Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 3
Temps de recherche: 0.0486s

personnage

Mieux vaut la décrire tout de suite, pour en finir avec ce pensum. La pauvre dame était à mi-chemin entre la trentaine et la quarantaine, elle avait le front luisant, les sourcils épilés, des traits simples mais point déplaisants, évoquant ce que l'on pourrait appeler le type Marlène Dietrich en solution à faible dose.

Auteur: Nabokov Vladimir

Info: Lolita

[ vague ressemblance ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel