrenfest de supprimer l'article, mais on lui répond qu'il est trop tard, car son mentor a déjà envoyé l'article pour publication. "Vous êtes tous les deux assez jeunes pour pouvoir vous permettre une stupidité", a dit Ehrenfest. Et il avait raison. Malgré le fait que l'électron ne pouvait pas tourner, l'idée du spin était largement acceptée comme correcte, mais pas de la manière habituelle. Plutôt qu'un électron qui tourne réellement, ce qui est impossible, les physiciens ont interprété la découverte comme signifiant que l'électron portait en lui un certain moment angulaire intrinsèque, comme s'il tournait, même s'il ne pouvait pas le faire. Néanmoins, l'idée était toujours appelée "spin", et Goudsmit et Uhlenbeck ont été largement salués comme les géniteurs de cette idée.

Le spin s'est avéré crucial pour expliquer les propriétés fondamentales de la matière. Dans le même article où il avait proposé son nouveau nombre à deux valeurs, Pauli avait également suggéré un "principe d'exclusion", à savoir que deux électrons ne pouvaient pas occuper exactement le même état. S'ils le pouvaient, alors chaque électron d'un atome tomberait simplement dans l'état d'énergie le plus bas, et pratiquement tous les éléments se comporteraient presque exactement de la même manière les uns que les autres, détruisant la chimie telle que nous la connaissons. La vie n'existerait pas. L'eau n'existerait pas. L'univers serait simplement rempli d'étoiles et de gaz, dérivant dans un cosmos ennuyeux et indifférent sans rencontrer la moindre pierre. En fait, comme on l'a compris plus tard, toute matière solide, quelle qu'elle soit, serait instable. Bien que l'idée de Pauli soit clairement correcte, la raison pour laquelle les électrons ne pouvaient pas partager des états n'était pas claire. Comprendre l'origine du principe d'exclusion de Pauli permettrait d'expliquer tous ces faits profonds de la vie quotidienne.

La réponse à cette énigme se trouvait dans le spin. On découvrit bientôt que le spin était une propriété de base de toutes les particules fondamentales, et pas seulement des électrons, et qu'il était étroitement lié au comportement de ces particules en groupes. En 1940, Pauli et le physicien suisse Markus Fierz ont prouvé que lorsque la mécanique quantique et la relativité restreinte d'Einstein étaient combinées, cela conduisait inévitablement à un lien entre le spin et le comportement statistique des groupes. Le principe d'exclusion de Pauli n'était qu'un cas particulier de ce théorème de la statistique du spin, comme on l'a appelé. Ce théorème est un "fait puissant sur le monde", comme le dit le physicien Michael Berry. "Il est à la base de la chimie, de la supraconductivité, c'est un fait très fondamental". Et comme tant d'autres faits fondamentaux en physique, le spin s'est avéré utile sur le plan technologique également. Dans la seconde moitié du XXe siècle, le spin a été exploité pour développer des lasers, expliquer le comportement des supraconducteurs et ouvrir la voie à la construction d'ordinateurs quantiques.

VOIR AU-DELÀ DU SPIN

Mais toutes ces fabuleuses découvertes, applications et explications laissent encore sur la table la question de Goudsmit et Uhlenbeck : qu'est-ce que le spin ? Si les électrons doivent avoir un spin, mais ne peuvent pas tourner, alors d'où vient ce moment angulaire ? La réponse standard est que ce moment est simplement inhérent aux particules subatomiques et ne correspond à aucune notion macroscopique de rotation.

Pourtant, cette réponse n'est pas satisfaisante pour tout le monde. "Je n'ai jamais aimé l'explication du spin donnée dans un cours de mécanique quantique", déclare Charles Sebens, philosophe de la physique à l'Institut de technologie de Californie. On vous le présente et vous vous dites : "C'est étrange. Ils agissent comme s'ils tournaient, mais ils ne tournent pas vraiment ? Je suppose que je peux apprendre à travailler avec ça". Mais c'est étrange."

Récemment, cependant, Sebens a eu une idée. "Dans le cadre de la mécanique quantique, il semble que l'électron ne tourne pas", dit-il. Mais, ajoute-t-il, "la mécanique quantique n'est pas notre meilleure théorie de la nature. La théorie des champs quantiques est une théorie plus profonde et plus précise."

La théorie quantique des champs est l'endroit où le monde quantique des particules subatomiques rencontre l'équation la plus célèbre du monde : E = mc2, qui résume la découverte d'Einstein selon laquelle la matière peut se transformer en énergie et vice versa. (La théorie quantique des champs est également à l'origine du théorème de la statistique du spin). C'est à partir de cette propriété que lorsque des particules subatomiques interagissent, de nouvelles particules sont souvent créées à partir de leur énergie, et les particules existantes peuvent se désintégrer en quelque chose d'autre. La théorie quantique des champs traite ce phénomène en décrivant les particules comme provenant de champs qui imprègnent tout l'espace-temps, même l'espace vide. Ces champs permettent aux particules d'apparaître et de disparaître, conformément aux règles strictes de la relativité restreinte d'Einstein et aux lois probabilistes du monde quantique.

Et ce sont ces champs, selon Sebens, qui pourraient contenir la solution à l'énigme du spin. "L'électron est habituellement considéré comme une particule", explique-t-il. "Mais dans la théorie quantique des champs, pour chaque particule, il existe une façon de la considérer comme un champ." En particulier, l'électron peut être considéré comme une excitation dans un champ quantique connu sous le nom de champ de Dirac, et ce champ pourrait être ce qui porte le spin de l'électron. "Il y a une véritable rotation de l'énergie et de la charge dans le champ de Dirac", dit Sebens. Si c'est là que réside le moment angulaire, le problème d'un électron tournant plus vite que la vitesse de la lumière disparaît ; la région du champ portant le spin de l'électron est bien plus grande que l'électron supposé ponctuel lui-même. Ainsi, selon Sebens, d'une certaine manière, Pauli et Lorentz avaient à moitié raison : il n'y a pas de particule qui tourne. Il y a un champ tournant, et c'est ce champ qui donne naissance aux particules.

UNE QUESTION SANS RÉPONSE ?

Jusqu'à présent, l'idée de Sebens a produit quelques remous, mais pas de vagues. Pour ce qui est de savoir si les électrons tournent, "je ne pense pas qu'il s'agisse d'une question à laquelle on puisse répondre", déclare Mark Srednicki, physicien à l'université de Californie à Santa Barbara. "Nous prenons un concept qui trouve son origine dans le monde ordinaire et nous essayons de l'appliquer à un endroit où il ne s'applique plus vraiment. Je pense donc que ce n'est vraiment qu'une question de choix, de définition ou de goût pour dire que l'électron tourne vraiment." Hans Ohanian, physicien à l'université du Vermont qui a réalisé d'autres travaux sur le spin des électrons, souligne que la version originale de l'idée de Sebens ne fonctionne pas pour l'antimatière.

Mais tous les physiciens ne sont pas aussi dédaigneux. Selon Sean Carroll, physicien à l'université Johns Hopkins et à l'Institut Santa Fe, "la formulation conventionnelle de notre réflexion sur le spin laisse de côté un élément potentiellement important". "Sebens est tout à fait sur la bonne voie, ou du moins fait quelque chose de très, très utile dans le sens où il prend très au sérieux l'aspect champ de la théorie quantique des champs." Mais, souligne Carroll, "les physiciens sont, au fond, des pragmatiques..... Si Sebens a raison à 100 %, les physiciens vous diront : "D'accord, mais qu'est-ce que cela m'apporte ?"

Doreen Fraser, philosophe de la théorie des champs quantiques à l'université de Waterloo, au Canada, se fait l'écho de ce point de vue. "Je suis ouverte à ce projet que Sebens a de vouloir forer plus profondément pour avoir une sorte d'intuition physique pour aller avec le spin", dit-elle. "Vous avez cette belle représentation mathématique ; vous voulez avoir une image physique intuitive pour l'accompagner." En outre, une image physique pourrait également déboucher sur de nouvelles théories ou expériences qui n'ont jamais été réalisées auparavant. "Pour moi, ce serait le test pour savoir si c'est une bonne idée."

Il est trop tôt pour dire si les travaux de M. Sebens porteront ce genre de fruits. Et bien qu'il ait rédigé un article sur la manière de résoudre la préoccupation d'Ohanian concernant l'antimatière, d'autres questions connexes restent en suspens. "Il y a beaucoup de raisons d'aimer" l'idée du champ, dit Sebens. "Je prends cela plus comme un défi que comme un argument massue contre elle."

Auteur: Becker Adam

Info: Scientific American, November 22, 2022

[ approfondissement ]

 

Commentaires: 0

Ajouté à la BD par miguel

refus

Jours, années, vies. Les arbres avaient perdu leurs parures multicolores. C’était ça : elle se trouvait pile à cette conjonction des trois boucles. L’entame du dernier quart. La journée avait dépassé sa dix-neuvième heure, l’hiver était là et Emma se préparait à fêter ses soixante et un ans. Anniversaire dont elle avait fait le symbolique début de l’hiver de sa vie.

Encore récemment elle avait le sentiment de commencer à jouir de la sérénité de son âge. Jusqu’à l’arrivée du gosse.

Emma l’albanaise n’en revenait pas.

Imaginez : vous êtes en charge du service psychiatrique d’un hôpital Suisse. On vous amène un petit garçon, noiraud aux cheveux ondulés, Jean-Sébastien. Enfant sans aucun problème apparent selon toutes les informations et surtout ses proches. Un gosse qui a été éduqué tout à fait correctement dans ce pays, dans son pays : la Suisse. Diagnostic du corps médical : anorexie mentale. Le gosse refuse de s’alimenter et même, surprise, a sa propre auto-évaluation, affirmée : je refuse de vivre mon général. Un credo presque annoncé avec humour.

Après quelques jours tout le personnel de l’immense hôpital en parlait. Une anorexie à neuf ans, c’était déjà exceptionnel, quoi qu’on commençait à en voir apparaître dans les statistiques occidentales, mais ce gosse avait une telle tranquillité, une conscience, comme si son regard et ses appréciations liquidaient d’un coup la raison d’être, l’existence même de la structure hospitalière. Et tout le reste. Une gifle pour le Monde. Pour tous. Les êtres humains. Un déni.

Le tapis de feuilles mortes rassemblées devant les escaliers par un jardinier l’obligea à faire un crochet. Elle lança un sourire à l’homme au balai qui le lui rendit.

Selon le garçonnet, la vie ne valait pas la peine d’être vécue, point. Et les bipèdes adultes de son espèce, malgré tous leurs efforts, n’y changeraient rien. L’amour conjugué de ses proches, les visites de ses camarades, l’abnégation souriante des infirmières, l’attention soutenue de la doctoresse en chef… rien n’avait pu infléchir sa décision. L’enfant au regard foncé répétait et déclinait en souriant :

- Je ne suis pas fait pour vivre.. je suis de trop, c’est évident…

Les infirmières comprenaient confusément que le gosse ne voyait pas pourquoi ce monde méritait encore d’être connu, exploré. C’était juste une non envie d’entrer en matière. Ses parents, elle secrétaire, lui mécanicien, n’avaient rien de particulier. Des gens simples, adorables. Le fiston l’assurait lui-même : il n’avait rien à leur reprocher, surtout pas de l’avoir amené à la vie, au contraire, surtout pas…. Son expérience restait irremplaçable. Il insistait : irremplaçable. Leur expliquant : vous n’y pouvez rien, mes amours, mes chéris… c’est comme ça. Il parvenait à même leur remonter le moral.

Dans le hall, l’hôtesse d’accueil lui adressa le salut matinal routinier derrière son grand vitrage.

Une semaine après l’arrivée du malade, un collègue d’Emma, Pierre B, vieux médecin, était venu trouver l’enfant sous un prétexte imaginaire. Quelques heures plus tard il prenait la doctoresse à part au détour d’un couloir :
- Je suis bouleversé, je reviens des Andes… ici les magasins, les rues, tout m’inspire une aversion irraisonnée. Les fêtes qui approchent, la foule des acheteurs, les corps pétant de cholestérol, le fric… C’est affreux, le seul endroit où je me sens mieux c’est ici, à l’hôpital. L’argent me gêne, il envahit tout… je ne vois plus des personnes, mais de petits amas de pognon, de mesquines solitudes feutrées, comme si les gens n’avaient pas besoin les uns des autres, comme s’il n’y avait plus de communauté…

La médecin chef lui répondit sur le ton de la plaisanterie, expliquant que ce n’était pas professionnel, qu’il fallait maîtriser ses émotions.

Elle se dirigeait vers la chambre du petit, ses pas étouffés par l’épais revêtement de linoléum gris. Emma, qui avait réussi, à force de volonté, à se faire sa place de médecin dans la société occidentale, se disait que dans son pays, en Albanie - elle y retournait chaque année - ce genre de syndrome n’apparaissait pas. Jamais. Encore moins chez des êtres si jeunes.

L’infirmière de garde lui indiqua que le petit venait de s’endormir.

Tous pouvaient observer, impuissants, les parents du môme déployer des trésors d’imagination pour essayer de le sortir de ce qu’ils voyaient comme une torpeur incompréhensible. Ils avaient proposé, l’air de rien, d’aller observer un volcan en éruption, d’affronter les cinquantièmes hurlants en catamaran…. Lui les remerciait d’un sourire. Il comprenait parfaitement la démarche, leur expliquait que d’autres que lui seraient enchantés d’aller suivre en direct les ébats amoureux des baleines au large de la Californie, ajoutant que ce devrait être facile d’emmener des enfants défavorisés jouer dans l’eau avec des dauphins. Pas lui.

***

Ce soir là, au sortir de son travail elle croisa la gérante du petit supermarché voisin, une femme d’âge mûr aux grands cheveux frisés, pleine d’ardeur, avec qui elle avait de bons rapports. Elle ne put s’empêcher de lui parler de l’enfant. La dame la transperça de son regard bleu. Deux vrilles sous la masse crépue.

- Mon Dieu, le pauvre chéri… il est trop intelligent….

Elle avait tout dit. Et puis elle rentra. Il fallait prendre le courrier, faire manger les enfants. Il faisait déjà nuit.

***

Le lendemain en fin de matinée la doctoresse quitta son service un peu plus tôt qu’à l’accoutumée, préoccupée. Elle était de plus en plus frustrée parce que depuis plusieurs jours le gamin sommeillait durant la journée alors qu’elle aurait vraiment voulu essayer de communiquer avec lui. Ce qui l’amena à couper la priorité à’un automobiliste, qui, après avoir ouvert sa vitre latérale lui lança, rigolard. "Je comprends maintenant pourquoi vous êtes passée devant un million de spermatozoïdes, vous êtes un hymne à la précipitation… à l’engouffrement". Elle se surprit à sourire, libérée pour un instant du monologue intérieur nourris par l’image du jeune être en train de se faner. Elle se sentait comme enceinte mentalement de lui. De cet homme. Oui, c’était bien un homme… puisqu’il était en fin de parcours, sur sa propre décision. Puisqu’il leur parlait autrement, couché dans son lit trop grand, comme une sorte d’enseignant cosmique, loin de leurs volontés absurdes de vouloir avoir une prise sur le réel. Il avait annoncé la couleur à son arrivée à l’hôpital :

- Je ne veux pas me soigner parce que plus je vais mal mieux je me porte.

Ainsi, après deux semaines d’hospitalisation il avait nettement faibli. Il fallait maintenant faire un effort d’attention pour le comprendre, lui parler doucement et distinctement. Lui restait imperturbable, ses grands yeux marrons brillants d’une sérénité de fer.

***

Emma avait accepté de dîner avec son ami Miguel, helvète de vieille souche, qu’elle appréciait pour cette raison mais aussi parce que son humour self destructeur l’amusait. Il l’accueillit, goguenard, après avoir brièvement jaugé la voiture qu’elle venait de s’acheter.

- Attention ! Je ne vais bientôt plus accepter de te voir, notre amitié va s’achever… regardes-toi un peu, tu es déjà plus Suisse que moi…. mon Dieu la bourgeoise ! J’ose pas t’imaginer dans dix piges ?
- Tu veux dire ?
- Que tu es de plus en plus organisée, aseptisée, maintenant presque riche…. Il ne te manque plus qu’un peu d’inhibition.. Peut-être aussi de réprobation dans l’attitude.
- T'es dur Miguel
- Tu sais bien que le succès et l’argent nous éloignent de l’essentiel.
- C’est quoi l’essentiel ?
- La vie
- Tu en es sûr ?

Elle ne lui parla pas du gosse.

***

De retour à l’hôpital elle aperçut Pierre B. en discussion avec les parents de Jean-Sébastien. Tous se firent un petit signe de loin. Elle monta dans son service, traversa les couloirs déserts pour aller le voir. Il somnolait et réagit mollement lorsqu’elle lui prit la main, esquissant une moue. Elle resta ainsi, assise sur le lit arrosé par l’éclairage crû.

Qui avait chanté un jour que la lumière ne fait pas de bruit ?

Son regard glissait sur les choses. Elle pensait à sa vie, à la vie. Pourquoi se retrouvait-elle médecin… dans ce pays ? Fourmi parmi les autres fourmis. Quelle était la société qui pouvait produire de tel effet sur ses petits ?… Sa pensée se fixa sur des connaissances côtoyées récemment ; une clique d’artistes quadra et quinquagénaires, presque tous issus de la bourgeoisie locale qui, malgré la mise en place de façades plus ou moins réussies, assorties de quelques petites excentricités d’habillement, représentaient pour elle la société dans laquelle elle vivait. Ils formaient un de ces clans ou les individus se rassemblent plutôt par crainte de la marginalité et de la solitude que par de réelles affinités. Sérail ou l’on se fait la bise comme les stars de la télévision ; pour marquer sa différence, son appartenance à un cercle qui serait plus humain, plus averti. Tels étaient donc les révoltés ?… Les artistes ?... quelles étaient donc leur réflexions ?. Assise sur le lit sa main autour de celle du gosse Emma se demandait s’il ne fallait pas voir chez eux une forme d’élitisme atroce, imbécile, destructeur, soumis aux conventions, aux diplômes, loin de la vie, la vraie, celle avec les excréments, les coups, le sang, les hurlements. Vivaient-ils réellement, ces gens encoconnés qu’elle avait vu ignorer ostensiblement ici une caissière édentée ou là un clodo en pleine cuite. Qui, lors des fêtes réunissant les familles, paraissaient tout de suite excédés par leurs enfants, comme s’ils ne les avaient pondus que par convention, par simple peur de la mort, par ennui. Dans son pays à elle la jeunesse était synonyme de joie, de plaisir.

… mais qu’ont-ils de différents des autres humains, somme toute... ne suis-je pas comme eux ?

Jean-Sébastien gardait les yeux fermés, la respiration régulière. Elle caressa doucement le maigre avant-bras que la perfusion prolongeait de manière incongrue.

***

Cette nuit là elle eut ce rêve : Il y avait, lors d’une grande réunion de diverses familles, une scène de discussion animée entre adultes. Les enfants présents - les siens y étaient, tout comme Jean-Sébastien - enthousiastes comme toujours amenaient continuellement des interruptions qui dérangent la continuité des phrases, si sérieuses, des adultes. Coupures qui, à la longue, entraînèrent quelques haussements de voix puis, finalement, l’enfermement de Jean-Sébastien dans une voiture. Il y eut alors un zoom arrière et les humains se transformèrent en arbres. C’étaient les mêmes individus mais qui en sapin, en hêtre, etc.. Et, dans un film accéléré, elle put alors contempler la nouvelle forêt ainsi formée endurer la douce agression des jeunes pousses qui, après s’être hardiment insinuées au pied des grands troncs, s’accrochaient ensuite au premières frondaisons, avant de vaillamment titiller les niveaux supérieurs et d’émerger au sommet pour faire partie de la Pangée. Voir le soleil.

Elle se retrouva assise sur son lit, en nage. Et l’enfant dans la voiture ?… Pourquoi ces plages temporelles mélangées ?… Pourquoi Jean-Sébastien n’avait-il plus cette volonté de monter, de toucher les crêtes… cette curiosité de la vie ?


***

Les forces du gosse déclinaient doucement, implacablement. L’esprit imperturbable et sans tristesse il continuait de communiquer au maximum de ses possibilités, c’est à dire qu’à ce stade il ne faisait plus qu’acquiescer ou rejeter. Mais il observait. Emma, incrédule, attendait quelque chose. Elle ne savait pas exactement quoi : une forme de culpabilisation du gosse, des parents… de grands transports d’émotion avec la famille. De culpabilisation elle n’en vit point. Quand à l’émotion, il y en avait. Beaucoup. Mais tout le monde se maîtrisait.

On le sentait se détacher, comme un fruit. Le temps du silence mûrissait.

***

Il y eut alors ce colloque, une journée/rencontre prévue de longue date où le professeur P., grande ponte allemand de pédopsychiatrie, fit état de l’augmentation sensible des cas d’anorexie chez les enfants en occident. Dans la continuité ils reçurent communication du travail d’une équipe de chercheurs Hindous où étaient explicitées la progression et l'incidence constante des problèmes psychiques de la jeunesse dans les sociétés industrielles. Un médecin psychiatre japonais vint ensuite parler des difficultés rencontrées dans son pays. On commençait à y voir de plus en plus de groupes de discussion sur Internet qui amenaient - et poussaient parfois - de jeunes nippons à se suicider ensemble. Puis il y eut ce rapport sur une maladie mystérieuse affectant plus de 400 enfants de requérants d'asile en Suède, issus la plupart du temps de l'ancienne union Soviétique et des états yougoslaves. Ces enfants tombaient dans une dépression profonde et perdaient la volonté de vivre. Pour finir une intervenante vint expliquer comment les résultats de son étude sociologique de la Suède montraient que la courbe des suicides était inversement proportionnelle aux difficultés économiques. En bref, lors de temps difficiles les gens se suicidaient moins….

Tout ce monde se retrouva ce soir là au milieu de la chaude et joviale l’atmosphère d’une brasserie pour un repas en commun bigarré qui concluait le colloque. Les participants à la conférence confabulèrent bruyamment de tout, sauf de problèmes professionnels. Emma aimait ce genre de brouhaha. Il était passé minuit quand elle rentra. Excitée par l’alcool elle se prépara un grand verre d’eau, prit la zappette et s’installa devant la télévision. Les informations présentaient un sujet sur les prévisions alarmistes quand au réchauffement de la planète. Apparut ensuite sur le plateau l’abbé X qui se faisait le porte-parole des voix innombrables dénonçant le petit nombre de riches - toujours plus riches - et celui, toujours plus grand, des pauvres - toujours plus pauvres. Puis ce fut l’interview d’un politicien qui exprima les craintes suscitées par le comportement paranoïaque de l’empire américain. La rubrique suivante montra une manifestation écologiste européenne. On pouvait y voir des manifestant défiler avec des pancartes qui disaient : "Ressources de la terre en danger " "Consommation galopante, Halte !". "Surpopulation, manque de contrôle !". Le journal se termina par les infos économiques et la progression boursière spectaculaire d’une entreprise pharmaceutique qui développait un médicament contre le diabète, maladie en constante progression chez l’individu moyen - trop gros - des populations américaines et européennes, phénomène qu’on voyait maintenant émerger en Asie. Tous les espoirs étaient permis pour la jeune entreprise.

Dans la salle de bain elle posa cette question muette à son reflet, dans la glace : - Jean-Sébastien entend-il la même mélodie du monde que toi ?

Son mari grogna légèrement lorsqu’elle lui imposa sa présence dans le lit, le forçant à se déplacer.


***


Elle démarrait fréquemment sa matinée par cette pensée de la tradition zen : "un jour, une vie". Après le départ des enfants pour l’école, elle pouvait profiter d’un petit printemps personnel réservé, enfance de sa journée. Moments d’énergie, de fraîcheur, d’optimisme. Tout ce que Jean-Sébastien aurait normalement du vivre en cette période matinale de son existence de jeune mammifère. Alors qu’en réalité il était comme avant d’aller se coucher. Certes son cycle d’existence, sa fin de vie coïncidaient avec la saison hivernale, mais pas avec la bonne synchronisation. Pas du tout.

Elle se confectionna un nouveau café.

Emma avait toujours perçu les mômes comme de grands initiés, dotés d’un sens aigu du mystère, au bénéfice de la fraîcheur de perception qu’ont les étrangers qui pénètrent une contrée inconnue. Confrontée à Jean-Sébastien elle en arrivait à se demander s’il n’avait apporté avec lui les souvenirs de quelque chose d’antérieur, les réminiscences d’une source fabuleuse. Quels pouvaient donc bien être ses critères de jugement ?… en avait-il ?… était-ce du pur instinct, du laisser aller ?. Il avait l’air si équilibré… Ou alors, était-ce diabolique ?… Non, il était trop jeune, trop dans le timing. Trop conscient.

Elle ne savait comment exprimer son sentiment. Ce garçon était comme au delà - ou en deçà - des mots. Un pur poète. Comme s’il avait affirmé que les bateaux ne flottent que depuis Archimède et que tout le monde ait acquiescé. Comme s’il avait décrété que le vent est créé par les arbres sans que personne n’en doute.

Elle voyait vivre ses enfants dans un monde qui n’était pas le sien, celui des grands. Ils n’avaient qu’un intérêt restreint pour la politique, la philosophie de la vie et de ce genre de choses. Leur occupation sérieuse principale c’était le jeu. En tout cas en apparence. Elle ne pouvait se résoudre à leur parler de Jean-Sébastien, d’abord pour garder sa vie privée intacte de ses activités professionnelles. Et puis quelle pouvait être la famille ou l’on aurait abordé de pareils sujets philosophique sérieusement, longuement et profondément, avec les enfants ?... Les siens posaient des questions certes, son mari et elles y répondaient, mais cela restait superficiel. Ces sujets intéressent les mômes mais leurs réflexions lui paraissaient trop courtes. Ou alors leurs forces de vies leurs interdisaient de s’arrêter sur ce genre de réflexions

Mais comment un gosse qui ne voyait plus la réalité avec aucun étonnement s’était-il forgé ?… D’où venaient ses certitudes ?… Était-ce possible qu’un de ses enfants un jour ?…

Elle rassembla ses affaire : sac, clefs, s’habilla. Il fallait en tout cas encore essayer. Encore.

***

Ce vingt décembre Jean-Sébastien dormait si profondément, en état comateux, qu’Emma invita ses parents à la cafétéria pour un café. La communication entre eux ne nécessitait presque plus de mots, artificielles constructions sans intérêt. Au réfectoire ils eurent à subir les activités sauvageonnes d’un groupe d’enfants. Jeunes excités, en mal de cette existence avérée que conforte la réaction témoin de grandes personnes prises en otage-spectateur-cible. Elles ressentit beaucoup de gratitude à l’endroit des emplâtres gesticulants et bruyants qui tentaient d’accaparer attention et champ de vision des adultes.

**

Au milieu de tous ses questionnements, Emma eut l’honnêteté de s’avouer qu’elle l’admirait. Mais quel était son secret… Qui était ce vieux maître… ce fou ?… Elle ne parvenait pas à le voir comme un malade et ressentait même quelque chose qui ressemblait à de la reconnaissance. La jeune créature lui permettait de rétablir une sorte de connexion avec un infini qu’elle avait oublié, trop absorbée par sa vie, par ses obligations. La vitesse.

Le mioche lui dilatait la conscience.

**

Jean-Sébastien mourut la veille de Noël.

Enfin pur esprit.

Auteur: Mg

Info: Jean-Sébastien. D'après une histoire vécue. 2002.

[ histoire courte ] [ automne ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

parapsychologie

Le pays des aveugles de Koestler (II) (première partie ici)

La section précédente a peut-être donné au lecteur un sentiment de déjà-vu, parce que tout à l'heure j'ai mentionné un autre type de "théorie du filtre" liée à l'évolution. Je me réfère à la théorie néo-darwinienne selon laquelle la substance héréditaire dans les cellules germinales est protégée par une barrière quasi inviolable contre les influences en provenance de l'extérieur. Le "presque" se réfère à l'exception des rayons cosmiques, de la chaleur et des produits chimiques nocifs, qui pourraient pénétrer la barrière et causer des mutations dans les gènes. La plupart d'entre elles sont nuisibles, mais de temps en temps il y a des coups de chance, et cela, grâce à la sélection naturelle, permet à la roue de l'évolution de continuer sa marche. Hors cela, toute possibilité qu'une caractéristique acquise devienne héréditaire est empêchée par cette barrière. Le lamarckisme qui postulait que des améliorations bénéfiques pour les corps ou les compétences acquises par les parents pourraient être transmises à la descendance, doit être écarté comme superstition scientifique. Telle est la doctrine néo-darwinienne. Et pourtant, certains phénomènes évolutifs, cités à maintes reprises dans la littérature, semblent indiquer obstinément un facteur d'évolution lamarckienne.

Un exemple simple en est la peau sur la plante de nos pieds, qui est beaucoup plus épaisse que partout ailleurs. Si l'épaississement s'était produit pendant que le bébé a appris à marcher, il n'y aurait pas de problème. Mais l'épaississement est hérité, le bébé est né avec. Également curieuses sont les callosités innées sur le genou du chameau, et les épaississements bulbeux sur le cul de l'autruche, un à l'avant et un à l'arrière. Ils sont aussi, comme la peau de nos semelles, déjà présents dans l'embryon et sont incontestablement des caractéristiques héritées. Pourtant, en conformité avec le dogme dominant, on nous demande de croire que l'avènement de ces callosités à l'endroit exact où l'animal en a besoin est dû au hasard pur - comme le scarabée apparaissant à la fenêtre de Jung. On pourrait presque remplacer l'ESP par l'IAC (hérédité des caractères acquis) et voir émerger le même schéma d'arguments, et les mêmes passions quasi théologiques qui les accompagnent. Les lamarckiens se sont retrouvés dans une situation similaire à celle des parapsychologues : ils ont été incapables de produire une expérience reproductible. Les cas de IAC apparents dans le règne animal étaient rares, les phénomènes étaient capricieux, chaque cas apparemment net permettait des interprétations différentes et en dernier recours, à des accusations de fraude. En outre, bien que les lamarckiens étaient convaincus que IAC avait lieu, ils furent incapables d'en fournir une explication physiologique - comme les parapsychologues sont incapables de fournir une explication physique de l'ESP.

Ce curieux parallèle semble avoir échappé à l'attention des lamarckiens et des parapsychologues - Je n'ai pas vu mentionné dans la littérature. Peut-être qu'une hérésie c'est assez pour un seul homme. Paul Kammerer partageait les deux à la fois, et pourtant, lui aussi, semble n'avoir pas été au courant de la connexion entre eux. Portons l'analogie un peu plus loin. Dans "The Ghost in the Machine" et "The Case of the Midwife Toad", j'ai examiné les raisons d'un mécontentement croissant avec la théorie néo-darwinienne chez les biologistes contemporains, qui croient que la théorie reflète une partie de l'image, mais pas l'ensemble du tableau, et qui maintiennent que l'évolution des espèces est le résultat combiné d'un éventail de facteurs étiologiques connus, la plupart d'entre eux restant inconnus.

L'héritage de Darwin, et une forme modifiée de l'héritage de Lamarck, peuvent-être deux de ces facteurs à des extrémités opposées du spectre, avec un champ limité d'application à la fois. La IAC Lamarckienne serait un évènement relativement rare - pour la même raison que les phénomènes ESP sont rares: le fonctionnement des filtres de protection. Ceux-ci ne constitueraient pas la barrière absolue prévue par la théorie orthodoxe, mais un des mécanismes sélectifs, pour protéger le matériel héréditaire contre la "floraison et la confusion bourdonnante" des incursions biochimiques qui, autrement, feraient des ravages mettant en cause la continuité et la stabilité de l'espèce. Car si toutes les expériences des ancêtres laissaient des traces héréditaires à leur descendance, le résultat serait inévitablement un chaos de formes et un bordel des instincts. Mais cela ne signifie pas que nous devions exclure la possibilité que certaines modifications bien définies, adaptations intentionnelles - comme les callosités de l'autruche - qui ont été acquises génération après génération, finissent par passer à travers le filtre pour conduire à des changements dans la chimie des gènes en les rendant héréditaires. Il semble très peu probable que le filogenia ne doive posséder aucun souvenir.

La biochimie n'exclut pas la possibilité ci-dessus, et l'insistance presque fanatique de son rejet n'est qu'un exemple de plus de l'intolérance dogmatique de l'orthodoxie scientifique. (Mais : un membre éminent de l'établissement, le professeur Waddington, a effectivement proposé il y a quelques années un modèle provisoire pour l'IAC, ce qui indique que, au stade actuel de la biochimie un tel processus est envisageable.) Il nous faut faire ici une dernière excursion en physique - mais cette fois d'un genre très élémentaire.

Sur l'ombre du bureau en face de moi il y a l'ombre d'un cendrier. De manière ordinaire, il est tout à fait un objet sensible, solide, un tout en soi, sans "non-sens quantique" à son sujet. Mais quand je le soulève, je sens son poids, ce qui signifie qu'il est soumis à une influence assez mystérieuse que nous appelons le champ gravitationnel de la Terre. Et quand je le pousse, il résiste. Ceci est en partie dû au frottement contre le bureau, mais en partie aussi à l'inertie du cendrier massif. Maintenant, l'inertie est définie, selon la première loi du mouvement de Newton, comme la tendance d'un corps à préserver son état de repos ou de mouvement uniforme dans une direction donnée. Mais, si je devais suspendre ce cendrier par un fil au plafond, et en faire une réplique du pendule de Foucault aux Invalides à Paris, le plan de ses oscillations ne resterait pas figé dans la direction donnée, selon le principe que l'inertie nécessite, mais il tournerait lentement, complétant un tour en vingt-quatre heures.

Nous expliquons que c'est causé par la rotation de la terre, et que le pendule cendrier ne fait que préserver sa direction par rapport aux étoiles fixes, donc tout va bien. Toutefois, étant donné que tout mouvement est relatif, nous sommes en droit de considérer la terre comme au repos, avec des étoiles fixes tournant autour d'elle - comme l'imaginaient les anciens, et si c'est le cas, pourquoi les mouvements de mon cendrier doivent-ils être régis par les étoiles, et pas par la terre au-dessous ?

Le même argument s'applique à l'aplatissement des pôles de la terre, ainsi qu'à la force de Coriolis qui soi-disant dévie les missiles, les avions à réaction et les alizés de leur droite inertielle. Tous ces exemples semblent démontrer que la rotation de la terre est absolue et non relative. Ce paradoxe fut souligné par Bishop Berkeley, puis par le physicien allemand Ernst Mach (qui donna nom aux unités de vitesse supersonique). La réponse de Mach c'est que nous sommes en effet en droit de considérer la terre comme au repos, et d'expliquer les phénomènes que nous attribuons à sa rotation, comme causés en quelque sorte par les étoiles fixes et les galaxies - donc, par la masse de l'univers qui nous entoure.

Selon cette théorie, connue comme principe de Mach, c'est l'univers qui nous entoure qui détermine la direction du pendule de Foucault, et régit ainsi les forces d'inertie de la planète responsables de l'aplatissement des pôles. Einstein a repris le principe de Mach et a postulé que l'inertie des corps terrestres n'est qu'une autre manifestation de la gravité, non causé par les étoiles en tant que telles, mais plutôt de leur rotations. C'est la théorie qui prévaut aujourd'hui.

Donc comment la rotation des étoiles donne de l'inertie à mon cendrier reste une pure conjecture. L'inertie est le plus tangible, terre-à-terre, des phénomènes de notre vie quotidienne: vous l'éprouvez chaque fois que vous poussez un meuble. Et pourtant, il a maintenant été démontré que sa résistance aux déplacements est due au fait que nous sommes entouré par la masse en rotation de l'univers.

En 1927, Bertrand Russell, qui souscrivait néanmoins à la relativité einsteinienne, s'est senti poussé à protester ainsi : - On fait valoir que "rotation absolue" peut être remplacée par une "rotation par rapport aux étoiles fixes". Ce qui est formellement correct, mais dire que cette influence vient des étoiles de l'astronomie est scientifiquement incroyable. Whitehead écrit dans la même veine: Il est difficile de prendre au sérieux l'idée que ces phénomènes internes sur terre soient dus à l'influence d'étoiles dans le ciel. Je ne puis me résoudre à croire qu'une petite étoile scintillant dans sa tournée dirige le pendule de Foucault lors de l'exposition de Paris de 1851.

Ainsi, même mon cendrier est un holon, après tout. Ce n'est pas seulement un cendrier ombre sur un bureau ombre Eddington, mais d'une certaine façon, à laquelle ni Einstein ni Mach ne se hasardèrent à donner une explication causale, ses propriétés d'inertie sont reliées à la masse entière de l'univers qui l'entoure. On pourrait aussi bien l'appeler cendrier Mirandole, en se rappelant le passage cité plus tôt: premièrement, il y a l'unité dans les choses où chaque objet est en harmonie avec lui-même, se compose de lui-même, et est cohérent avec lui-même. Deuxièmement, il y a l'unité selon lequel une créature est unie avec les autres, et toutes les parties du monde constituent un tout. C'est le principe même du holon.

Nous avons entendu un choeur entier de lauréats du Nobel de physique nous informer que la matière était morte, de même pour la causalité et le déterminisme. Si c'est le cas, laissez-nous leur donner une sépulture décente, avec un requiem de musique électronique. Il est temps pour nous de tirer les leçons d'un XXe siècle de sciences post-mécanistes et de sortir du carcan que le XIXe siècle matérialiste a imposé à notre perspective philosophique. Paradoxalement, si cette perspective était restée aux côtés de la science moderne elle-même, au lieu de trainer avec un siècle de retard, nous aurions été libérés de cette camisole de force il y a bien longtemps. Il a été dit que la science sait de plus en plus sur de moins en moins. Mais cela s'applique uniquement au processus de spécialisation. On serait tout aussi fondés à dire que nous savons de moins en moins sur de plus en plus.

Cela vaut tout autant pour la procédure de l'unification de la matière et de l'énergie que pour les particules et les ondes, tout ceci dans le delta conceptuel d'une rivière qui se déplace majestueusement dans un océan d'abstractions. Plus la science acquiert des connaissances précises, plus les symboles qu'elle utilise deviennent insaisissables. La chasse au quark commence à ressembler à une quête mystique dans un nuage d'inconnaissance. La science se révèle être la réalisation la plus glorieuse de l'esprit humain - et sa défaite la plus alléchante. Nous sommes devenus bien plus malins depuis Pic de la Mirandole, mais pas beaucoup plus sages quand il s'agit de savoir ce que tout cela signifie. Une fois ceci reconnu, nous pourrions devenir plus réceptifs aux phénomènes qui nous entourent et que de manière unilatérale la science physique nous fait ignorer, pour sentir le courant qui souffle au travers des fentes de l'édifice de la causalité; et accorder plus d'attention aux évènements confluentiels, comprendre les phénomènes paranormaux dans notre concept de normalité, et se rendre compte que nous vivons dans le "royaume des aveugles".

Les conséquences d'un tel changement de conscience ne sont pas prévisibles, et on ne peut s'empêcher de sympathiser avec la déclaration du professeur H. H. Price comme quoi la "recherche psychique est l'une des branches les plus importantes d'enquête que l'esprit humain ait entrepris"; il semble important "de mettre en lumière toute nouvelle sur la nature de la personnalité humaine et sa position dans l'univers", et en même le temps "cela transformera les perspectives et fondations intellectuelles dont dépend toute notre civilisation actuelle".

Ce sont des mots forts d'un professeur d'Oxford en philosophie, mais je ne pense pas qu'il exagère. Ce qu'ils impliquent c'est un plaidoyer pour faire de la parapsychologie, et plus généralement de l'étude de ce que j'ai appelé les "évènements confluentiels" avec un substrat académique respectable et attrayant pour les étudiants, tant professionnels qu'en matières facultatives. Une fois qu'il y aura autant de chercheurs brillants engagés dans ce domaine comme cela existe maintenant pour l'étude de comportements de rats, une percée pourra être en vue. Dans la science-fiction, il est tenu pour acquis que la communication télépathique et la manipulation de la matière psychokinétique seront monnaie courante dans un avenir pas trop lointain, et la science-fiction s'est avéré être une prophétesse étonnamment fiable. Une autre de ses hypothèses courantes est que des êtres intelligents d'autres planètes de l'univers ont une maîtrise avancée de ces méthodes. Il est également possible, cependant, que dans ce domaine particulier, nous soyons une espèce sous-privilégiée - avec nos handicaps propres.

Le grand dessein de l'évolution vers des formes supérieures de l'unité dans la diversité n'exclut pas monstres et autres ratés biologiques, ni leurs évolutions pathologiques. Je ne pense pas que l'univers soit une institution charitable, mais nous devons vivre en lui et en tirer le meilleur parti. Les limites de notre matériel biologique nous condamnent peut-être au simple rôle de spectateurs devant la serrure de l'éternité. Mais au moins, retirons ce qui, devant ou dans la serrure, limite encore notre point de vue. [Note : Dans la vaste littérature sur la parapsychologie contemporaine, j'ai été particulièrement impressionné par les écrits de deux femmes - Rosalind Heywood, à qui ce livre est dédié, et Renee Haynes, auteur de The Hidden Springs et le roi philosophe, et rédactrice en cheffe du Journal de la Society for Psychical Research.

En écrivant cet essai sur un champ où même les anges craignent de marcher, j'ai avancé avec grande prudence, essayant surtout m'en tenir aux résultats expérimentaux de recherche en laboratoire, omettant toutes les soi-disant "preuves anecdotiques" - c'est-à-dire les manifestations spontanées de phénomènes parapsychologiques de la vie courante qui ne constituent pas des preuves au sens strict. En relisant ces pages avant impression, je sentais que ces limites self-imposées donnent lieu à une certaine partialité, et j'ai demandé à Renee Haynes de rétablir l'équilibre sous la forme d'un post-scriptum. Je lui suis donc reconnaissant d'avoir ajouté ainsi une saveur Yin Yang à mon austère travail.

(Post-scriptum par Renee Haynes)

M. Koestler nous a donné un exposé lucide de données modernes comme l'espace, le temps, la matière, la causalité, la neurophysiologie et la recherche psychique. Une remarquable synthèse en émerge. Son concept de "Janus-faced holons" pourrait bien se révéler comme un vrai stimulant pour notre génération comme le fut l'Elan Vital de Bergson pour les penseurs de la première partie du 20ème siècle. Il est à la fois gratifiant et grandiose être mandé pour écrire l'épilogue d'un tel travail, surtout afin qu'il suscite une discussion ultérieure. Si cet épilogue touche parfois à l'argumentaire, j'espère qu'on me le pardonnera.

J'ai été impressionné par la description de M. Koestler de la physique contemporaine. Avec ses termes infiniment abstraits, ses interactions mathématiques vérifiables, son univers visible, la danse de l'énergie, les choses prévisible et les folies imprévisibles, tantôt ici, tantôt là, maintenant nulle part et ensuite de retour, explosant tout le réseau propre à la pensée de Newton. C'est par ailleurs un exemple fascinant de synchronicité que deux physiciens et parapsychologues en viennent à utiliser le terme psi pour indiquer ce qui est encore inconnu; un curieux flash verbal qui pourrait servir à indiquer un terrain d'entente entre les deux disciplines. Pour moi, cependant, comme pour beaucoup d'autres, l'imagerie mathématique qui vient naturellement au calculateur est beaucoup plus difficile à comprendre, à rapporter à l'expérience de vie, que celle donnée par l'impact immédiat des sens.

Il est plus facile pour des gens comme nous de penser dans l'idiome d'une perception "ordinaire", ce processus monnaie courante, que dans le langage de formules algébriques, quelle que soit leur vérité et leur élégance. C'est par l'imagerie de la vue, l'ouïe, le toucher, l'odorat, la température, que la connaissance paranormale, comme la mémoire, apparait souvent dans l'esprit conscient (souvent, mais pas toujours. Ce peut être une impression soudaine que quelque chose s'est passé, ou pas plus qu'une impulsion inexplicable pour agir, courir hors d'une maison qui sera bientôt bombardé, ou entreprendre une tâche fastidieuse de voyage en cross-country pour voir un enfant à l'école, qui se révèle être tout à coup, dangereusement malade. (Cf. Cf. Arm Bridge, Moments of Knowing. London, 1970)

Pour cette raison, je tiens à souligner la valeur des phénomènes spontanés à la recherche psychique. Aussi déroutants, irremplaçables, uniques et personnels que de tels évènements puissent être, fait est qu'ils ne se produisent, que des hallucinations, certaines impressions de veille ou des rêves d'apparence réelle peuvent être mis en corrélation avec des évènements objectifs inconnus à la personne concernée, très éloignée ou il y a longtemps ou pas encore adoptée, a été maintes fois dit clairement, à la fois avant et après l'enquête systématique qui a débuté dans les années 1880. Même maintenant, bien sûr, de tels évènements sont souvent rejetés au mieux comme "anecdotiques", ou comme racontars de vieilles femmes, voire comme absurdités superstitieuses. De même, ce rapport tout à fait exact que les habitants de St. Kilda attrapèrent un rhume que quand un navire vint, fait rapporté par le Dr Johnson comme étant contraire à tout bon sens, ne fut accepté comme un état de fait que quand la théorie des germes de la maladie furent mis en place. Beaucoup de cas spontanés du paranormal - prise de conscience télépathique, "apparitions" perçues alors que la personne "vue" se trouvait en danger ou en train de mourir, apparition soudaine d'une douleur inexplicable au moment où est vécue de façon inattendue par une personne aimée au loin - ont été vérifié et selon des normes de preuve acceptables par une cour de justice. Tout cela donne du poids à un nombre toujours plus grand d'autres cas qui, bien que le narrateur ne le sache pas, tombent dans le même schéma, comme le Dr Louisa Rhine et d'autres l'ont fait remarquer. (Cf. Louisa Rhine, Hidden Channels of the Mind. London, 1962, and G. W. Lambert's Foreword to Andrew MacKenzie, Ghosts and Apparitions. London, 1971.)

La perception extra-sensorielle Spontanée se produit très certainement non seulement chez les humains, qui ont des mots pour décrire leurs expériences, mais chez les animaux, dont les sentiments ne peuvent être évalués que par leur apparence et leur comportement. Ce n'est pas toujours facile à interpréter parce que beaucoup d'entre eux ont des pouvoirs sensoriels qui nous manquent. Des rats adultes, par exemple, peuvent "sentir" les rayons X. Des bébés rongeurs d'une autre race ont été montré comme pouvant communiquer par ultrasons avec leurs mères, comme les dauphins de tous âges le font parfois les uns avec les autres. Ainsi comme il aurait été facile et faux - de produire une explication paranormale à cet épisode observé dans "la maison de l'attaché militaire américain d'une capitale étrangère non identifié". Le chien de la famille, hurlant et gémissant et "de toute évidence en souffrance, semblait être dans un vrai combat contre un ennemi dans le coin de la pièce". Les planchers furent enlevés et on trouva "un dispositif de transmission radio pour toutes les conversations dans la chambre". Lorsqu'il était allumé, il produisait un son trop aigu pour que l'oreille humaine l'entende, mais qui tourmentait le chien.

Mais il y a tout de même, bien authentifiés, des cas de comportement animaux qui semblent seulement donner sens qu'en termes de paranormal. Comme le chien ou le chat domestique qui, pris dans un panier fermé en voiture ou en train sur de longues distances, revient par le plus direct des cross-countries à la maison. Il y a ce récent rapport de la presse française d'un chien appartenant à un ouvrier qui l'avait quitté avec sa famille alors qu'il avait été envoyé dans une autre partie du pays pour une affectation temporaire. Le chien disparut de la maison et plus tard, mince et épuisé, il retrouvait son maître dans un endroit où il n'avait jamais été auparavant. Il y a aussi ces épisodes fréquents dans lesquels chiens ou les chats semblent être au courant de ce qui se passe à distance et deviennent surexcités dans leurs chenils au moment précis où leurs propriétaires commencent leur voyage de retour de vacances. Quelle que soit la distance. Il y a encore cet autre parallèle à faire entre les humains et les autres êtres vivants.

Comme JD Carthy l'a dit: "les animaux ne réagissent pas automatiquement à un signal, mais seulement si leur motivation est grande. Un animal repu ne réagit pas à un appel alimentaire. "M. Koestler a noté un angle différent (p.128 et suivantes) Que cela s'applique à l'homme ainsi que les animaux, dans la vie ordinaire que dans des conditions expérimentales. Ainsi, dans une rue animée d'un petit garçon d'un tour mécanique remarquerez marques de voitures, spécialiste de l'urbanisme de la circulation, une femme anxieuse de se croiser avec un enfant fatigué le mépris collectif impersonnel des pilotes pour ceux pied sur. En est de même de la perception extrasensorielle. En cela aussi, les gens deviennent très conscients de ce qui concerne eux-mêmes et leurs sentiments personnels. Pour évoquer une réponse instantanée forte de toute créature vivante un signal, sensorielle ou extra-sensorielle, doit être pertinente, pertinents aux besoins biologiques, à un stress émotionnel, à ce que Gerard Manley Hopkins appelé paysage intérieur.

C'est bien sûr pourquoi les expériences reproductibles dans la recherche psychique sont si difficiles à atteindre. L'intérêt qui pousse les gens à y participer est érodé par la répétition mécanique ennuyeuse, et l'effet de déclin qui se manifeste, tôt ou tard, en conformité avec les tempéraments, les humeurs et les relations personnelles des personnes concernées. Mis à part l'ennui cumulatif qu'elles engendrent par ailleurs, les expériences avec les cartes, les dés, des lumières et ainsi de suite ne tiennent pas compte de l'ambiance au sein de laquelle fonctionne l'esprit humain. Comme on l'a fait remarquer, "la cognition Paranormale est symbolique d'une manière associative; ainsi, M. Jones pourrait être impliqué dans un rêve ou la cognition paranormale parle d'un lion parce qu'il vit près du zoo, a un tempérament de lion ou une relation appelée Leo.

Pour des cartes à deviner avec un pack ordinaire le percipient pour marquer un coup direct dois dire littéralement "le dix de pique". La remarque "Dix hommes honnêtes" [qui appellent un chat un chat] serait considérée comme totalement hors de propos. Le premier groupe d'expériences au Laboratoire de rêve du Centre Maimonides Medical, * 1 résumée aux pages 37-8, allait dans le sens en vue de corriger cette difficulté, mais leurs résultats, bien que suggestifs, étaient difficiles à évaluer. C'est en partie parce que le pouvoir de visualiser varie donc considérablement d'une personne à une autre. Certaines personnes ont une mémoire photographique, un certain sélective, certains peuvent se rappeler le nom, mais pas les apparences des choses. En plus de tout ça tout le monde perçoit et exprime ses sentiments à travers un réseau d'associations, d'images et de symboles uniques à sa propre personne, d'autres découlent de son modèle de culture, la plupart des événements de sa vie individuelle. Une série d'expériences plus tard * en utilisant des cibles moins spécifiques - et pas seulement des images mais des sujets généraux tels que les religions d'Extrême-Orient, les productions artistiques des schizophrènes, la naissance d'un bébé, toutes illustrées pour l'agent par des vues et des bruits - semble avoir contourné certains des problèmes précédents. Il semble que cette méthode ait vraiment été couronnée de succès dans la communication télépathique sur l'humeur et la qualité d'une expérience. 

Cette question de la qualité par opposition à la mesure dans la recherche psychique comme dans de nombreux autres sujets me semble émerger avec de plus en plus d'urgence. On ne peut pas l'ignorer simplement parce qu'il est mal à l'aise et que c'est difficile à traiter. C'est pertinent pour la science, la philosophie, et tout le concept de synchronicité. Mais (parce que c'est tellement plus facile d'accumuler et de quantifier des données que de réfléchir sur leur signification) les notions de qualité et de sens qui comptent le plus pour les hommes ont tendance à être balayés. C'est une des raisons pourquoi ce livre est si précieux. Il se bat avec sens, intègre des faits.

Pourtant, je tiens à souligner le thème encore plus. La mesurable et le calculable peuvent servir la qualité, mais en diffèrent en nature. "Le son du cor le soir au fond des bois", "L'écume des mers périlleuses dans les terres désolées féeriques", "une profonde et troublante noirceur" - ces phrases peuvent être comprises et expérimentées instantanément en ce sens, mais elles ne sont pas susceptibles d'une analyse scientifique ou de quantification.

De même, vous ne pouvez pas avoir une tonne d'amour (en dépit de la façon dont les filles l'utilisent pour signer leurs lettres), soit un mètre de haine ou un gallon de pétrole de crainte, mais l'amour, la haine et la crainte sont tout aussi réels qu'une tonne de farine, une aune de toile ou d'un gallon d'essence, plus réel en effet, parce qu'ils ont une signification immédiate, ce ne sont pas de simples actions comme faire du pain cas ou remplir un oreiller. C'est une qualité, signifiant, qui clignote comme une étoile filante via la synchronicité, de même que, curieusement, à l'autre bout du spectre psychophysique, ça s'enflamme à travers des phénomènes de poltergeist "maisons hantées" *** maintenant considérés comme un effet de chaos profond ou la misère humaine s'exprime via un mode psychokinétique pas encore compris. Ainsi, grotesque, effrayant maintenant, les bruits, les pluies de pierres, les bouteilles brisées, les ampoules qui explosent, la modification violente inexplicable d'un équipement électrique symbolisent et exprimer plus directement que les mots ou la musique ou la peinture le conflit intérieur et l'agitation de la personne autour de laquelle tout ceci se produit.

Jung interprète ces phénoménal - comme les détonations chez Freud - comme des cas extrêmes de liens "transpsychiques" de causalité. Dans la vie quotidienne, ils se manifestent bien sûr de façon moins spectaculaire. Je décide d'écrire une phrase et le fonctionnement électrique de mon cerveau, le fonctionnement moteur de mes muscles exécutent cette décision via une chaîne traçable de causes physiques, mais c'était ma décision qui a établi le processus en cours. Il est en outre possible que de telles décisions puissent avoir des effets directs sur des processus biologiques qui ne sont pas en contact physique avec le corps du décideur, comme suggéré dans un article récent de John L. Randall sur "les phénomènes psi et théorie biologique" ****, qui fait référence à des travaux expérimentaux testant les effets psychokinétiques sur l'activité enzymatique, sur les paramécies, sur la croissance des plantes, et sur la cicatrisation des lésions chez la souris. Il fournit par ailleurs la jolie définition suivante générale: "Un phénomène psi est dite avoir eu lieu lorsque des informations sont transmises vers un système physique sans utilisation d'aucune forme connue d'énergie physique."

n peut ainsi distinguer entre différents niveaux: conscience de décision; phénomènes de type poltergeist engendré dans les couches subconscientes de la psyché, et enfin la synchronicité et les coïncidences significatives produites par l'esprit opérant à un autre niveau, inconcevable. Dans ce contexte, je pense qu'il me faut exprimer mon désaccord avec M. Koestler sur ce "sentiment océanique" et son " concept dominant" que "tout est un et un est tout" qui "fait écho à travers des écrits des mystiques chrétiens" (p.108).

Je suis sûre que cela arrive, et que, comme il l'écrit, il s'agit d'un passage vers le haut de la spirale de la conscience symbiotique de l'enfant, l'époque dorée du "temps du rêve" du primitif. Mais je ne pense pas que tous les mystiques, chrétiens ou non, partagent cette conception dominante, et le sentiment d'unité avec l'anima mundi que cela sous tende. Ils sont enflammés par une joie presque intolérable, mais ne sont pas engloutis en elle. Il ne peut y avoir de perception sans percepteur, et le contemplatif se perçoit lui-même suffisamment bien pour savoir s'il se réjouit. C'est comme si le coucher du soleil, ou la chaine de montagnes ou la nuit des étoiles qui les avaient mis en admiration se manifestaient comme étant en vie et les regardaient en retour. Il y a cette mémoire d'une remarque sobre de Francis Bacon, avocat, homme politique, essayiste et chercheur, qui évoqua pour la première fois des méthodes expérimentales pour tester en Angleterre la cognition paranormale. "J'aimerai plutôt croire toutes les fables du Talmud et du Coran que penser toute cette trame universelle sans esprit", un esprit qui est plus qu'un ordinateur mathématique et plus qu'un vaste système nerveux automatique, qui animerait tout ce qui est, aussi efficace et aussi inconscient de lui-même qu'une saine digestion.

Auteur: Koestler Arthur

Info: Internet et Roots of coïncidence. *M. Ullman et S. Krippner, études de rêves et de télépathie. Parapsychology Foundation, New York, 1970. **Stanley Krippner et autres, "bombardement sensoriel à longue distance, une étude de l'ESP dans les rêves." JASPR, vol. 65, n ° 4, Octobre 1971. *** Cf. ARG Owen, peut-on expliquer le Poltergeist? New York, 1964. ** "L'affaire Poltergeist Rosenheim", une communication lue par le Dr Hans Bender, le 11e Congrès annuel de l'Association de parapsychologie de Freiburg, Septembre 1968. Voir aussi JSPR., Vol. 46, n ° 750, Décembre 1970. **** SPR, vol. 46, n ° 749, Septembre 1971.

[ Holon ] [ chair-esprit ] [ intégratif ] [ épigénétique ] [ pré-mémétique ] [ homme-animal ] [ curiosité moteur ] [ dépaysement nécessaire ] [ spiritualité ]

 
Commentaires: 1

homme-végétal

Il arrive parfois qu’une personne puisse nommer le moment exact où sa vie a changé de manière irrévocable. Pour Cleve Backster, ce fut tôt le matin du 2 février 1966, treize minutes et cinquante-cinq secondes après le début d'un test polygraphique qu'il administrait. Backster, un expert en polygraphie de premier plan dont le test de comparaison de zones Backster est la norme mondiale en matière de détection de mensonge, avait à ce moment-là menacé le bien-être de son sujet de test. Le sujet répondit électrochimiquement à sa menace. Le sujet était une plante.

Depuis lors, Backster a mené des centaines d’expériences démontrant non seulement que les plantes réagissent à nos émotions et à nos intentions, mais aussi les feuilles coupées, les œufs (fécondés ou non), les yaourts et les échantillons de cellules humaines. Il a découvert, par exemple, que les globules blancs prélevés dans la bouche d'une personne et placés dans un tube à essai réagissent toujours électrochimiquement aux états émotionnels du donneur, même lorsque celui-ci est hors de la pièce, du bâtiment ou de l'État.

J'ai entendu parler du travail de Backster pour la première fois quand j'étais enfant. Ses observations ont confirmé une compréhension que j’avais alors, une compréhension que même un diplôme en physique ne pourrait éradiquer plus tard : que le monde est vivant et sensible.

J'ai parlé avec Backster à San Diego, trente et un ans et vingt-deux jours après sa première observation, et à un continent entier du bureau de Times Square à New York où il avait autrefois travaillé et vécu. Avant de commencer, il a placé du yaourt dans un tube à essai stérilisé, a inséré deux électrodes en or et a allumé la mire d'enregistrement. J'étais excité, mais dubitatif. Nous avons commencé à parler et le stylo s'est tortillé de haut en bas. Puis, juste au moment où je reprenais mon souffle avant d'être en désaccord avec quelque chose qu'il avait dit, le stylo sembla vaciller. Mais est-ce que ça avait vraiment bougé, ou est-ce que je voyais seulement ce que je voulais voir ?

À un moment donné, alors que Backster était hors de la pièce, j'ai essayé d'exprimer ma colère en pensant aux forêts coupées à blanc et aux politiciens qui les sanctionnent, aux enfants maltraités et à leurs agresseurs. Mais la ligne représentant la réponse électrochimique du yaourt est restée parfaitement plate. Peut-être que le yaourt ne m'intéressait pas. Perdant moi-même tout intérêt, j'ai commencé à errer dans le laboratoire. Mes yeux sont tombés sur un calendrier qui, après une inspection plus approfondie, s'est avéré être une publicité pour une compagnie maritime. J’ai ressenti une soudaine montée de colère face à l’omniprésence de la publicité. Puis j'ai réalisé : une émotion spontanée ! Je me suis précipité vers le graphique et j'y ai vu un pic soudain correspondant apparemment au moment où j'avais vu l'annonce.

Au retour de Backster, j’ai continué l’entretien, toujours excité et peut-être un peu moins sceptique.

Jensen : Pouvez-vous nous raconter en détail comment vous avez remarqué pour la première fois une réaction électrochimique dans une plante ?

Backster : C'était une plante de canne à sucre dracaena que j'avais dans mon laboratoire à Manhattan. Les plantes ne m'intéressaient pas particulièrement, mais il y avait une vente suite à une cessation d'activité chez un fleuriste au rez-de-chaussée de l'immeuble, et la secrétaire avait acheté quelques plantes pour le bureau : une plante à caoutchouc et cette dracaena. J'avais arrosé ces plantes jusqu'à saturation – en les mettant sous le robinet jusqu'à ce que l'eau coule du fond des pots – et j'étais curieux de voir combien de temps il faudrait à l'humidité pour atteindre le sommet. J'étais particulièrement intéressé par le dracaena, car l'eau devait remonter le long d'un long tronc, puis ressortir jusqu'au bout des longues feuilles. Je pensais que si je plaçais le détecteur de réponse galvanique cutanée du polygraphe au bout de la feuille, une baisse de résistance serait enregistrée sur le papier à mesure que l'humidité arriverait entre les électrodes.

C’est du moins ma façon de voir les choses. Je ne sais pas s’il y avait une autre raison, plus profonde, à mon action. Il se pourrait que mon subconscient m'ait poussé à faire ça – je ne sais pas.

En tout cas, j’ai remarqué quelque chose sur le graphique qui ressemblait à une réponse humaine sur un polygraphe : ce n’est pas du tout ce à quoi j’aurais pu m’attendre si de l’eau pénétrait dans une feuille. Les détecteurs de mensonge fonctionnent sur le principe selon lequel lorsque les gens perçoivent une menace pour leur bien-être, ils réagissent physiologiquement de manière prévisible. Par exemple, si vous effectuez un test polygraphique dans le cadre d’une enquête pour meurtre, vous pourriez demander à un suspect : " Est-ce vous qui avez tiré le coup mortel ? " Si la vraie réponse était oui , le suspect craindrait de mentir et les électrodes placées sur sa peau détecteraient la réponse physiologique à cette peur. J’ai donc commencé à réfléchir à des moyens de menacer le bien-être de la plante. J’ai d’abord essayé de tremper une de ses feuilles dans une tasse de café chaud. La plante, au contraire, montrait de l’ennui – la ligne sur le graphique continuait de baisser.

Puis, à treize minutes et cinquante-cinq secondes de temps graphique, l'idée m'est venue à l'esprit de brûler la feuille. Je n'ai pas verbalisé l'idée ; Je n'ai pas touché à la plante ; Je n'ai pas touché au matériel. Pourtant, la plante s'est comme affolée. Le stylo a sauté du haut du graphique. La seule chose à laquelle il avait pu réagir était mon image mentale.

Ensuite, j'ai récupéré quelques allumettes sur le bureau de mon secrétaire et, en allumant une, j'ai fait quelques passages sur la feuille. Cependant, j'ai réalisé que je constatais déjà une réaction si extrême qu'aucune augmentation ne serait perceptible. J'ai donc essayé une approche différente : j'ai éloigné la menace en remettant les allumettes sur le bureau du secrétaire. La plante s'est immédiatement calmée.

J’ai tout de suite compris qu’il se passait quelque chose d’important. Je ne trouvais aucune explication scientifique conventionnelle. Il n'y avait personne d'autre dans le laboratoire et je ne faisais rien qui aurait pu déclencher un mécanisme de déclenchement. A partir de ce moment, ma conscience n'a plus été la même. Toute ma vie a été consacrée à étudier ce phénomène.

Après cette première observation, j’ai parlé à des scientifiques de différents domaines pour obtenir leurs explications sur ce qui se passait. Mais cela leur était totalement étranger. J’ai donc conçu une expérience pour explorer plus en profondeur ce que j’ai commencé à appeler la perception primaire.

Jensen : Pourquoi  " perception primaire " ?

Backster : Je ne puis nommer ce dont j'ai été témoin perception extrasensorielle, car les plantes ne possèdent pas la plupart des cinq sens. Cette perception de la part de la plante semblait se produire à un niveau beaucoup plus basique – ou primaire.

Quoi qu’il en soit, ce qui a émergé est une expérience dans laquelle j’ai fait tomber automatiquement les crevettes de saumure, à intervalles aléatoires, dans de l’eau frémissante, tandis que la réaction des plantes était enregistrée à l’autre bout du laboratoire.

Jensen : Comment pouviez-vous savoir si les plantes réagissaient à la mort de la crevette ou à vos émotions ?

Backster : Il est très difficile d'éliminer le lien entre l'expérimentateur et les plantes testées. Même une brève association avec les plantes – quelques heures seulement – ​​suffit pour qu’elles s’adaptent à vous. Ensuite, même si vous automatisez et randomisez l’expérience et quittez le laboratoire, ce qui garantit que vous ignorez totalement le moment où l’expérience commence, les plantes resteront à votre écoute, peu importe où vous irez. Au début, mon partenaire et moi allions dans un bar situé à un pâté de maisons, mais au bout d'un certain temps, nous avons commencé à soupçonner que les plantes réagissaient, non pas à la mort des crevettes saumâtres, mais à l'augmentation et à la diminution du niveau d'excitation dans nos conversations.

Finalement, quelqu'un d'autre a acheté les plantes et les a stockées dans une autre partie du bâtiment. Le jour de l’expérience, nous sommes allés chercher les plantes, les avons amenées, les avons branchées et sommes partis. Cela signifiait que les plantes étaient seules dans un environnement étrange, avec seulement la pression des électrodes et un petit filet d'électricité traversant leurs feuilles. Parce qu’il n’y avait pas d’humains avec lesquels s’harmoniser, elles ont commencé à " regarder autour " de leur environnement. Ce n’est qu’à ce moment-là que quelque chose d’aussi subtil que la mort des artémias a été capté par les plantes.

Jensen : Les plantes s'adaptent-elles uniquement aux humains, ou également aux autres créatures vivantes de leur environnement ?

Backster : Je vais répondre à cette question avec un exemple. Souvent, je branche une plante et je m'occupe de mes affaires, puis j'observe ce qui la fait réagir. Un jour, je faisais bouillir de l'eau dans une bouilloire pour faire du café. Puis j’ai réalisé que j’avais besoin de la bouilloire pour autre chose, alors j’ai versé l’eau bouillante dans l’évier. Le végétal en question, surveillé, a réagi énormément à cela. Maintenant, si vous ne mettez pas de produits chimiques ou d’eau chaude dans l’évier pendant une longue période, une jungle microscopique commence à s’y développer. Il s’est avéré que la plante réagissait à la mort des microbes présents dans les égouts.

À maintes reprises, j'ai été étonné de constater que la capacité de perception s'étend jusqu'au niveau bactérien. Un échantillon de yaourt, par exemple, réagira lorsqu'un autre est nourri, comme pour dire : " Celui-là reçoit de la nourriture. Où est la mienne? " Cela se produit avec un certain degré de répétabilité. Ou si vous déposez des antibiotiques dans l’autre échantillon, le premier échantillon de yaourt montre une énorme réponse à la mort de l’autre. Et il n’est même pas nécessaire qu’il s’agisse de bactéries du même type pour que cela se produise. Mon premier chat siamois ne mangeait que du poulet. J'en gardais un cuit dans le réfrigérateur du laboratoire et en retirais un morceau chaque jour pour nourrir le chat. Au moment où j'arriverais à la fin, la carcasse serait assez vieille et des bactéries auraient commencé à s'y développer. Un jour, j'ai fait brancher du yaourt, et alors que je sortais le poulet du réfrigérateur et commençais à retirer des lanières de viande, le yaourt a répondu. Ensuite, je mets le poulet sous une lampe chauffante pour le ramener à température ambiante.

Jensen : Vous avez visiblement chouchouté votre chat.

Backster : Je n'aurais pas voulu que le chat doive manger du poulet froid ! Quoi qu’il en soit, la chaleur frappant les bactéries a provoqué une énorme réaction dans le yaourt.

Jensen : Comment saviez-vous que vous n'aviez pas d'influence sur cela ?

Backster : Je n’étais pas au courant de la réaction à l’époque. Vous voyez, j'avais installé des commutateurs pip partout dans le laboratoire ; chaque fois que j'effectuais une action, j'appuyais sur un interrupteur, ce qui plaçait une marque sur un tableau distant. Ce n’est que plus tard que j’ai comparé la réaction du yaourt à ce qui s’était passé en laboratoire.

Jensen : Et quand le chat a commencé à ingérer le poulet ?

Backster : Chose intéressante, les bactéries semblent avoir un mécanisme de défense tel qu'un danger extrême les amène dans un état similaire à un choc : en fait, elles s'évanouissent. De nombreuses plantes font cela également ; si vous les harcelez suffisamment, elles se bloquent. C'est apparemment ce que les bactéries ont fait, car dès qu'elles ont touché le système digestif du chat, le signal s'est éteint. À partir de ce moment-là, la ligne est plate.

Jensen : Le Dr David Livingstone, l'explorateur africain, a été mutilé par un lion. Il a déclaré plus tard que lors de l'attaque, il n'avait pas ressenti de douleur, mais plutôt un sentiment de bonheur. Il a dit que cela n'aurait posé aucun problème de se livrer au lion.

Backster : Une fois, j'étais dans un avion et j'avais avec moi un petit compteur à réponse galvanique alimenté par batterie. Juste au moment où les agents de bord commençaient à servir le déjeuner, j'ai dit à l'homme assis à côté de moi : " Vous voulez voir quelque chose d'intéressant ? J'ai mis un morceau de laitue entre les électrodes, et quand les gens ont commencé à manger leurs salades, nous avons eu des réactions, mais elles se sont arrêtées car les feuilles étaient en état de choc. " Attendez qu'ils récupèrent les plateaux ", dis-je, "et voyez ce qui se passe." Lorsque les préposés ont retiré nos repas, la laitue a retrouvé sa réactivité. Le fait est que la laitue passait dans un état de latence pour ne pas souffrir. Quand le danger est parti, la réactivité est revenue. Cet arrêt de l’énergie électrique au niveau cellulaire est lié, je crois, à l’état de choc chez les humains.

Les cellules extérieures au corps réagissent toujours aux émotions que vous ressentez, même si vous êtes à des kilomètres de vous. La plus grande distance que nous avons testée est d’environ trois cents milles.

Jensen : Vous avez donc testé des plantes, des bactéries, des feuilles de laitue. . .

Backster : Et des œufs. J'ai eu un Doberman pinscher pendant un certain temps et je lui donnais un œuf par jour. Un jour, j'avais une plante reliée à un grand compteur à réponse galvanique, et alors que je cassais un œuf pour nourrir le chien, le compteur est devenu fou. Après cela, j’ai passé des centaines d’heures à surveiller les œufs, fécondés et non fécondés, c'est pareil ; c'est toujours une cellule vivante.

Après avoir travaillé avec des plantes, des bactéries et des œufs, j’ai commencé à me demander comment les animaux réagiraient. Mais je n’arrivais pas à faire en sorte qu’un chat ou un chien reste immobile assez longtemps pour effectuer une surveillance significative. J'ai donc pensé essayer les spermatozoïdes humains, qui sont capables de rester vivants en dehors du corps pendant de longues périodes et sont certainement assez faciles à obtenir. Dans cette expérience, l’échantillon du donneur était placé dans un tube à essai doté d’électrodes et le donneur était séparé du sperme par plusieurs pièces. Ensuite, le donneur a inhalé du nitrite d'amyle, qui dilate les vaisseaux sanguins et est classiquement utilisé pour arrêter un accident vasculaire cérébral. Le simple fait d’écraser le nitrite d’amyle a provoqué une réaction importante du sperme, et lorsque le donneur a inhalé, le sperme s’est déchaîné.

Cependant, je ne pouvais pas poursuivre ces recherches. Cela aurait été scientifiquement valable, mais politiquement stupide. Les sceptiques dévoués m'auraient sans doute ridiculisé en me demandant où se trouvait mon masturbatorium, etc.

Puis j’ai rencontré un chercheur dentaire qui avait mis au point une méthode de collecte de globules blancs dans la bouche. C’était politiquement faisable, facile à réaliser et ne nécessitait aucune surveillance médicale. J'ai commencé à faire des expériences enregistrées sur écran partagé, avec l'affichage du graphique superposé au bas d'un écran montrant les activités du donneur. Nous avons prélevé des échantillons de globules blancs, puis renvoyé les gens chez eux pour regarder un programme télévisé présélectionné susceptible de susciter une réaction émotionnelle – par exemple, montrer à un vétéran de Pearl Harbor un documentaire sur les attaques aériennes japonaises. Ce que nous avons découvert, c'est que les cellules situées à l'extérieur du corps réagissent toujours aux émotions que vous ressentez, même si elles sont à des kilomètres de vous.

La plus grande distance que nous avons testée est d’environ trois cents milles. Brian O'Leary, qui a écrit Exploring Inner and Outer Space , a laissé ses globules blancs ici à San Diego, puis s'est envolé pour Phoenix. En chemin, il a gardé une trace des événements qui l'avaient agacé, en notant soigneusement l'heure de chacun. La corrélation est restée, même sur cette distance.

Jensen : Les implications de tout cela...

Backster : – sont stupéfiantes, oui. J'ai des tiroirs remplis de données anecdotiques de haute qualité montrant à maintes reprises comment les bactéries, les plantes, etc. sont toutes incroyablement en harmonie les unes avec les autres. Les cellules humaines ont elles aussi cette capacité de perception primaire, mais d'une manière ou d'une autre, elle s'est perdue au niveau conscient. Ou peut-être n’avons-nous jamais eu un tel talent.

Je soupçonne que lorsqu’une personne est suffisamment avancée spirituellement pour gérer de telles perceptions, elle sera correctement à l’écoute. En attendant, il serait peut-être préférable de ne pas être à l’écoute, à cause des dommages que nous pourrions causer en manipulant mal les informations reçues.

Nous avons tendance à nous considérer comme la forme de vie la plus évoluée de la planète. C'est vrai, nous réussissons très bien dans nos efforts intellectuels. Mais ce n’est peut-être pas le critère ultime permettant de juger. Il se pourrait que d’autres formes de vie soient plus avancées spirituellement. Il se pourrait également que nous nous approchons de quelque chose qui nous permettra d'améliorer notre perception en toute sécurité. De plus en plus de personnes travaillent ouvertement dans ces domaines de recherche encore marginalisés. Par exemple, avez-vous entendu parler du travail de Rupert Sheldrake avec les chiens ? Il installe une caméra d'enregistrement du temps sur le chien à la maison et sur le compagnon humain au travail. Il a découvert que, même si les gens rentrent du travail à une heure différente chaque jour, au moment où la personne quitte le travail, le chien de la maison se dirige vers la porte.

Jensen : Comment la communauté scientifique a-t-elle accueilli votre travail ?

Backster : À l’exception de scientifiques marginalisés comme Sheldrake, la réponse a été d’abord la dérision, puis l’hostilité, et maintenant surtout le silence.

Au début, les scientifiques appelaient la perception primaire " l’effet Backster ", espérant peut-être pouvoir banaliser les observations en leur donnant le nom de cet homme sauvage qui prétendait voir des choses qui avaient échappé à la science dominante. Le nom est resté, mais comme la perception primaire ne peut pas être facilement écartée, ce n'est plus un terme de mépris.

Au moment même où les scientifiques ridiculisaient mon travail, la presse populaire lui prêtait une très grande attention, dans des dizaines d'articles et dans des livres, comme The Secret Life of Plants de Peter Tompkins . Je n’ai jamais demandé aucune attention et je n’en ai jamais profité. Les gens sont toujours venus me chercher des informations.

Pendant ce temps, la communauté botanique était de plus en plus mécontente. Ils voulaient " aller au fond de toutes ces absurdités " et prévoyaient de résoudre le problème lors de la réunion de 1975 de l’Association américaine pour l’avancement de la science à New York. Arthur Galston, un botaniste bien connu de l'Université de Yale, a réuni un groupe restreint de scientifiques pour, à mon avis, tenter de discréditer mon travail ; il s’agit d’une réponse typique de la communauté scientifique aux théories controversées. J'avais déjà appris qu'on ne se lance pas dans ces combats pour gagner ; vous y allez pour survivre. Et c’est exactement ce que j’ai pu faire.

Ils en sont maintenant arrivés au point où ils ne peuvent plus contrer mes recherches, leur stratégie consiste donc simplement à m'ignorer et à espérer que je m'en aille. Bien sûr, cela ne fonctionne pas non plus.

Jensen : Quelle est leur principale critique ?

Backster : Le gros problème – et c’est un gros problème en ce qui concerne la recherche sur la conscience en général – est la répétabilité. Les événements que j'ai observés ont tous été spontanés. Elles doivent être. Si vous les planifiez à l'avance, vous les avez déjà modifiés. Tout se résume à ceci : répétabilité et spontanéité ne font pas bon ménage, et aussi longtemps que les membres de la communauté scientifique insisteront trop sur la répétabilité dans la méthodologie scientifique, ils n’iront pas très loin dans la recherche sur la conscience.

Non seulement la spontanéité est importante, mais l’intention l’est aussi. Vous ne pouvez pas faire semblant. Si vous dites que vous allez brûler une feuille sur la plante, mais que vous ne le pensez pas, rien ne se passera. J'entends constamment des gens de tout le pays vouloir savoir comment provoquer des réactions chez les plantes. Je leur dis : " Ne faites rien. Allez à votre travail; prenez des notes sur ce que vous faites à des moments précis et comparez-les plus tard à votre enregistrement graphique. Mais ne planifiez rien, sinon l’expérience ne fonctionnera pas. " Les gens qui font cela obtiennent souvent les mêmes résultats que moi et remportent le premier prix aux expo-sciences. Mais lorsqu'ils arrivent au cours de biologie 101, on leur dit que ce qu'ils ont vécu n'est pas important.

Il y a eu quelques tentatives de la part des scientifiques pour reproduire mon expérience avec les crevettes Artemia, mais elles se sont toutes révélées inadéquates sur le plan méthodologique. Lorsqu’ils ont appris qu’ils devaient automatiser l’expérience, ils se sont simplement rendus de l’autre côté d’un mur et ont utilisé la télévision en circuit fermé pour regarder ce qui se passait. De toute évidence, ils ne retiraient pas leur conscience de l’expérience, il leur était donc très facile d’échouer. Et soyons honnêtes : certains scientifiques ont été soulagés lorsqu’ils ont échoué, car le succès aurait été contraire à l’ensemble des connaissances scientifiques.

Jensen : L'accent mis sur la répétabilité semble anti-vie, car la vie elle-même n'est pas reproductible. Comme Francis Bacon l’a clairement indiqué, la répétabilité est inextricablement liée au contrôle, et le contrôle est fondamentalement l’essence même de la science occidentale, de la culture occidentale. Pour que les scientifiques abandonnent la répétabilité, ils devraient abandonner le contrôle, ce qui signifie qu’ils devraient abandonner la culture occidentale, et cela n’arrivera pas tant que cette civilisation ne s’effondrera pas sous le poids de ses propres excès écologiques.

Backster : J’ai renoncé à lutter contre d’autres scientifiques sur ce point. Mais je sais que s’ils réalisent mon expérience, même si elle échoue, ils verront quand même des choses qui changeront leur conscience. Ils ne seront plus jamais tout à fait les mêmes.

Des gens qui n’auraient rien dit il y a vingt ans me disent souvent : " Je pense que je peux maintenant vous dire en toute sécurité à quel point vous avez vraiment changé ma vie avec ce que vous faisiez au début des années soixante-dix. " À l’époque, ces scientifiques ne pensaient pas avoir le luxe de faire bouger les choses ; leur crédibilité, et donc leurs demandes de subvention, en auraient été affectées.

Jensen : En regardant votre travail, nous sommes confrontés à plusieurs options : Nous pouvons croire que vous mentez, ainsi que tous ceux qui ont déjà fait des observations similaires. On peut croire que ce que vous dites est vrai, ce qui nécessiterait de retravailler toute la notion de répétabilité dans la méthode scientifique, ainsi que nos notions de conscience, de communication, de perception, etc. Ou bien on peut croire que vous avez commis une erreur. Est-il possible que vous ayez négligé une explication strictement mécaniste de vos observations ? Un scientifique a dit qu’il devait y avoir un fil lâche dans votre détecteur de mensonge.

Backster : En trente et un ans de recherche, c'est comme si j'avais " desserré tous les noeuds ". Non, je ne vois aucune solution mécaniste. Certains parapsychologues pensent que je maîtrise l'art de la psychokinésie, que je fait bouger les aiguilles et autres indicateurs avec mon esprit – ce qui serait en soi une très bonne astuce. Mais ils négligent le fait que j'ai automatisé et randomisé de nombreuses expériences, de sorte que je ne suis même conscient de ce qui se passe que plus tard, lorsque j'étudie les graphiques et les bandes vidéo qui en résultent. Les explications conventionnelles sont devenues assez minces. L’une de ces explications, proposée dans un article du Harper’s, était l’électricité statique : si vous vous déplacez à travers la pièce et touchez la plante, vous obtenez une réponse. Mais bien sûr, je touche rarement la plante pendant l'observation, et de toute façon cette réaction serait totalement différente.

Jensen : Alors, quel est le signal capté par la plante ?

Backster : Je ne sais pas. Quoi qu’il en soit, je ne crois pas que le signal se dissipe à distance, comme ce serait le cas si nous avions affaire à un phénomène électromagnétique. Le signal de Phoenix, par exemple, était aussi fort que si Brian O'Leary avait été dans la pièce voisine.

Nous avons également tenté d'obstruer le signal à l'aide de plomb et d'autres matériaux, mais nous ne pouvons pas l'arrêter. Cela me fait penser que le signal ne va pas réellement d'ici à là, mais se manifeste plutôt à différents endroits. Je soupçonne que le signal ne prend pas de temps pour se déplacer. Il n'y a aucun moyen, en utilisant les distances terrestres, de tester cela, car si le signal était électromagnétique, il se propagerait à la vitesse de la lumière, et les retards biologiques consommeraient plus que la fraction de seconde qu'il faudrait au signal pour se propager. La seule façon de tester cela serait dans l’espace.

Certains physiciens quantiques soutiennent cette conviction – selon laquelle le signal ne dépend ni du temps ni de la distance. Il existe une théorie quantique appelée théorème de Bell, qui stipule que deux atomes éloignés l'un de l'autre changent parfois simultanément la direction de leur rotation.

Bien entendu, tout cela nous amène fermement sur le territoire du métaphysique et du spirituel. Pensez à la prière, par exemple. Si vous deviez prier Dieu, et que Dieu se trouvait de l’autre côté de la galaxie, et que votre prière voyageait à la vitesse de la lumière, vos os seraient depuis longtemps poussière avant que Dieu puisse répondre. Mais si Dieu – quelle que soit la manière dont vous définissez Dieu – est partout, la prière n'a pas besoin de voyager.

Jensen : Soyons plus concrets. Vous avez une image mentale de la plante en train de brûler et la plante réagit. Que se passe-t-il précisément à cet instant ? Comment la plante sait-elle réagir ?

Backster : Je ne prétends pas savoir. En fait, j’ai attribué une grande partie de ma réussite à pouvoir rester actif dans ce domaine – et à ne pas avoir été discrédité – au fait que je ne prétends pas le savoir. Vous voyez, si je donne une explication erronée, peu importe la quantité de données dont je dispose ou le nombre d’observations de qualité que j’ai faites. La communauté scientifique dominante utilisera l’explication incorrecte comme excuse pour rejeter mes données et mes observations. J'ai donc toujours dit que je ne savais pas comment cela se produisait. Je suis un expérimentateur, pas un théoricien.

Jensen : La capacité des plantes à percevoir l'intention me suggère une redéfinition radicale de la conscience.

Backster : Vous voulez dire que cela supprimerait la notion de conscience comme quelque chose sur lequel les humains ont le monopole ?

Jensen : Les humains et autres animaux dits supérieurs. Selon la pensée occidentale, parce que les plantes n’ont pas de cerveau, elles ne peuvent pas avoir de conscience.

Backster : Je pense que la science occidentale exagère le rôle du cerveau dans la conscience. Des livres entiers ont été écrits sur la conscience de l’atome. La conscience pourrait exister à un tout autre niveau. De très bonnes recherches ont été réalisées sur la survie de la conscience après la mort corporelle. Tout cela pointe vers l’idée selon laquelle la conscience n’a pas besoin d’être spécifiquement liée à la matière grise. Cette notion est une autre camisole de force dont nous devons nous débarrasser. Le cerveau a peut-être quelque chose à voir avec la mémoire, mais on peut affirmer avec force qu’une grande partie de notre mémoire n’y est pas stockée.

Jensen : La notion de mémoire corporelle est familière à tout athlète : lorsque vous vous entraînez, vous essayez de créer des souvenirs dans vos muscles.

Backster : Le cerveau ne fait peut-être même pas partie de cette boucle.

Jensen : J'ai également lu des articles sur les séquelles physiologiques des traumatismes – maltraitance des enfants, viol, guerre. De nombreuses recherches montrent que le traumatisme s’imprime sur différentes parties du corps ; une victime de viol pourrait plus tard ressentir une brûlure dans son vagin, par exemple.

Backster : Si je me cogne, j'explique aux tissus de cette zone ce qui s'est passé. Je ne sais pas à quel point cette méthode de guérison est efficace, mais elle ne peut pas faire de mal.

Jensen : Avez-vous également travaillé avec ce que l'on appelle normalement des matériaux inanimés ?

Backster : J'ai déchiqueté certaines substances et je les ai mises en suspension dans de la gélose. Je reçois des signaux électriques, mais ils ne sont pas nécessairement liés à quoi que ce soit qui se passe dans l'environnement. Les schémas sont trop grossiers pour que je puisse les déchiffrer. Mais je soupçonne que la conscience est plus répandue.

En 1987, j'ai participé à un programme de l'Université du Missouri qui comprenait une conférence du Dr Sidney Fox, qui était alors lié à l'Institut pour l'évolution moléculaire et cellulaire de l'Université de Miami. Fox avait enregistré des signaux électriques provenant d’un matériau semblable à une protéine qui présentait des propriétés étonnamment similaires à celles des cellules vivantes. La simplicité du matériel qu'il a utilisé et la capacité d'auto-organisation dont il fait preuve me suggèrent que la biocommunication était présente dès les tout premiers stades de l'évolution de la vie sur cette planète.

Bien sûr, l’hypothèse de Gaia – selon laquelle la Terre est un grand, grand organisme fonctionnel – s’inscrit parfaitement dans ce contexte. La planète va avoir le dernier mot concernant les dégâts que les humains lui infligent. Il ne lui faudra qu'un certain nombre d'abus, et alors il pourrait bien roter et renifler un peu, et détruire une bonne partie de la population. Je ne pense pas qu'il serait exagéré de pousser l'hypothèse un peu plus loin et d'attribuer une telle stratégie de défense à une sorte d'intelligence planétaire.

Jensen : Comment votre travail a-t-il été reçu dans d'autres parties du monde ?

Backster : Les Russes ont toujours été très intéressés et n'ont pas eu peur de s'aventurer dans ces domaines de recherche. À bien des égards, ils semblent beaucoup plus sensibles aux concepts spirituels que la plupart des scientifiques occidentaux. Et chaque fois que je parle de ce que je fais avec des scientifiques indiens – bouddhistes ou hindous –, ils me demandent : " Qu’est-ce qui vous a pris autant de temps ? " Mon travail s'accorde très bien avec de nombreux concepts adoptés par l'hindouisme et le bouddhisme.

Jensen : De quoi avons-nous peur, nous, les Occidentaux ?

Backster : La crainte est que, si ce que j’observe est exact, bon nombre des théories sur lesquelles nous avons construit nos vies doivent être complètement remaniées. J'ai connu des biologistes dire : " Si Backster a raison, nous sommes dans la merde . " Cela signifierait une refonte radicale de notre place dans le monde. Je pense que nous le voyons déjà.

Notre communauté scientifique occidentale en général se trouve dans une situation difficile car, pour maintenir notre mode de pensée scientifique actuel, nous devons ignorer une énorme quantité d’informations. Et de plus en plus d’informations de ce type sont recueillies en permanence. Les chercheurs butent partout sur ce phénomène de biocommunication. Il semble impossible, compte tenu de la sophistication des instruments modernes, de passer à côté de cette harmonisation fondamentale entre les êtres vivants. Seulement pendant un certain temps, ils pourront prétendre qu’il s’agit que de " cables déconnectés ".

Auteur: Internet

Info: Les plantes réagissent - Une entrevue avec Cleve Backster, Derrick Jensen,  Juillet 1997 - https://www.thesunmagazine.org/

[ télépathie ] [ adéquation corps-esprit ] [ universel esprit ] [ ego prison ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste