Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 40
Temps de recherche: 0.0456s

végétaux

Selon une nouvelle étude, les plantes peuvent réellement "écouter" ce qui se passe autour d’elles, notamment entendre le bourdonnement des abeilles et produire un nectar plus sucré en réponse, pour attirer les insectes volants. Et les fleurs sont littéralement leurs "oreilles".

Sur la base d’observations effectuées sur des primevères du soir (Oenothera drummondii), l’équipe responsable de la nouvelle étude, a découvert qu’en quelques minutes à peine après avoir détecté les ondes sonores des ailes d’abeilles voisines à travers les pétales de fleurs, la concentration de sucre dans le nectar de la plante avait augmenté de 20%. De plus, les fleurs semblaient même capables d’ignorer certains bruits de fond nuisants, tel que le vent.

Selon les scientifiques, cette capacité pourrait bien conférer à certaines plantes un avantage évolutif, en maximisant de ce fait leurs chances de disséminer le pollen. "Nos résultats montrent pour la toute première fois que les plantes peuvent réagir rapidement aux sons des pollinisateurs d’une manière écologiquement pertinente", écrivent les chercheurs, de l’Université de Tel-Aviv en Israël.

Ils ont alors effectué des expériences en se basant sur l’hypothèse suivante : les plantes peuvent effectivement capter les vibrations provoquées par les ondes sonores, ce qui pourrait en partie expliquer la raison pour laquelle les fleurs de nombreuses plantes ont la forme d’une cuvette (cela leur permettrait donc de mieux capturer les sons).

Au cours de plusieurs expériences impliquant plus de 650 fleurs d’onagre, la production de nectar a été mesurée en réponse au silence, en réponse à un son à trois niveaux de fréquence, ainsi qu’à l’enregistrement du bourdonnement des abeilles.

L’enregistrement du bourdonnement des abeilles, ainsi que les sons de basse fréquence (qui correspondaient étroitement à l’enregistrement des abeilles), ont suffi pour provoquer la modification de la composition du nectar, et cela en trois minutes seulement. Par contre, le silence et les sons de haute et moyenne fréquence n’ont eu aucun effet sur les plantes.

L’équipe a également tenté ces expériences avec des plantes dont certains pétales avaient été enlevés. Résultat : aucun changement dans la production de nectar n’a été notée, indiquant ainsi que ce sont bien les fleurs qui font office "d’oreilles" !

Ces tests de laboratoire ont été complétés par des observations effectuées sur des fleurs à l’état sauvage. "Les plantes ont beaucoup d’interactions avec les animaux, et les animaux font et entendent des bruits", a déclaré l’un des membres de l’équipe, Lilach Hadany. "Il serait inadapté pour les plantes de ne pas utiliser le son pour la communication. Nous avons essayé de faire des prédictions claires pour tester cela et avons été assez surpris lorsque cela a fonctionné", a ajouté Hadany.

Pour les plantes, produire un nectar plus sucré pourrait avoir comme conséquence que l’abeille reste sur la fleur plus longtemps (et se nourrisse plus longtemps de ladite fleur), ce qui augmenterait ses chances de récolter du pollen. Et pour la plante, les chances de voir d’autres insectes revenir sur les fleurs de la même espèce à l’avenir, sont également plus nombreuses. Il faut cependant que cette poussée de douceur sucrée soit parfaitement synchronisée, pour que les fleurs en vaillent la peine et que les abeilles s’y arrêtent. C’est exactement ce qui semble se produire.

À l’heure actuelle, le travail des chercheurs n’a pas encore été revu par des pairs, et nous ne savons pas exactement comment les vibrations sont décodées par les plantes. Nous ne savons pas non plus comment ces vibrations sont devenues un élément déclencheur de la production de nectar plus sucré. Mais, dans tous les cas, il s’agit d’un premier pas pour le moins intriguant dans le domaine des études concernant la compréhension des plantes et de leurs réactions face aux sons qui les entourent. "Certaines personnes peuvent se demander comment font les plantes pour entendre, ou sentir ? J’aimerais que les gens comprennent que l’audition n’est pas seulement pour les oreilles", explique Marine Veits, une des auteures de l’étude.

Quant à la suite, les chercheurs souhaitent comprendre comment les plantes réagissent à d’autres sons et à d’autres animaux (y compris à l’Homme).

Auteur: Internet

Info: https://trustmyscience.com. 21 janv. 2019. Sources : bioRxiv, National Geographic

[ musique ]

 

Commentaires: 0

Ajouté à la BD par miguel

illusion

L'exil du peuple juif est un mythe 2
L'historien Shlomo Sand affirme que l'existence des diasporas de Méditerranée et d'Europe centrale est le résultat de conversions anciennes au judaïsme. Pour lui, l'exil du peuple juif est un mythe, né d'une reconstruction à postériori sans fondement historique. Entretien.
Parmi la profusion de héros nationaux que le peuple d'Israël a produits au fil des générations, le sort n'aura pas été favorable à Dahia Al-Kahina qui dirigea les Berbères de l'Aurès, en Afrique du Nord. Bien qu'elle fût une fière juive, peu d'Israéliens ont entendu le nom de cette reine guerrière qui, au septième siècle de l'ère chrétienne, a unifié plusieurs tribus berbères et a même repoussé l'armée musulmane qui envahissait le nord de l'Afrique. La raison en est peut-être que Dahia Al-Kahina était née d'une tribu berbère convertie semble-t-il plusieurs générations avant sa naissance, vers le 6e siècle.
D'après l'historien Shlomo Sand, auteur du livre " Quand et comment le peuple juif a-t-il été inventé ? " (aux éditions Resling - en hébreu), la tribu de la reine ainsi que d'autres tribus d'Afrique du Nord converties au judaïsme sont l'origine principale à partir de laquelle s'est développé le judaïsme séfarade. Cette affirmation, concernant les origines des Juifs d'Afrique du Nord à partir de tribus locales qui se seraient converties - et non à partir d'exilés de Jérusalem - n'est qu'une composante dans l'ample argumentation développée dans le nouvel ouvrage de Sand, professeur au département d'Histoire de l'Université de Tel Aviv.
Dans ce livre, Sand essaie de démontrer que les Juifs qui vivent aujourd'hui en Israël et en d'autres endroits dans le monde, ne sont absolument pas les descendants du peuple ancien qui vivait dans le royaume de Judée à l'époque du premier et du second Temple. Ils tirent leur origine, selon lui, de peuples variés qui se sont convertis au cours de l'Histoire en divers lieux du bassin méditerranéen et régions voisines. Non seulement les Juifs d'Afrique du Nord descendraient pour la plupart de païens convertis, mais aussi les Juifs yéménites (vestiges du royaume Himyarite, dans la péninsule arabique, qui s'était converti au judaïsme au quatrième siècle) et les Juifs ashkénazes d'Europe de l'Est (des réfugiés du royaume khazar converti au huitième siècle).
A la différence d'autres "nouveaux historiens" qui ont cherché à ébranler les conventions de l'historiographie sioniste, Shlomo Sand ne se contente pas de revenir sur 1948 ou sur les débuts du sionisme, mais remonte des milliers d'années en arrière. Il tente de prouver que le peuple juif n'a jamais existé comme "peuple-race" partageant une origine commune mais qu'il est une multitude bigarrée de groupes humains qui, à des moments différents de l'Histoire, ont adopté la religion juive. D'après Sand, chez certains penseurs sionistes, cette conception mythique des Juifs comme peuple ancien conduit à une pensée réellement raciste : "Il y a eu, en Europe, des périodes où, si quelqu'un avait déclaré que tous les Juifs appartenaient à un peuple d'origine non juive, il aurait été jugé antisémite séance tenante. Aujourd'hui, si quelqu'un ose suggérer que ceux qui sont considérés comme juifs, dans le monde (...) n'ont jamais constitué et ne sont toujours pas un peuple ni une nation, il est immédiatement dénoncé comme haïssant Israël " (p. 31).
D'après Sand, la description des Juifs comme un peuple d'exilés, errant et se tenant à l'écart, qui "ont erré sur mers et sur terres, sont arrivés au bout du monde et qui, finalement, avec la venue du sionisme, ont fait demi-tour pour revenir en masse sur leur terre orpheline ", cette description ne relève que d'une " mythologie nationale". Tout comme d'autres mouvements nationaux en Europe, qui ont revisité un somptueux âge d'or pour ensuite, grâce à lui, fabriquer leur passé héroïque - par exemple, la Grèce classique ou les tribus teutonnes - afin de prouver qu'ils existaient depuis fort longtemps, "de même, les premiers bourgeons du nationalisme juif se sont tournés vers cette lumière intense dont la source était le royaume mythologique de David " (p. 81).
Mais alors, quand le peuple juif a-t-il réellement été inventé, selon l'approche de Sand ? "Dans l'Allemagne du 19e siècle, à un certain moment, des intellectuels d'origine juive, influencés par le caractère "volkiste"' du nationalisme allemand, se sont donné pour mission de fabriquer un peuple -rétrospectivement-, avec la soif de créer une nation juive moderne. A partir de l'historien Heinrich Graetz, des intellectuels juifs commencent à esquisser l'histoire du judaïsme comme l'histoire d'un peuple qui avait un caractère national, qui est devenu un peuple errant et qui a finalement fait demi-tour pour revenir dans sa patrie.

Auteur: Ilani Ofri

Info: Haaretz, mars 2008

[ histoire ]

 

Commentaires: 0

judaïsme

Les Juifs, dit-on, fuyant de l'île de Crète, occupèrent les dernières terres de Libye. On tire un argument de leur nom; Ida est une célèbre montagne de Crète, habitée par les Idaei, mot dont l'addition barbare d'une lettre aura fait Judaei. Quelques-uns prétendent que, sous le règne d'Isis, l'Égypte regorgeant d'un excès de population s'en déchargea sur les terres voisines, et que la migration eut pour chefs Hierosolymus et Juda. Beaucoup font des Juifs une race d'Éthiopiens, que la crainte et la haine forcèrent, sous le roi Céphée, à changer de demeures; d'autres un assemblage d'Assyriens qui, faute de champs à cultiver, s'emparèrent d'une partie de l'Égypte, puis, se rapprochant de la Syrie, se bâtirent des villes et s'approprièrent les terres des Hébreux. Il en est enfin qui leur donnent une origine illustre; selon eux, les Solymes, nation célébrée dans les chants d'Homère, fondèrent une ville, et, de leur nom, l'appelèrent Hierosolyma.
La plupart des auteurs s'accordent à dire qu'une maladie contagieuse qui couvrait tout le corps de souillure s'étant répandue en Égypte, le roi Bocchoris en demanda le remède à l'oracle d'Amon, et reçut pour réponse de purger son royaume et de transporter sur d'autres terres, comme maudits des dieux, tous les hommes infectés. On en fit la recherche, et cette foule misérable, jetée dans un désert, pleurait et s'abandonnait elle-même, lorsque Moïse, un des exilés, leur conseilla de ne rien espérer ni des dieux ni des hommes, qui les avaient également renoncés, mais de se fier à lui comme à un guide céleste, le premier qui jusque-là eût apporté quelque secours à leurs misères. Ils y consentirent, et, sans savoir où ils allaient, ils marchèrent au hasard. Mais rien ne les fatiguait autant que le manque d'eau. Tout près d'expirer, ils s'étaient jetés par terre et gisaient dans ces vastes plaines, lorsqu'ils virent un troupeau d'ânes sauvages, revenant de la pâture, gagner une roche ombragée d'arbres. Moïse les suit, et, à l'herbe qui croît sur le sol, il devine et ouvre de larges veines d'eau. Ce fut un soulagement; et, après six jours d'une marche continuelle, le septième ils chassèrent les habitants de la première terre cultivée, s'y établirent et y fondèrent leur ville et leur temple.
Moïse, pour s'assurer à jamais l'empire de cette nation, lui donna des rites nouveaux et un culte opposé à celui des autres mortels. Là est profane tout ce qui chez nous est sacré, légitime tout ce que nous tenons pour abominable. L'effigie de l'animal qui leur montra la route et les sauva de la soif est consacrée dans le sanctuaire, et ils sacrifient le bélier comme pour insulter Amon. Ils immolent aussi le boeuf, que les Égyptiens adorent sous le nom d'Apis. Ils s'abstiennent de la chair du porc, en mémoire de la lèpre qui les avait jadis infectés, et à laquelle cet animal est sujet. Des jeûnes fréquents sont un aveu de la longue faim qu'ils souffrirent autrefois, et leur pain sans levain rappelle le blé qu'ils ravirent à la hâte. S'ils consacrent le septième jour au repos, c'est, dit-on, parce qu'il termina leurs misères; séduits par l'attrait de la paresse, ils finirent par y donner aussi la septième année. Suivant d'autres, cet usage fut établi pour honorer Saturne, soit qu'ils aient reçu les principes de la religion de ces Idéens qu'on nous montre chassés avec Saturne et fondant la nation des Juifs, soit parce que, des sept astres qui règlent la destinée des mortels, celui dont l'orbe est le plus élevé et la puissance la plus énergique est l'étoile de Saturne, et que la plupart des corps célestes exercent leur action et achèvent leur course par nombres septénaires.
Ces rites, quelle qu'en soit l'origine, se défendent par leur antiquité; ils en ont de sinistres, d'infâmes, que la dépravation seule a fait prévaloir. Car tout pervers qui reniait le culte de sa patrie apportait à leur temple offrandes et tributs. La puissance des Juifs s'en accrut, fortifiée d'un esprit particulier; avec leurs frères, fidélité à toute épreuve, pitié toujours secourable; contre le reste des hommes, haine et hostilité. Ne communiquant avec les autres ni à table, ni au lit, cette nation, d'une licence de moeurs effrénée, s'abstient pourtant des femmes étrangères; entre eux, tout est permis. Ils ont institué la circoncision pour se reconnaître à ce signe. Leurs prosélytes la pratiquent comme eux, et les premiers principes qu'on leur inculque sont le mépris des dieux, le renoncement à sa patrie, l'oubli de ses parents, de ses enfants, de ses frères. Toutefois on veille à l'accroissement de la population; il est défendu de tuer aucun nouveau-né, et l'on croit immortelles les âmes de ceux qui périssent dans les combats ou les supplices. Il s'ensuit qu'on aime à procréer et qu'on s'inquiète peu de mourir. Ils tiennent des Égyptiens l'usage d'enterrer les corps au lieu de les brûler; sur les enfers, même prévoyance, mêmes idées; quant au ciel, les croyances diffèrent. L'Égypte adore beaucoup d'animaux et se taille des images; les Juifs ne conçoivent Dieu que par la pensée et n'en reconnaissent qu'un seul. Ils traitent d'impies ceux qui, avec des matières périssables, se fabriquent des dieux à la ressemblance de l'homme. Le leur est le dieu suprême, éternel, qui n'est sujet ni au changement ni à la destruction. Aussi ne souffrent-ils aucune effigie dans leurs villes, encore moins dans leurs temples. Point de statues ni pour flatter leurs rois, ni pour honorer les Césars. Du reste, comme leurs prêtres chantaient au son de la flûte et des tambours, qu'ils se couronnaient de lierre, et qu'une vigne d'or fut trouvée dans le temple, quelques-uns ont cru qu'ils adoraient Bacchus, le vainqueur de l'Orient, opinion démentie par la différence des rites; Bacchus institua des fêtes riantes et joyeuses; le culte des Juifs est bizarre et lugubre.

Auteur: Tacite

Info: Histoires, Livre V [70 après J.-C.] A. Les affaires de Judée, 5,1-13

 

Commentaires: 0

sciences

36'000 sexes, mais à deux, c'est mieux pour les biologistes de l'évolution, le sexe est un mystère - et le binôme mâle-femelle un paradoxe. Explications sur l'origine des genres.
"L'émergence des genres reste un problème déroutant en biologie, lance Lukas Schärer, spécialiste de l'évolution de la reproduction à l'Université de Bâle. Nous ne comprenons pas encore tout à fait le sexe."
Car la présence de deux sexes amène un désavantage immédiat: elle réduit de moitié la probabilité de rencontrer un partenaire de reproduction. "Avoir deux genres n'est pas seulement une mauvaise stratégie; c'est la pire", renchérit Laurence Hurst, biologiste à l'Université de Bath (G.B.) et l'un des spécialistes mondiaux de l'évolution de la reproduction. Avec un seul genre - ou une multitude -, nous pourrions nous reproduire avec tout le monde.
La reproduction sexuée présente des avantages évidents sur le plan de l'évolution (voir encadré plus bas). Mais qui dit sexe ne dit pas forcément mâle et femelle: il est tout à fait possible de fusionner deux cellules similaires. "Il faut distinguer deux étapes, précise Laurence Hurst. D'abord, on doit pouvoir expliquer l'émergence de deux types de gamètes (les cellules reproductrices, ndlr) qui - tout en restant morphologiquement identiques - ne peuvent fusionner que l'un avec l'autre. Un deuxième niveau concerne leur différenciation en gamètes mâles et femelles, qui sont non seulement distincts, mais également différents." "Des théories existent, ajoute Lukas Schärer, mais leur démonstration univoque par des expériences fait encore défaut."
La faute aux mitochondries
Dans les années 1990, Laurence Hurst a proposé une piste pour élucider la première étape: un seul genre favoriserait des mutations potentiellement nuisibles. "En fusionnant, les gamètes ne combinent pas seulement les informations génétiques contenues dans leur noyau, mais partagent aussi leurs mitochondries (responsable de fournir la cellule en énergie, ndlr), explique le biologiste anglais. Comme celles-ci évoluent indépendamment du noyau, il n'est pas certain que les mitochondries dominantes, qui par exemple se reproduisent plus rapidement que les autres, s'avèrent également bénéfiques à la cellule et à l'individu."
Une solution à ce problème serait procurée par l'émergence de deux types de gamètes (appelés "+" et "-"), dont un seul est capable de transmettre ses mitochondries. On réduit ainsi les probabilités d'avoir des mutations mitochondriales délétères à la cellule. Afin de propager les types de mitochondries bénéfiques à l'individu, il y aurait un avantage évolutionniste à ce que seuls les différents types de gamètes puissent fusionner entre eux.
"Notre thèse est appuyée par des observations faites sur des protozoaires ciliés, poursuit Hurst. Ceux qui se reproduisent par fusion et mélangent leurs mitochondries ont deux genres alors que d'autres, qui ne font qu'échanger leur noyau sans partager leurs mitochondries, possèdent non pas deux mais des centaines de genres distincts. On observe le même phénomène chez les champignons: ils n'échangent que leur noyau, et certains possèdent jusqu'à 36'000 sexes." Avoir exactement deux sexes servirait ainsi à filtrer les mitochondries.
A quoi ressemble l'acte de chair lorsqu'on a plusieurs genres? "Les deux partenaires doivent être d'un genre différent, répond Lukas Schärer. Au niveau des probabilités, un nombre élevé de sexes se rapproche de l'absence de genre de plusieurs façons, car on peut se reproduire avec à peu près tout le monde. L'existence de genres protège les individus de l'auto-fertilisation, qui est dangereuse car elle expose souvent des mutations délétères." De nombreux sexes, donc, pour éviter la consanguinité.
La naissance du mâle
Mais pourquoi les + et les - se sont-ils ensuite différenciés en "mâles" et "femelles"? Dans les années 1970, le biologiste Geoff Parker a proposé un mécanisme évolutionniste. Des mutations ont changé la taille des cellules reproductives. Graduellement, deux types d'individus ont été sélectionnés, qui produisent soit des spermatozoïdes petits, nombreux et de valeur limitée, soit des oeufs gros, rares et précieux. Les premiers peuvent être produits en très grand nombre, ce qui augmente la probabilité de rencontre. Grâce à leur grande taille, les seconds ont davantage de chances d'être fécondés et peuvent fournir une grande quantité de matière au zigote (obtenu par la fusion des gamètes), ce qui améliore ses chances de survie. "L'évolution de l'anisogamie (des gamètes de tailles différentes, ndlr) a eu lieu plusieurs fois au cours de l'évolution et ceci de manière indépendante", rappelle Brian Charlesworth, professeur de biologie évolutionnaire à l'Université d'Edimbourg. "L'anisogamie a probablement moins de chance d'évoluer dans des espèces plus petites, car l'avantage procuré par un grand oeuf joue un rôle plus faible", note Lukas Schärer.
Reste encore la différentiation au niveau de l'individu: pourquoi la plupart des animaux comprennent des mâles et des femelles - au lieu de favoriser l'hermaphrodisme? Ce dernier s'accompagne du risque d'autofertilisation et des problèmes dus à la consanguinité, mais atténue la difficulté de trouver un partenaire. Cet avantage pourrait être un facteur déterminant chez les plantes: incapables de se déplacer, elles sont en grande majorité hermaphrodites. Au contraire des animaux, qui eux ont les moyens de partir chercher l'âme soeur.
Les bienfaits du sexe
Le but de la chair, c'est de mélanger pour mieux s'adapter. En combinant les gènes des deux parents, la reproduction sexuée permet de sélectionner les bonnes mutations et de purger les mauvaises. "Des expériences avec des levures modifiées pour se reproduire asexuellement ont montré qu'elle s'adaptent moins rapidement aux changements de l'environnement, détaille Laurence Hurst de l'Université de Bath (G.B.). On a pu observer que certaines espèces capables d'utiliser les deux modes de reproduction favorisent la voie sexuée lorsqu'elles se voient soumises à des pressions de l'environnement." Une fois le danger passé, elles retournent au sexe en solitaire - également favorisé lorsque la rencontre d'un partenaire s'avère trop difficile.
Le kamasutra de la Nature
Entre des bactéries échangeant du matériel génétique et des champignons possédant des milliers de sexes, la Nature ne montre aucun tabou. Les hermaphrodites simultanés tels que la majorité des plantes et escargots possèdent les appareils génitaux mâles et femelles, alors que les hermaphrodites séquentiels (certains poissons et crustacés) changent de sexe au cours du temps. Les êtres hétérogames (amibes sociales, micro-crustacés, algues) peuvent alterner entre reproduction asexuée et sexuée. On a observé que les femelles d'un certain nombre d'animaux (dont le dragon du Komodo et le requin marteau) peuvent parfois se passer de mâle pour se reproduire par parthénogenèse lorsque rencontrer l'âme soeur s'avère trop difficile. Les polyploïdes, eux, ne possèdent pas des paires de chromosomes comme la plupart des animaux sexués, mais de multiples copies: une espèce de salamandre n'a que des femelles possédant leurs chromosomes en triple. Elles se reproduisent par "cleptogénèse", en volant des spermatozoïdes de variétés voisines.
80 millions d'années sans sexe: un scandale évolutionnaire
Même si les premiers êtres vivants unicellulaires comme les bactéries se sont toujours reproduits de manière asexuée, "la plupart des êtres multicellulaires asexués ont évolué à partir d'espèces sexuées, note Brian Charlesworth de l'Université d'Edimbourg. Ils n'ont pas eu le temps de se diversifier et sont normalement d'origine récente." La découverte que des invertébrés aquatiques asexués appelés bdelloidés ont survécu quelque 80 millions d'années fut qualifiée de "scandale évolutionnaire" par le biologiste John Maynard Smith. Autre particularité, ces invertébrés pratiquent une forme d'hibernation: face à une pression environnementale, ils peuvent sécher et entrer en animation suspendue. En 2008, une étude d'Harvard apporte un élément de réponse: lorsqu'ils se réveillent, les bdelloidés incorporent l'ADN étranger se trouvant à proximité. Même pour les êtres asexués, le mélange des gènes semble incontournable pour survivre.

Auteur: Saraga Daniel

Info: Largeur.com, 25 mai 2011

[ couple ] [ reproduction ]

 

Commentaires: 0

nanomonde verrouillé

Comment un tour de passe-passe mathématique a sauvé la physique des particules

La renormalisation est peut-être l'avancée la plus importante de la physique théorique depuis 50 ans. 

Dans les années 1940, certains physiciens avant-gardistes tombèrent sur une nouvelle couche de la réalité. Les particules n'existaient plus et les champs - entités expansives et ondulantes qui remplissent l'espace comme un océan - étaient dedans. Une ondulation dans un champ était un électron, une autre un photon, et leurs interactions semblaient expliquer tous les événements électromagnétiques.

Il n'y avait qu'un seul problème : la théorie était constituée d'espoirs et de prières. Ce n'est qu'en utilisant une technique appelée "renormalisation", qui consiste à occulter soigneusement des quantités infinies, que les chercheurs purent éviter les prédictions erronées. Le processus fonctionnait, mais même ceux qui développaient la théorie soupçonnaient qu'il s'agissait d'un château de cartes reposant sur un tour de passe-passe mathématique tortueux.

"C'est ce que j'appellerais un processus divertissant", écrira plus tard Richard Feynman. "Le fait de devoir recourir à de tels tours de passe-passe nous a empêchés de prouver que la théorie de l'électrodynamique quantique est mathématiquement cohérente.

La justification vint des décennies plus tard, d'une branche de la physique apparemment sans rapport. Les chercheurs qui étudiaient la magnétisation découvrirent que la renormalisation ne concernait aucunement les infinis. Elle évoquait plutôt la séparation de l'univers en domaines de tailles distinctes, point de vue qui guide aujourd'hui de nombreux domaines de la physique.

La renormalisation, écrit David Tong, théoricien à l'université de Cambridge, est "sans doute l'avancée la plus importante de ces 50 dernières années dans le domaine de la physique théorique".

L'histoire de deux charges

Selon certains critères, les théories des champs sont les théories les plus fructueuses de toute la science. La théorie de l'électrodynamique quantique (QED), qui constitue l'un des piliers du modèle standard de la physique des particules, a permis de faire des prédictions théoriques qui correspondent aux résultats expérimentaux avec une précision d'un sur un milliard.

Mais dans les années 1930 et 1940, l'avenir de la théorie était loin d'être assuré. L'approximation du comportement complexe des champs donnait souvent des réponses absurdes et infinies, ce qui amena certains théoriciens à penser que les théories des champs étaient peut-être une impasse.

Feynman et d'autres cherchèrent de toutes nouvelles perspectives - éventuellement même susceptibles de ramener les particules sur le devant de la scène - mais ils finirent par trouver un moyen de contourner l'obstacle. Ils constatèrent que les équations QED  permettaient d'obtenir des prédictions respectables, à condition qu'elles soient corrigées par la procédure impénétrable de renormalisation.

L'exercice est le suivant. Lorsqu'un calcul QED conduit à une somme infinie, il faut l'abréger. Mettez la partie qui tend vers l'infini dans un coefficient - un nombre fixe - placé devant la somme. Remplacez ce coefficient par une mesure finie provenant du laboratoire. Enfin, laissez la somme nouvellement apprivoisée retourner à l'infini.

Pour certains, cette méthode s'apparente à un jeu de dupes. "Ce ne sont tout simplement pas des mathématiques raisonnables", écrivit Paul Dirac, théoricien quantique novateur.

Le cœur du problème - germe de sa solution éventuelle - se trouve dans la manière dont les physiciens ont traité la charge de l'électron.

Dans ce schéma la charge électrique provient du coefficient - la valeur qui engloutit l'infini au cours du brassage mathématique. Pour les théoriciens qui s'interrogeaient sur la signification physique de la renormalisation, la théorie QED laissait entendre que l'électron avait deux charges : une charge théorique, qui était infinie, et la charge mesurée, qui ne l'était pas. Peut-être que le noyau de l'électron contenait une charge infinie. Mais dans la pratique, les effets de champ quantique (qu'on peut visualiser comme un nuage virtuel de particules positives) masquaient l'électron, de sorte que les expérimentateurs ne mesuraient qu'une charge nette modeste.

Deux physiciens, Murray Gell-Mann et Francis Low, concrétisèrent cette idée en 1954. Ils ont relié les deux charges des électrons à une charge "effective" qui varie en fonction de la distance. Plus on se rapproche (et plus on pénètre le manteau positif de l'électron), plus la charge est importante.

Leurs travaux furent les premiers à lier la renormalisation à l'idée d'échelle. Ils laissaient entendre que les physiciens quantiques avaient trouvé la bonne réponse à la mauvaise question. Plutôt que de se préoccuper des infinis, ils auraient dû s'attacher à relier le minuscule à l'énorme.

La renormalisation est "la version mathématique d'un microscope", a déclaré Astrid Eichhorn, physicienne à l'université du Danemark du Sud, qui utilise la renormalisation pour ses recherches en théorie de la gravité quantique. "Et inversement, vous pouvez commencer par le système microscopique et faire un zoom arrière. C'est une combinaison de microscope et de télescope".

La renormalisation capture la tendance de la nature à se subdiviser en mondes essentiellement indépendants.

Les aimants sauvent la mise

Un deuxième indice apparut dans le monde de la matière condensée, ici les physiciens s'interrogeaient sur la manière dont un modèle magnétique grossier parvenait à saisir les détails de certaines transformations. Le modèle d'Ising n'était guère plus qu'une grille de flèches atomiques qui ne pouvaient pointer que vers le haut ou vers le bas, mais il prédisait les comportements d'aimants réels avec une perfection improbable.

À basse température, la plupart des atomes s'alignent, ce qui magnétise le matériau. À haute température, ils deviennent désordonnés et le réseau se démagnétise. Mais à un point de transition critique, des îlots d'atomes alignés de toutes tailles coexistent. Il est essentiel de noter que la manière dont certaines quantités varient autour de ce "point critique" semble identique dans le modèle d'Ising, dans les aimants réels de différents matériaux et même dans des systèmes sans rapport, tels que la transition à haute pression où l'eau devient indiscernable de la vapeur d'eau. La découverte de ce phénomène, que les théoriciens ont appelé universalité, était aussi bizarre que de découvrir que les éléphants et les aigrettes se déplacent exactement à la même vitesse de pointe.

Les physiciens n'ont pas pour habitude de s'occuper d'objets de tailles différentes en même temps. Mais ce comportement universel autour des points critiques les obligea à tenir compte de toutes les échelles de longueur à la fois.

Leo Kadanoff, chercheur dans le domaine de la matière condensée, a compris comment procéder en 1966. Il a mis au point une technique de "spin par blocs", en décomposant une grille d'Ising trop complexe pour être abordée de front, en blocs modestes comportant quelques flèches par côté. Il calcula l'orientation moyenne d'un groupe de flèches et  remplaça tout le bloc par cette valeur. En répétant le processus, il lissa les détails fins du réseau, faisant un zoom arrière pour comprendre le comportement global du système.

Enfin, Ken Wilson -  ancien étudiant de Gell-Mann qui avait les pieds tant dans le monde de la physique des particules et de la matière condensée -  réunit les idées de Gell-Mann et de Low avec celles de Kadanoff. Son "groupe de renormalisation", qu'il décrivit pour la première fois en 1971, justifiait les calculs tortueux de la QED et a fourni une échelle permettant de gravir les échelons des systèmes universels. Ce travail a valu à Wilson un prix Nobel et a changé la physique pour toujours.

Selon Paul Fendley, théoricien de la matière condensée à l'université d'Oxford, la meilleure façon de conceptualiser le groupe de renormalisation de Wilson est de le considérer comme une "théorie des théories" reliant le microscopique au macroscopique.

Considérons la grille magnétique. Au niveau microscopique, il est facile d'écrire une équation reliant deux flèches voisines. Mais extrapoler cette simple formule à des trillions de particules est en fait impossible. Vous raisonnez à la mauvaise échelle.

Le groupe de renormalisation de Wilson décrit la transformation d'une théorie des éléments constitutifs en une théorie des structures. On commence avec une théorie de petits éléments, par exemple les atomes d'une boule de billard. On tourne la manivelle mathématique de Wilson et on obtient une théorie connexe décrivant des groupes de éléments, par exemple les molécules d'une boule de billard. En continuant de tourner la manivelle, on obtient des groupes de plus en plus grands - grappes de molécules de boules de billard, secteurs de boules de billard, et ainsi de suite. Finalement, vous voilà en mesure de calculer quelque chose d'intéressant, comme la trajectoire d'une boule de billard entière.

Telle est la magie du groupe de renormalisation : Il permet d'identifier les quantités à grande échelle qu'il est utile de mesurer et les détails microscopiques alambiqués qui peuvent être ignorés. Un surfeur s'intéresse à la hauteur des vagues, et non à la bousculade des molécules d'eau. De même, en physique subatomique, la renormalisation indique aux physiciens quand ils peuvent s'occuper d'un proton relativement simple plutôt que de son enchevêtrement de quarks intérieurs.

Le groupe de renormalisation de Wilson suggère également que les malheurs de Feynman et de ses contemporains venaient du fait qu'ils essayaient de comprendre l'électron d'infiniment près. "Nous ne nous attendons pas à ce que  ces théories soient valables jusqu'à des échelles [de distance] arbitrairement petites", a déclaré James Fraser, philosophe de la physique à l'université de Durham, au Royaume-Uni. Ajoutant : "La coupure absorbe notre ignorance de ce qui se passe aux niveaux inférieurs".

En d'autres termes, la QED et le modèle standard ne peuvent tout simplement pas dire quelle est la charge nue de l'électron à une distance de zéro nanomètre. Il s'agit de ce que les physiciens appellent des théories "effectives". Elles fonctionnent mieux sur des distances bien définies. L'un des principaux objectifs de la physique des hautes énergies étant de découvrir ce qui se passe exactement lorsque les particules deviennent encore plus proches.

Du grand au petit

Aujourd'hui, le "dippy process" de Feynman est devenu aussi omniprésent en physique que le calcul, et ses mécanismes révèlent les raisons de certains des plus grands succès de la discipline et de ses défis actuels. Avec la renormalisation, les câpres submicroscopiques compliqués ont tendance à disparaître. Ils sont peut-être réels, mais ils n'ont pas d'incidence sur le tableau d'ensemble. "La simplicité est une vertu", a déclaré M. Fendley. "Il y a un dieu là-dedans.

Ce fait mathématique illustre la tendance de la nature à se diviser en mondes essentiellement indépendants. Lorsque les ingénieurs conçoivent un gratte-ciel, ils ignorent les molécules individuelles de l'acier. Les chimistes analysent les liaisons moléculaires mais ignorent superbement les quarks et les gluons. La séparation des phénomènes par longueur, quantifiée par le groupe de renormalisation, a permis aux scientifiques de passer progressivement du grand au petit au cours des siècles, plutôt que briser toutes les échelles en même temps.

En même temps, l'hostilité de la renormalisation à l'égard des détails microscopiques va à l'encontre des efforts des physiciens modernes, avides de signes du domaine immédiatement inférieur. La séparation des échelles suggère qu'ils devront creuser en profondeur pour surmonter le penchant de la nature à dissimuler ses points les plus fins à des géants curieux comme nous.

"La renormalisation nous aide à simplifier le problème", explique Nathan Seiberg, physicien théoricien à l'Institute for Advanced Study de Princeton, dans le New Jersey. Mais "elle cache aussi ce qui se passe à très courte distance. On ne peut pas avoir le beurre et l'argent du beurre".


Auteur: Internet

Info: https://www.quantamagazine.org/. Charlie Wood, september 17, 2020

 

Commentaires: 0

Ajouté à la BD par miguel

affrontement racial

J'ai juste eu le temps de percevoir un rai brutal de lumière, un bruit de rires bizarres, une espèce d'exclamation rauque. Je suis devant la vitre, médusé. Des rideaux dissimulent tout l'intérieur, mais laissent passer une lueur assez forte. Je distingue contre la porte, à droite, un écriteau de bois : "A la ville d'Oran, café-hôtel. Chambres au mois et à la journée." Un bouge à sidis. Elle est là-dedans. Je suis interdit, épouvanté. Mais ma main est déjà sur la poignée. Ce qui m'a poussé (je crois pouvoir le dire, maintenant, après coup) c'est un dernier sentiment d'incrédulité, le refus d'admettre qu'une telle chose soit possible. J'ouvre la porte avec décision. Je fais deux pas. C'est bien un bistrot à sidis, pareil du reste à tous les bistrots de faubourg, assez exigu, éclairé très crûment. Mes yeux vont aussitôt à la petite. Elle est bien là, elle se tourne vers moi. Tout le monde me regarde. Ce sont des Bicots. Je vois des gueules bistrées, des tignasses crépues, des nez en bec d'aigle. Ils sont presque tous debout, autour du zinc qui reluit, ils doivent être sept ou huit. J'en repère deux, trois, à chapeaux mous, complets prétentieux ; un autre, en noir, de mine assez noble, peut-être. Au bout du groupe, il y a un gros type assis d'une trentaine d'années, frisottant, le mieux habillé, en bleu marine. J'aperçois un képi de sous-officier de tirailleurs, et dessous une tête maigre de Sarrasin, belle, ma foi ! Je vois aussi une seconde fille, près du type en bleu, un peu plus grande que l'autre, vingt-quatre ou vingt-cinq ans, mince, bien faite, semble t-il, mise avec simplicité, sans mauvais goût. C'est sur elle peut-être que mon regard s'arrête avec le plus de stupeur. Elle est d'une décence de silhouette invraisemblable dans un tel lieu. Et avec cela, des mèches de cheveux désordonnées, les pupilles agrandies et égarées, sa blouse claire dépoitraillée sur le creux de deux seins palpitants.

- Qu'y c'qu'y c'est ?

Un affreux asticot, debout, derrière le zinc, m'interpelle aigrement. Le tenancier sans doute.

J'articule d'une voix aussi naturelle que possible :

- Je désirerais boire un verre.

J'ai les yeux vissés sur la petite. C'est pourtant bien elle, son chapeau, ses boucles, sa petite jupe plissée, ses yeux clairs et rieurs. Je distingue vaguement une autre salle, au fond, plus grande, avec des festons de bois découpés à la morisque.

L'asticot a demandé je ne sais quoi, en arabe, à un des macaques. Il aboie, à mon adresse :

- Pas di verr. Ci fermé ici.

Je vois sur moi les yeux féroces et perçants de tous ces coquins. Je suis sans armes, dans ce coupe-gorge. Je me tourne d'instinct vers l'individu en bleu, le plus civilisé, apparemment, de la bande. C'est un Levantin de je ne sais quel Levant, déjà empâté, très infatué. Ce pourrait être un de ces "étudiants" qu'on voit au quartier autour des restaurants orientaux. Etudiant, barbeau, trafiquant de je ne sais quoi, le tout à la fois, sans doute. Il y a des raies rosâtres, trop larges, sur son complet bien coupé. Il s'est levé nonchalamment, il me toise avec une mine supérieure. Il laisse tomber trois ou quatre mots d'arabe qui font éclater tous les macaques d'un rire énorme. je vois ces gueules de pirates fendues, leurs grandes dents jaunes. Ils se foutent de moi devant la petite. Je dois pâlir brusquement : la colère, en même temps que la peur, mais la colère plus forte que la peur. Je les dévisage, j'arrête mon regard sur les deux filles :

- Il me semble que ce n'est pas fermé pour tout le monde...

Un hurlement de toute la bicaillerie. Je suis en un instant encerclé. La figure du sous-off est à trois pouces de la mienne. J'enregistre machinalement qu'il a quatre rubans à sa tunique.

Il me saisit le bras :

- Allez, dehors !

La petite lève la main :

- Non ! c'est un amoureux. Il me suit depuis le boulevard des Belges.

- Suivi ? Mouche ! Poulice ! Kha Poulice...

Ils glapissent à plein gosier. Je suis happé par dix pattes terribles : "mais non de Dieu ! écoutez-moi !" J'essaie d'atteindre mon portefeuille pour brandir ma carte d'étudiant. Une main lève une bouteille, un couteau jaillit. Ils ont dû croire que j'allais sortir un feu. Ce sont eux qui m'arrachent le portefeuille. J'ai les poignets immobilisés, je m'accroche où je peux avec les ongles. Ils me traînent jusqu'à la porte, j'encaisse trois ou quatre coups de poings. Je suis précipité dans les ténèbres extérieures, mes papiers lancés sur le sol, à demi déshabillé, ma chemise déchirée. Je tremble de la tête aux pieds. Les salauds m'ont attient à la mâchoire, derrière l'oreille. Une grande bordée de leur affreux rire. La porte se referme brusquement derrière moi.

Je fais une quarantaine de mètres en flageolant. Je reprends haleine, je me rajuste et me remets un peu. Je suis encore tout tremblotant de rage et de trouille : "Je vais chercher les flics !" Je voudrais me ruer avec une troupe en armes à l'assaut de cet effroyable repaire... Mais depuis quand ai-je recours aux flics ? D'ailleurs, que leur dirais-je ? Je m'en tire en somme à bon compte. Tout seul parmi parmi ces sauvages, aux poches pleines de rasoirs, de surins, de revolvers. Ma carte les aura rassurés ! Ils m'ont évacué par mépris. Toute récidive de ma part serait folle. Au reste, du coin de la place où je me suis embusqué, je vois l'asticot ouvrir la porte, accrocher un volet de bois, rentrer par-dessous. Le bouge est bouclée, barricadé. Je n'ai plus rien à faire ici.

Mais la petite est derrière cette porte, derrière ces fenêtres. Il y a cinq fenêtres au moins qui sont éclairées, aux deux étages plus voilées que celles du bas, tout à fait louches. Quinze ans. Cette petite perfection. Et elle traverse tout Lyon pour venir se faire mettre, pour venir se faire bitter dans cet immonde claque... Le petit ange aux cils innocents... La petite gaupe, oui ! ... Gaupette : voilà son nom.

Ses parents sont sortis, pour toute la nuit, peut-être. Elle a couru chez elle pour s'en assurer, se donner l'alibi de les embrasser. Ah ! sur le chapitre de la rouerie... Et puis elle s'envole ; ça la tient. Et moi qui l'imaginais déjà en tournée de charité ! Toujours conjecturer le vice plutôt que la vertu. Mais à ce point-là ! Quel roman noir, quel tréfonds ! mais comment expliquer le début ? Dans quelles pattes a-t-elle pu tomber ? Y revenir toute seule ! Une entremise de cette autre fille ?... Celle-là aussi, quelle apparition ! Ce tailleur de chaste et modeste petite bourgeoise. Et ces seins affolés ! Elle venait déjà de se faire branler en attendant l'autre ? Sa moule toute ouverte, pendant qu'elle me regardait, du jus plein le poil, jusqu'aux cuisses...

Mais elles sont là-dedans toutes les deux. Comment parvenir à penser ça ? Lequel de ces singes, avec Gaupette ? L'espèce d'étudiant ? Mais c'était lui, quand je suis entré, qui avait l'air de tenir l'autre fille.

La bagarre m'a fait débander un moment. Mais mes images, mes convoitises ont été trop violentes, à la fin de cette poursuite, dans ces rues noires. Je suis repris par cette excitation furibonde. Je ne peux plus m'en aller. L'autre fille a amené Gaupette. Elle l'a sans doute branlée, gougnottée avant. Le gros métèque se les farcit toutes les deux. Il a déjà du déculotter Gaupette. Ses pattes sur la petite jupe plissée, la petite culotte blanche, chaude, les deux cuisses roses, déjà femelles, le petit derrière. Le petit con doré. Le métèque l'enfile, pendant que l'autre fille s'astique, ou qu'un des sidis la tronche, le rempilé peut-être sur Gaupette. Ce n'est pas une invention répugnante de ma cervelle, c'est la vérité exacte. Ces bougres en rut perpétuel, montés comme des ânes. Son con de petite fille avec ces manches-là dedans ! C'est horrible, c'est ignoble. Et pourtant plus c'est ignoble et plus ça me chauffe, m'incendie. On comprend que dans de telles passes, s'il n'y avait pas les mécanismes et les habitudes de la civilisation, on se mettrait à bramer, à hurler au con. Je suis un moment sur le point de me taper un rassis, dans le noir, contre le mur d'une des baraques aveugles.

... Je suis là depuis plus d'une heure, sur cette espèce de carrefour d'assassinat, totalement sourd et désert, dans cette nuit crapuleuse. La petite Gaupette est en train de forniquer, de s'en faire mettre plein le vagin. Elle est sous zob !

Mais je peux l'avoir, moi aussi, je peux me l'envoyer. Elle ne demande que ça ! Elle ne pensait qu'à ça, pendant toute ma chasse, dans le tramway. Et je n'osais pas lui murmurer un "bonsoir"! Elle pensait que j'allais être de la partouze. Elle m'y emmenait. Ça lui allait bien ! elle n'a probablement jamais fait ça de sa vie avec un garçon européen, ça devait l'exciter. Elle a essayé de me tirer du pétrin. Si elle n'avait pas fait cette gaffe : "Il me suit depuis les Brotteaux! " Elle aurait seulement dit "je le connais, c'est un camarade !", je restais. Elle avait envie de moi. En ce moment, je la baiserais, je me frotterais à son ventre, à son poil, à ses fesses, j'aurais ma queue entre ses cuisses.

La porte s'ouvre derrière le volet de bois. Un couple sort, en se baissant. J'aperçois une grosse garce en cheveux, avec un grand bougre. Je m'approche, je ne sais pourquoi, comme si je pouvais leur demander de me réintroduire. Je vois les traits de l'homme, aussi barbares que ceux des sidis. Mais celui-là paraît avoir l'accent espagnol. La femme, elle, est Lyonnaise. Je suis à quatre ou cinq pas d'eux. L'"Espagnol" se retourne, me voit, i la l'air encore plus féroce que les Bics. Je ralentis, je les laisse filer. A la lueur de l'unique bec de gaz du coin, je devine le monumental pétard sur lequel chaloupe la pouffiasse, un gros cul qui vient de s'évaser, de s'enfoutrer, pendant que derrière la cloison, Gaupette...

Oh ! je la veux moi aussi ! Pourquoi les Bics m'ont-ils chassé ? Je ne leur voulais aucun mal. Je suis un salopard, comme eux. Si j'essayais d'entrer de nouveau, de leur expliquer ? Je vais frapper au volet, quelques petits coups, puis plus fort. Il semble que le bistrot soit vide. On ne répond pas, ça ne bouge pas. Je n’ose pas appeler.

Je commence à avoir froid. Mais je n’arrive pas à quitter la place. Gaupette ne couchera tout de même pas là. Si les deux filles sortent seules, je les aborde au coin de la rue. J’attendrai leur sortie, le temps qu’il faut.

Mais personne ne sort plus de ce borgnard. Tout est éteint en bas ; aux étages, il n’y a plus que deux fenêtres vaguement éclairées. Je n’y comprends plus rien. Je m’avise enfin, en contournant les bicoques voisines, d’aller jeter un coup d’œil cinq ou six mètres de la bâtisses, fermant sans doute une sorte de cour. Il y a une porte dans ce mur. En face, une ruelle, toute droite, bordée d’entrepôts noirs, conduit à une espèce de boulevard mieux éclairé que le reste de ce lugubre quartier. Elles ont pu s’en aller par là. Ce doit être la sortie des initiés. A moins qu’elles ne couchent ici. Serait-ce plus incroyable que le reste.

Je suis là depuis près de trois heures, et il en est bientôt onze. Je suis transi, écœuré, furieux. Je n’ai plus qu’à rentrer chez moi. Mais je me perds dans ces "chemins", ces rues inconnues, cet effrayant faubourg où il semble que je sois seul vivant. J’aperçois enfin un taxi. Tant pis pour la dépense.

Auteur: Rebatet Lucien

Info: les deux étendards (1952, 1312 p., Gallimard) p. 722-727

[ vulgarité ] [ laideur ] [ hostilité étrangère ] [ agressivité allogène ] [ fantasme ] [ sexe ] [ baston ] [ tabassage ]

 
Commentaires: 1

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

méta-moteur

Le comportement de cet animal est programmé mécaniquement.

Des interactions biomécaniques, plutôt que des neurones, contrôlent les mouvements de l'un des animaux les plus simples. Cette découverte offre un aperçu de la façon dont le comportement animal fonctionnait avant l'apparition des neurones.

L'animal extrêmement simple Trichoplax adhaerens se déplace et réagit à son environnement avec agilité et avec un but apparent, mais il n'a pas de neurones ou de muscles pour coordonner ses mouvements. De nouveaux travaux montrent que les interactions biomécaniques entre les cils de l'animal suffisent à en expliquer ses mouvements.

Le biophysicien Manu Prakash se souvient très bien du moment où, tard dans la nuit, dans le laboratoire d'un collègue, il y a une douzaine d'années, il a regardé dans un microscope et a rencontré sa nouvelle obsession. L'animal sous les lentilles n'était pas très beau à voir, ressemblant plus à une amibe qu'à autre chose : une tache multicellulaire aplatie, de 20 microns d'épaisseur et de quelques millimètres de diamètre, sans tête ni queue. Elle se déplaçait grâce à des milliers de cils qui recouvraient sa face inférieure pour former la "plaque velue collante" qui lui a inspiré son nom latin, Trichoplax adhaerens.

Cette étrange créature marine, classée dans la catégorie des placozoaires, dispose pratiquement d'une branche entière de l'arbre de l'évolution de la vie pour elle-même, ainsi que du plus petit génome connu du règne animal. Mais ce qui a le plus intrigué Prakash, c'est la grâce, l'agilité et l'efficacité bien orchestrées avec lesquelles les milliers ou les millions de cellules du Trichoplax se déplacent.

Après tout, une telle coordination nécessite habituellement des neurones et des muscles - et le Trichoplax n'en a pas.

Prakash s'est ensuite associé à Matthew Storm Bull, alors étudiant diplômé de l'université de Stanford, pour faire de cet étrange organisme la vedette d'un projet ambitieux visant à comprendre comment les systèmes neuromusculaires ont pu évoluer et comment les premières créatures multicellulaires ont réussi à se déplacer, à trouver de la nourriture et à se reproduire avant l'existence des neurones.

"J'appelle souvent ce projet, en plaisantant, la neuroscience sans les neurones", a déclaré M. Prakash.

Dans un trio de prétirés totalisant plus de 100 pages - publiés simultanément sur le serveur arxiv.org l'année dernière - lui et Bull ont montré que le comportement de Trichoplax pouvait être décrit entièrement dans le langage de la physique et des systèmes dynamiques. Les interactions mécaniques qui commencent au niveau d'un seul cilium, puis se multiplient sur des millions de cellules et s'étendent à des niveaux supérieurs de structure, expliquent entièrement la locomotion coordonnée de l'animal tout entier. L'organisme ne "choisit" pas ce qu'il doit faire. Au contraire, la horde de cils individuels se déplace simplement - et l'animal dans son ensemble se comporte comme s'il était dirigé par un système nerveux. Les chercheurs ont même montré que la dynamique des cils présente des propriétés qui sont généralement considérées comme des signes distinctifs des neurones.

Ces travaux démontrent non seulement comment de simples interactions mécaniques peuvent générer une incroyable complexité, mais ils racontent également une histoire fascinante sur ce qui aurait pu précéder l'évolution du système nerveux.

"C'est un tour de force de la biophysique", a déclaré Orit Peleg, de l'université du Colorado à Boulder, qui n'a pas participé aux études. Ces découvertes ont déjà commencé à inspirer la conception de machines mécaniques et de robots, et peut-être même une nouvelle façon de penser au rôle des systèmes nerveux dans le comportement animal. 

La frontière entre le simple et le complexe

Les cerveaux sont surestimés. "Un cerveau est quelque chose qui ne fonctionne que dans le contexte très spécifique de son corps", a déclaré Bull. Dans les domaines connus sous le nom de "robotique douce" et de "matière active", la recherche a démontré que la bonne dynamique mécanique peut suffire à accomplir des tâches complexes sans contrôle centralisé. En fait, les cellules seules sont capables de comportements remarquables, et elles peuvent s'assembler en systèmes collectifs (comme les moisissures ou les xénobots) qui peuvent accomplir encore plus, le tout sans l'aide de neurones ou de muscles.

Mais est-ce possible à l'échelle d'un animal multicellulaire entier ?

Le Trichoplax fut un cas d'étude parfait : assez simple pour être étudié dans les moindres détails, mais aussi assez compliqué pour offrir quelque chose de nouveau aux chercheurs. En l'observant, "vous regardez simplement une danse", a déclaré Prakash. "Elle est d'une incroyable complexité". Elle tourne et se déplace sur des surfaces. Elle s'accroche à des plaques d'algues pour les piéger et les consommer comme nourriture. Elle se reproduit asexuellement en se divisant en deux.

"Un organisme comme celui-ci se situe dans un régime intermédiaire entre quelque chose de réellement complexe, comme un vertébré, et quelque chose qui commence à devenir complexe, comme les eucaryotes unicellulaires", explique Kirsty Wan, chercheur à l'université d'Exeter en Angleterre, qui étudie la locomotion ciliaire.

Ce terrain intermédiaire entre les cellules uniques et les animaux dotés de muscles et de systèmes nerveux semblait être l'endroit idéal pour que Prakash et Bull posent leurs questions. "Pour moi, un organisme est une idée", a déclaré Prakash, un terrain de jeu pour tester des hypothèses et un berceau de connaissances potentielles.

Prakash a d'abord construit de nouveaux microscopes permettant d'examiner le Trichoplax par en dessous et sur le côté, et a trouvé comment suivre le mouvement à grande vitesse de ses cils. (Ce n'était pas un terrain entièrement nouveau pour lui, puisqu'il était déjà célèbre pour ses travaux sur le Foldscope, un microscope facile à assembler et dont la fabrication coûte moins d'un dollar). Il pouvait alors voir et suivre des millions de cils individuels, chacun apparaissant comme une minuscule étincelle dans le champ de vision du microscope pendant une fraction de seconde à la fois. "Vous ne voyez que les empreintes lorsqu'elles se posent sur la surface", a déclaré Prakash.

Lui-même - et plus tard Bull, qui a rejoint son laboratoire il y a six ans - ont passé des heures à observer l'orientation de ces petites empreintes. Pour que ces motifs complexes soient possibles, les scientifiques savaient que les cils devaient être engagés dans une sorte de communication à longue distance. Mais ils ne savaient pas comment.

Ils ont donc commencé à rassembler les pièces du puzzle, jusqu'à ce que, l'année dernière, ils décident enfin qu'ils avaient leur histoire.

Une marche en pilote automatique

Au départ, Prakash et Bull s'attendaient à ce que les cils glissent sur des surfaces, avec une fine couche de liquide séparant l'animal du substrat. Après tout, les cils sont généralement vus dans le contexte des fluides : ils propulsent des bactéries ou d'autres organismes dans l'eau, ou déplacent le mucus ou les fluides cérébrospinaux dans un corps. Mais lorsque les chercheurs ont regardé dans leurs microscopes, ils ont constaté que les cils semblaient marcher, et non nager.

Bien que l'on sache que certains organismes unicellulaires utilisent les cils pour ramper, ce type de coordination n'avait jamais été observé à cette échelle. "Plutôt qu'utiliser les cils pour propulser un fluide, il s'agit de mécanique, de friction, d'adhésion et de toutes sortes de mécanismes solides très intéressants", a-t-elle déclaré.

Prakash, Bull et Laurel Kroo, une étudiante diplômée en génie mécanique de Stanford, ont donc entrepris de caractériser la démarche des cils. Ils ont suivi la trajectoire de l'extrémité de chaque cilium au fil du temps, l'observant tracer des cercles et pousser contre des surfaces. Ils ont défini trois types d'interactions : le glissement, au cours duquel les cils effleurent à peine la surface ; la marche, lorsque les cils adhèrent brièvement à la surface avant de se détacher ; et le calage, lorsque les cils restent coincés contre la surface.

Dans leurs modèles, l'activité de marche émergeait naturellement de l'interaction entre les forces motrices internes des cils et l'énergie de leur adhésion à la surface. Le bon équilibre entre ces deux paramètres (calculé à partir de mesures expérimentales de l'orientation, de la hauteur et de la fréquence des battements des cils) permettant une locomotion régulière, chaque cilium se collant puis se soulevant, comme une jambe. Un mauvais équilibre produisant les phases de glissement ou de décrochage.

Nous pensons généralement, lorsque quelque chose se passe comme ça, qu'il y a un signal interne semblable à une horloge qui dit : "OK, allez-y, arrêtez-vous, allez-y, arrêtez-vous", a déclaré Simon Sponberg, biophysicien à l'Institut de technologie de Géorgie. "Ce n'est pas ce qui se passe ici. Les cils ne sont pas rythmés. Il n'y a pas une chose centrale qui dit 'Go, go, go' ou autre. Ce sont les interactions mécaniques qui mettent en place quelque chose qui va, qui va, qui va."

De plus, la marche pourrait être modélisée comme un système excitable, c'est-à-dire un système dans lequel, sous certaines conditions, les signaux se propagent et s'amplifient au lieu de s'atténuer progressivement et de s'arrêter. Un neurone est un exemple classique de système excitable : De petites perturbations de tension peuvent provoquer une décharge soudaine et, au-delà d'un certain seuil, le nouvel état stimulé se propage au reste du système. Le même phénomène semble se produire ici avec les cils. Dans les expériences et les simulations, de petites perturbations de hauteur, plutôt que de tension, entraînent des changements relativement importants dans l'activité des cils voisins : Ils peuvent soudainement changer d'orientation, et même passer d'un état de stase à un état de marche. "C'est incroyablement non linéaire", a déclaré Prakash.

En fait, les modèles de cils de Prakash, Bull et Kroo se sont avérés très bien adaptés aux modèles établis pour les potentiels d'action au sein des neurones. "Ce type de phénomène unique se prête à une analogie très intéressante avec ce que l'on observe dans la dynamique non linéaire des neurones individuels", a déclaré Bull. Sponberg est d'accord. "C'est en fait très similaire. Il y a une accumulation de l'énergie, et puis pop, et puis pop, et puis pop".

Les cils s'assemblent comme des oiseaux

Forts de cette description mathématique, Prakash et Bull ont examiné comment chaque cilium pousse et tire sur ses voisins lors de son interaction avec la surface, et comment toute ces activités indépendantes peuvent se transformer en quelque chose de synchronisé et cohérent.

Ils ont mesuré comment la démarche mécanique de chaque cilium entraînait de petites fluctuations locales de la hauteur du tissu. Ils ont ensuite écrit des équations pour expliquer comment ces fluctuations pouvaient influencer le comportement des cellules voisines, alors même que les cils de ces cellules effectuaient leurs propres mouvements, comme un réseau de ressorts reliant de minuscules moteurs oscillants.

Lorsque les chercheurs ont modélisé "cette danse entre élasticité et activité", ils ont constaté que les interactions mécaniques - de cils poussant contre un substrat et de cellules se tirant les unes les autres - transmettaient rapidement des informations à travers l'organisme. La stimulation d'une région entraînait des vagues d'orientation synchronisée des cils qui se déplaçaient dans le tissu. "Cette élasticité et cette tension dans la physique d'un cilium qui marche, maintenant multipliées par des millions d'entre eux dans une feuille, donnent en fait lieu à un comportement mobile cohérent", a déclaré Prakash.

Et ces modèles d'orientation synchronisés peuvent être complexes : parfois, l'activité du système produit des tourbillons, les cils étant orientés autour d'un seul point. Dans d'autres cas, les cils se réorientent en quelques fractions de seconde, pointant d'abord dans une direction puis dans une autre - se regroupant comme le ferait un groupe d'étourneaux ou un banc de poissons, et donnant lieu à une agilité qui permet à l'animal de changer de direction en un clin d'œil.

"Nous avons été très surpris lorsque nous avons vu pour la première fois ces cils se réorienter en une seconde", a déclaré M. Bull.

Ce flocage agile est particulièrement intriguant. Le flocage se produit généralement dans des systèmes qui se comportent comme des fluides : les oiseaux et les poissons individuels, par exemple, peuvent échanger librement leurs positions avec leurs compagnons. Mais cela ne peut pas se produire chez Trichoplax, car ses cils sont des composants de cellules qui ont des positions fixes. Les cils se déplacent comme "un troupeau solide", explique Ricard Alert, physicien à l'Institut Max Planck pour la physique des systèmes complexes.

Prakash et Bull ont également constaté dans leurs simulations que la transmission d'informations était sélective : Après certains stimuli, l'énergie injectée dans le système par les cils se dissipe tout simplement, au lieu de se propager et de modifier le comportement de l'organisme. Nous utilisons notre cerveau pour faire cela tout le temps, pour observer avec nos yeux et reconnaître une situation et dire : "Je dois soit ignorer ça, soit y répondre", a déclaré M. Sponberg.

Finalement, Prakash et Bull ont découvert qu'ils pouvaient écrire un ensemble de règles mécaniques indiquant quand le Trichoplax peut tourner sur place ou se déplacer en cercles asymétriques, quand il peut suivre une trajectoire rectiligne ou dévier soudainement vers la gauche, et quand il peut même utiliser sa propre mécanique pour se déchirer en deux organismes distincts.

"Les trajectoires des animaux eux-mêmes sont littéralement codées" via ces simples propriétés mécaniques, a déclaré Prakash.

Il suppose que l'animal pourrait tirer parti de ces dynamiques de rotation et de reptation dans le cadre d'une stratégie de "course et culbute" pour trouver de la nourriture ou d'autres ressources dans son environnement. Lorsque les cils s'alignent, l'organisme peut "courir", en continuant dans la direction qui vient de lui apporter quelque chose de bénéfique ; lorsque cette ressource semble s'épuiser, Trichoplax peut utiliser son état de vortex ciliaire pour se retourner et tracer une nouvelle route.

Si d'autres études démontrent que c'est le cas, "ce sera très excitant", a déclaré Jordi Garcia-Ojalvo, professeur de biologie systémique à l'université Pompeu Fabra de Barcelone. Ce mécanisme permettrait de faire le lien entre beaucoups d'échelles, non seulement entre la structure moléculaire, le tissu et l'organisme, mais aussi pour ce qui concerne écologie et environnement.

En fait, pour de nombreux chercheurs, c'est en grande partie ce qui rend ce travail unique et fascinant. Habituellement, les approches des systèmes biologiques basées sur la physique décrivent l'activité à une ou deux échelles de complexité, mais pas au niveau du comportement d'un animal entier. "C'est une réussite...  vraiment rare", a déclaré M. Alert.

Plus gratifiant encore, à chacune de ces échelles, la mécanique exploite des principes qui font écho à la dynamique des neurones. "Ce modèle est purement mécanique. Néanmoins, le système dans son ensemble possède un grand nombre des propriétés que nous associons aux systèmes neuro-mécaniques : il est construit sur une base d'excitabilité, il trouve constamment un équilibre délicat entre sensibilité et stabilité et il est capable de comportements collectifs complexes." a déclaré Sponberg.

"Jusqu'où ces systèmes mécaniques peuvent-ils nous mener ?... Très loin." a-t-il ajouté.

Cela a des implications sur la façon dont les neuroscientifiques pensent au lien entre l'activité neuronale et le comportement de manière plus générale. "Les organismes sont de véritables objets dans l'espace", a déclaré Ricard Solé, biophysicien à l'ICREA, l'institution catalane pour la recherche et les études avancées, en Espagne. Si la mécanique seule peut expliquer entièrement certains comportements simples, les neuroscientifiques voudront peut-être examiner de plus près comment le système nerveux tire parti de la biophysique d'un animal pour obtenir des comportements complexes dans d'autres situations.

"Ce que fait le système nerveux n'est peut-être pas ce que nous pensions qu'il faisait", a déclaré M. Sponberg.

Un pas vers la multicellularité

"L'étude de Trichoplax peut nous donner un aperçu de ce qu'il a fallu faire pour développer des mécanismes de contrôle plus complexes comme les muscles et les systèmes nerveux", a déclaré Wan. "Avant d'arriver à ça, quelle est le meilleur truc à suivre ? Ca pourrait bien être ça".

Alert est d'accord. "C'est une façon si simple d'avoir des comportements organisationnels tels que l'agilité que c'est peut-être ainsi qu'ils ont émergé au début et  au cours de l'évolution, avant que les systèmes neuronaux ne se développent. Peut-être que ce que nous voyons n'est qu'un fossile vivant de ce qui était la norme à l'époque".

Solé considère que Trichoplax occupe une "twilight zone... au centre des grandes transitions vers la multicellularité complexe". L'animal semble commencer à mettre en place "les conditions préalables pour atteindre la vraie complexité, celle où les neurones semblent être nécessaires."

Prakash, Bull et leurs collaborateurs cherchent maintenant à savoir si Trichoplax pourrait être capable d'autres types de comportements ou même d'apprentissage. Que pourrait-il réaliser d'autre dans différents contextes environnementaux ? La prise en compte de sa biochimie en plus de sa mécanique ouvrirait-elle vers un autre niveau de comportement ?

Les étudiants du laboratoire de Prakash ont déjà commencé à construire des exemples fonctionnels de ces machines. Kroo, par exemple, a construit un dispositif de natation robotisé actionné par un matériau viscoélastique appelé mousse active : placée dans des fluides non newtoniens comme des suspensions d'amidon de maïs, elle peut se propulser vers l'avant.

"Jusqu'où voulez-vous aller ? a demandé Peleg. "Pouvez-vous construire un cerveau, juste à partir de ce genre de réseaux mécaniques ?"

Prakash considère que ce n'est que le premier chapitre de ce qui sera probablement une saga de plusieurs décennies. "Essayer de vraiment comprendre cet animal est pour moi un voyage de 30 ou 40 ans", a-t-il dit. "Nous avons terminé notre première décennie... C'est la fin d'une époque et le début d'une autre".

Auteur: Internet

Info: https://www.quantamagazine.org/before-brains-mechanics-may-have-ruled-animal-behavior. Jordana Cepelewicz, 16 mars 2022. Trad Mg

[ cerveau rétroactif ] [ échelles mélangées ] [ action-réaction ] [ plus petit dénominateur commun ] [ grégarisme ] [ essaims ] [ murmurations mathématiques ]

 

Commentaires: 0

Ajouté à la BD par miguel

parapsychologie

Le pays des aveugles de Koestler (I) 

Ainsi, après plusieurs détours, nous voilà de retour à notre point de départ. Ce "sentiment océanique" mystique se situe certainement à un étage supérieur de cette spirale que celui de l'enfant nouveau-né. L'enfant n'a pas encore d'identité personnelle, le mystique et le medium l'ont eux transcendée. Cette spirale a beaucoup de cercles, mais à chaque tour nous sommes confrontés à la même polarité et au même genre de monade, dont une face dit que je suis le centre du monde, et l'autre que je suis une petite partie en quête de la totalité. Nous pouvons considérer les phénomènes de parapsychologie comme les fruits de cette recherche - qu'ils se soient produits spontanément ou en laboratoire. La perception extra sensorielle apparait alors comme la plus haute manifestation du potentiel d'intégration de la matière vivante - qui, chez les humains, s'accompagne généralement d'un type d'auto-transcendance de l'émotion.

Alors que tout au long de notre excursion dans la biologie et la physique nous étions sur un terrain scientifique solide, nous voilà en pleine étape spéculative. Je ne prétends pas que ce soit un plus. Mais c'est la science moderne elle-même, avec ses vues paradoxales, qui nous y incite. Nous ne nous arrêterons pas à la "classique" télépathie-ESP ni à la prévision à court terme - pour lesquelles des explications physiques peuvent encore être trouvée. Car exclure clairvoyance, psychokinésie et coïncidences de séries ou de synchronicités, serait arbitraire, tout en laissant les choses telles qu'elles étaient avant. D'autre part, si on prend la "Tendance Intégrative" comme un principe universel comprenant des phénomènes causals, l'image devient grandement simplifiée, même si elle est encore hors de portée de notre compréhension. Au lieu de plusieurs mystères, nous voilà aujourd'hui confrontés à une seule tendance évolutive irréductible, issue de la constitution d'ensembles plus complexes venant de pièces diversifiées. La doctrine hippocratique de la "sympathie de toutes choses" en est un paradigme précoce. L'évolution des connaissances, avec ses maillages en branches spécialisées et leur confluence vers un delta unifié, en est un autre.

On pourrait en effet le substituer à la maladresse de termes comme "sérialité" et "Synchronicité" - qui mettent l'accent sur le temps seul, avec pour résultat une non-incarcération grâce à des expressions comme "évènements confluentiels". Les évènements confluentiels seraient-ils causals de manifestations d'une tendance à l'intégration. L'apparition du scarabée de Jung serait alors un évènement confluentiel. Ainsi les effets de la psychokinésie comme le lancer de dés et autres phénomènes paranormaux seraient aussi causals de ces phénomènes. Si on leur prête une signification, c'est qu'ils donnent l'impression d'avoir un lien de causalité, même si ils ne sont manifestement pas de cette sorte de pseudo-causalité. Le scarabée semble être attiré à la fenêtre de Jung par le patient qui raconte son rêve, les dés semblent être manipulés par la volonté de l'expérimentateur, le clairvoyant semble voir les cartes cachées. Les potentiels intégratifs de la vie semblent inclure la capacité de produire des effets pseudo-causals - qui provoquent un évènement confluentiel sans se soucier, pour ainsi dire, de l'emploi d'agents physiques. Il est donc très difficile de tracer une ligne de démarcation nette séparant causalité et non-causalité des évènements. Les animaux aveugles peuvent sentir leur chemin par des usages physiques plus grossiers comme le toucher ou l'odorat. Les chauves-souris utilisent une sorte de radar - ce qui il n'y a pas si longtemps aurait été vu par les naturalistes comme une hypothèse bien saugrenue. Des animaux équipés pour réagir aux photons - particules avec une masse nulle au repos qui peuvent également se comporter comme des ondes dans un milieu et, partant, semblent défier la causalité. Des hommes sans yeux comme les citoyens des pays des aveugles, rejetteraient surement l'affirmation qu'on peut percevoir des objets éloignés sans contact par toucher comme un non-sens occulte - ou bien déclareraient qu'une telle faculté, si elle existe vraiment, est certainement au-delà du domaine de la causalité physique, et devrait être appelé perception extra-sensorielle.

Un des neurophysiologistes les plus respectés de Grande-Bretagne, le Dr W. Walter Grey, a réalisé ces dernières années une série d'expériences remarquables. Il s'est fabriqué une machine électrique, qui par un effort de volonté, peut influer sur les évènements externes sans mouvement ni action manifeste via les impalpables pics électriques du cerveau. Cet effort nécessite un état particulier de concentration, composé paradoxal de détachement et d'excitation. La procédure expérimentale de Grey Walter peut être décrite de manière simplifiée comme suit. Des électrodes fixées sur le cuir chevelu et le cortex frontal du sujet transmettent les vagues électriques des activités cervicales vers un amplificateur d'ondes via une machine. En face de l'objet il y a un bouton : si on le presse une "scène intéressante" apparait sur un écran de télévision. Mais, environ une seconde avant qu'on appuie sur le bouton, une surtension électrique d'une vingtaine de microvolts se produit dans une grande partie du cortex du sujet, on la nomme "vague de préparation". Mais les circuits de l'appareil peuvent être réglés de telle sorte que la "vague de préparation" amplifiée soit suffisante pour déclencher l'interrupteur et faire ainsi apparaitre la scène de télévision une fraction de seconde avant que le sujet ait effectivement appuyé sur le bouton. C'est ce qu'on appelle un "démarrage automatique". Un sujet intelligent se rend vite compte que son action a le résultat escompté avant qu'il n'ait effectivement déplacé son doigt, et donc il cesse généralement d'appuyer sur le bouton: les images apparaissent comme et quand il les veut... Mais, pour que cet effet soit durable, il est essentiel que le sujet "veuille" vraiment que l'évènement se produise, et donc il doit se concentrer sur l'évocation de cet évènement précis. Lorsque l'attention du sujet se détache à cause d'une présentation monotone, ou qu'il "se concentre sur la concentration", le potentiel du cerveau ne parvient pas à déclencher la vague. Ce démarrage automatique peut être combiné avec un auto-stop afin que le sujet puisse acquérir une image en voulant son apparition sur l'écran du téléviseur, puis l'effacer dès qu'il a terminé son inspection de celle-ci.

Du point de vue du sujet, c'est une expérience très particulière, parfois accompagnée de signes d'excitation contenue; une diurèse [évacuation d'urine] a été très marquée pour deux des expérimentateurs. Examinant ces expériences Renee Haynes rédacteur en chef du Journal de la SPR a déclaré: En principe, bien sûr, ce n'est pas plus remarquable que ce qui arrive quand un enfant regarde avec étonnement, quand, avec sa main, il prouve la puissance de sa volonté en décidant de lever le petit doigt ou en le déplaçant. En pratique, c'est étonnant parce que ce mode pour exercer une influence sur le monde extérieur est fort peu familier à l'homme, même s'il est probablement banal pour une anguille électrique. Il est aussi très intéressant en ce qu'il a amené le Dr Grey Walter a utiliser avec un certain embarras, un mot tel que "pouvoir de la volonté". Cela, on s'en souvient, fut aussi l'attitude de Sir John Eccles quand il considérait que l'action de "volonté mentale" du "cerveau physique", comme le mystère de base, et la psychokinésie simplement comme une extension de celui-ci. On pourrait décrire l'expérience Grey Walter comme de la "pseudo-télékinésie" car il y a des fils qui relient les électrodes et crâne du sujet avec l'appareil TV. Mais on pourrait tout aussi bien décrire l'action de l'esprit du sujet sur son propre cerveau comme une pseudo-causalité. Ou nous pourrions dire que le sujet a découvert une façon plus élégante de produire un "évènement confluentiel" sans prendre la peine d'employer des agents physiques. Dans ce contexte il nous faut maintenant parler du rapport hypnotique.

Jusqu'au milieu du siècle dernier, l'hypnose a été traitée comme une fantaisie occulte par la science occidentale (bien que dans d'autres cultures, elle ait été prise comme une acquis). Aujourd'hui elle est devenue si respectable et banale que nous avons tendance à oublier que nous n'avons pas d'explication la concernant. On a démontré qu'un sujet approprié peut être temporairement sourd, muet, aveugle, anesthésié, amené à avoir des hallucinations ou revivre des scènes de son passé. Il peut être amené à oublier ou à se rappeler ce qui s'est passé pendant la transe avec un claquement de doigts. On peut lui enjoindre une suggestion post-hypnotique qui lui fera exécuter le lendemain, à 5 heures précises, une action stupide comme le déliement de ses lacets - et aussi trouver une certaine rationalité à cet acte. Les utilisations de l'hypnose médicale sur des patients appropriés en dentisterie, obstétrique et en dermatologie sont bien connues. Moins connues, cependant, sont les expériences de A. Mason et S. Black sur la suppression des réactions cutanées allergiques par l'hypnose. On injecta à des patients des extraits de pollen, auxquels ils étaient très allergiques, et après le traitement hypnotique, ils cessèrent de montrer la moindre réaction. Avec l'hypnose, d'autres patients n'ont pas eu de réaction allergique contre le bacille de la tuberculose. Comment les suggestions hypnotiques peuvent-elles modifier la réactivité chimique des tissus au niveau microscopique reste donc une conjecture. Après la guérison remarquable de Mason par hypnose d'un garçon de seize ans souffrant d'ichtyose (la maladie de peau de poisson, une affection congénitale que l'on croyait incurable) un évaluateur du British Medical Journal a fait remarquer que ce cas unique suffirait pour exiger "une révision des concepts courants sur la relation entre l'esprit et le corps ". Cette révision des concepts actuels est attendue depuis longtemps. Nous ne savons pas si Eddington avait raison quand il a dit que le monde est fait de matière-esprit, et qu'il n'est certainement pas fait de l'étoffe des petites boules de billards du physicien du dix-neuvième siècle qui volaient dans tous les sens jusqu'à ce que le hasard les fasse s'agréger en une amibe.

Dans son adresse de 1969 à l'American Society for Psychical Research, que j'ai cité précédemment, le professeur Henry Margenau a dit ceci : Un artefact parfois invoqué pour expliquer la précognition est de prendre en compte un temps multidimensionnel. Ce qui permet un véritable passage vers l'arrière du temps, ce qui pourrait permettre à certains intervalles, positifs dans un sens du temps, de devenir négatifs ("effet avant la cause") dans un autre. En principe, ça représente un schéma valable, et je ne connais pas la critique qui pourra l'exclure en tant que démarche scientifique. Si elle est acceptable, cependant, une mesure entièrement nouvelle de l'espace-temps doit être développée. J'ai sondé quelques suggestions que la physique pourrait offrir comme solution à ce genre de problème que vous rencontrez. Les résultats positifs, je le crains, sont maigres et décevants, mais peut-être que cela vaut-il quand même une vraie étude. Mais pourquoi, voudrai-je maintenant demander, est-il nécessaire d'importer vers une nouvelle discipline tous les concepts approuvés d'une ancienne science à son stade actuel de développement? La physique n'adhère pas servilement aux formulations grecques rationalistes qui l'ont précédé, il a bien fallu créer nos propres constructions spécifiques.

Le parapsychologue, je pense ... doit voler de ses propres ailes et probablement de manière plus audacieuse que ce que les conditions que la physique d'aujourd'hui suggèrent - et aussi tolérer sans trop de souci les voix stridentes et critiques des scientifiques "hard-boiled", pragmatiques et satisfaits, et ainsi continuer sa propre recherche minutieuse vers une meilleure compréhension via de nouvelle sortes d'expériences, peut-être aussi avec des concepts qui apparaissent étranges. Nous sommes entourés de phénomènes que l'existence nous fait soigneusement ignorer, ou, s'ils ne peuvent pas être ignorés, nous les rejetons comme des superstitions. L'homme du XIIIe siècle ne se rendait pas compte qu'il était entouré de forces magnétiques. Nous n'avons donc pas la conscience sensorielle directe de beaucoup de manifestations, ni des douches de neutrinos qui nous traversent, ni d'autres "influences" inconnues. Donc, nous pourrions tout aussi bien écouter les conseils de Margenau et créer nos propres constructions "spécifiques", supposant que nous vivons plongés dans une sorte de "psycho-champ magnétique" qui produit des évènements confluentiels... tout ceci par des moyens qui dépassent les concepts classiques de la physique. Des buts et leur conception qui nous sont inconnus certes, mais nous estimons qu'il doivent être en quelque sorte liés à un effort vers une forme supérieure de l'ordre et de l'unité dans toute cette diversité que nous observons au travers de notre appréciation de l'évolution de l'univers dans son ensemble, de la vie sur terre, de la conscience humaine et, enfin, de la science et de l'art.

Un mystère "plus haut d'un cran" est plus facile à accepter qu'une litière de puzzles indépendants. Cela n'explique pas pourquoi le scarabée est apparu à la fenêtre, mais au moins on pourra l'adapter aux évènements confluentiels et autres phénomènes paranormaux d'une conception unifiée. Il ya, cependant, un aspect profondément troublant à ces phénomènes. Les évènements paranormaux sont rares, imprévisible et capricieux. C'est comme nous l'avons vu, la principale raison pour laquelle les sceptiques se sentent en droit de rejeter les résultats des cartes devinées et autres expériences de psychokinésie, en dépit de preuves statistiques qui, dans tout autre domaine de la recherche, suffiraient à prouver cette hypothèse. Une des raisons du caractère erratique de l'ESP a déjà été mentionnée : notre incapacité à contrôler les processus inconscients sous-jacents. Les expériences de Grey Walter n'étaient pas concernées par l'ESP, mais il a bien dû se rendre compte que la "vague de préparation" ne pouvait atteindre le seuil suffisant que si le sujet était dans un état décrit comme "un composé paradoxal de détachement et d'excitation".

Les expériences paranormales spontanées sont toujours liées à un certain type d'auto-transcendance de l'émotion, comme dans les rêves télépathiques ou lors de transe médiumnique. Même dans le laboratoire, où là aussi le rapport affectif entre l'expérimentateur et le sujet est d'une importance décisive. L'intérêt du sujet dans le mystère de l'ESP en lui-même évoque une émotion auto-transcendante. Lorsque que son intérêt baisse à la fin d'une longue séance ESP, il mpntre un déclin caractéristique du nombre de "hits" sur la feuille de score. Cet "effet de déclin" peut être considéré comme une preuve supplémentaire de la réalité de l'ESP. Il y a aussi une diminution globale de la performance de la plupart des sujets après une longue série de séances. Ils s'ennuient. Les compétences les plus normales s'améliorent avec la pratique. Avec l'ESP c'est le contraire.

Un autre argument relatif à la rareté apparente des phénomènes paranormaux a été présentée par le regretté professeur Broad dans un article de philosophie: "Si la cognition paranormale et la causalité sont des faits paranormaux, il est alors fort probable que cela ne se limite pas à ces très rares occasions pendant lesquelles elles se manifestent sporadiquement, ou de façon spectaculaire, ou dans des conditions très particulières pendant lesquelles leur présence peut être expérimentalement établie. Ces phénomènes pourraient très bien être en fonction continue en arrière-plan de nos vies normales. Notre compréhension et nos malentendus avec nos semblables, notre humeur, l'émotionnel général en certaines occasions, les idées qui surgissent soudainement dans nos esprits sans aucune cause évidente introspectable; nos réactions émotionnelles inexplicables immédiates vis à vis de certaines personnes... et ainsi de suite, tout cela pourrait être en partie déterminé par une meilleure connaissance du paranormal et autres influences causales paranormales."

Collègue du professeur Broad à Oxford, le professeur Price a ajouté cette suggestion intéressante en ce qui concerne le caprice apparent des ESP: "Il semble que les impressions reçues par télépathie ont quelques difficultés à franchir un seuil pour se manifester à la conscience. Il semble qu'il y ait une barrière ou un mécanisme répressif qui tende à les exclure de la conscience, une barrière qui est assez difficile à passer, même si on fait usage de toutes sortes d'appareils pour la surmonter. Parfois, en ayant recours aux mécanismes musculaires du corps, ou en les faisant émerger sous forme de parole ou d'écriture automatique. Parfois, ces phénomènes apparaissent sous forme de rêves, parfois d'hallucinations visuelles ou auditives. Et souvent, ils peuvent émerger sous un aspect déformé et symbolique (comme d'autres contenus mentaux inconscients le font). Il est plausible que beaucoup de nos pensées quotidiennes et d'émotions soient télépathes, ou en partie d'origine télépathique, mais elles ne sont pas reconnues comme telles car elles sont trop déformées et mélangées avec d'autres contenus mentaux en franchissant le seuil de la conscience.

Adrian Dobbs, commentant ce passage, a soulevé un point important dans un texte très intéressant et suggestif. Il évoque l'image de l'âme ou du cerveau comme contenants un assemblage de filtres sélectifs, conçus pour couper les signaux indésirables à des fréquences voisines, dont certaines parviendraient sous une forme déformée, exactement comme dans une réception radio ordinaire. La "théorie du filtre", comme on pourrait l'appeler, remonte en fait à Henri Bergson. Elle a été reprise par divers auteurs sur la perception extra-sensorielle. Il s'agit en fait simplement d'une extrapolation de ce que nous savons au sujet de la perception sensorielle ordinaire. Nos principaux organes des sens sont comme des fentes qui admettent seulement une gamme de fréquence très étroite d'ondes électromagnétiques et sonores. Mais même la quantité d'infos qui entrent par ces fentes étroites, c'est déjà trop. La vie serait impossible si nous devions prêter attention aux millions de stimuli qui bombardent nos sens - ce que William James a appelé "l'épanouissement de la multitude du bourdonnement des sensations". Ainsi, le système nerveux, et surtout le cerveau, fonctionnent comme une hiérarchie de filtrages et de classifications de dispositifs qui éliminent une grande partie de nos entrées sensorielles sous forme de " bruits" non pertinents", pour traiter les bonnes informations sous forme gérable avant qu'elles ne soient présentées à la conscience.

Un exemple souvent cité de ce processus de filtrage est le "phénomène cocktail" qui nous permet d'isoler une seule voix dans le bourdonnement général. Par analogie, un mécanisme de filtrage similaire peut être supposé nous protéger de la floraison et de la multitude de bourdonnement des images, des messages, des impressions et des événements confluentiels du "psycho-champ magnétique" qui nous entoure. Comme il s'agit d'un point de grande importance pour essayer de comprendre pourquoi les phénomènes paranormaux se présentent dans ces formes inexplicables et arbitraire, je vais livrer quelques citations plus pertinentes sur ce sujet. Ainsi le psychiatre James S. Hayes, écrivant dans The Scientist, spécule: Je pense depuis longtemps que les questions classiques posées sur la télépathie ("Cela se passe-t'il" et si oui, "comment?") sont moins susceptibles d'être fructueuses que cette question: "Si la télépathie existe, qu'est-ce qui l'empêche de se produire plus ? Comment l'esprit (ou le cerveau) se protègent-ils contre l'afflux potentiel de l'expérience des autres? "

Et Sir Cyril Burt, à nouveau: La conception naturelle qu'a l'homme de l'univers, ou plutôt de la partie étroite à laquelle il a accès, est celle d'un monde d'objets tangibles de taille moyenne, se déplaçant à des vitesses modérées de manière visible en trois dimensions, réagissant à l'impact de forces de contact (le push et pull de simples interactions mécaniques), le tout en conformité avec des lois relativement simples. Jusqu'à tout récemment la conception de l'univers adoptée par le chercheur, son critère de la réalité, était celui de l'Incrédulité de saint Thomas : "ce qui peut être vu ou touché". Pourtant, supputer que sur une telle base que nous pourrions construire une image complète et comprise de l'univers c'est comme supposer que le plan d'une rue de Rome nous dirait ce à quoi la Ville Eternelle ressemblerait.

La nature semble avoir travaillé sur un principe identique. Nos organes des sens et notre cerveau fonctionnent comme une sorte de filtre complexe qui limite et dirige les pouvoirs de clairvoyance de l'esprit, de sorte que dans des conditions normales notre attention soit concentrée seulement sur des objets ou des situations qui sont d'une importance biologique pour la survie de l'organisme et de l'espèce.

En règle générale, il semblerait que l'esprit rejette les idées venant d'un autre esprit comme le corps rejette les greffes provenant d'un autre corps. Burt résume son point de vue, en nous rappelant que la physique contemporaine reconnaît quatre types d'interactions (forte, faible, électromagnétique et gravitationnelle), dont chacune obéit à ses propres lois, et, jusqu'à présent en tout cas, ce modèle a vaincu toutes les tentatives de le réduire à autre chose. Cela étant, il ne peut y avoir aucun antécédent improbable qui nous interdise de postuler un autre système et/ou un autre type d'interaction, en attendant une enquête plus intensive. Un univers psychique composé d'événements ou d'entités liées par des interactions psychiques, obéissant à des lois qui leur sont propres et qui interpénètrent l' univers physique et le chevauchent partiellement, tout comme les diverses interactions déjà découvertes et reconnues se chevauchent les unes les autres. (2e partie)

Auteur: Koestler Arthur

Info: Internet et Roots of coïncidence

[ Holon ] [ corps-esprit ] [ intégratif ] [ spectre continu ] [ dépaysement moteur ]

 

Commentaires: 0

proto-linguistique

Cette langue ancienne use de la seule grammaire basée entièrement sur le corps humain

Une famille de langues en voie de disparition suggère que les premiers humains utilisaient leur corps comme modèle de réalité

Un matin de décembre 2004, des adultes et des enfants erraient sur le rivage de Strait Island dans le golfe du Bengale lorsque l'un d'eux a remarqué quelque chose d'étrange. Le niveau de la mer était bas et des créatures étranges qui habitent normalement la zone crépusculaire profonde de l'océan se balançaient près de la surface de l'eau. “ Sare ukkuburuko ! ”— la mer s'est renversée! — cria Nao Junior, un des derniers héritiers d'une sagesse transmise sur des milliers de générations à travers sa langue maternelle. Il savait ce que signifiait ce phénomène bizarre. Tout comme d'autres peuples autochtones des îles Andaman. Ils se sont tous précipités à l'intérieur des terres et en hauteur, leurs connaissances ancestrales les sauvant du tsunami dévastateur qui s'est abattu sur les côtes de l'océan Indien quelques minutes plus tard et qui a emporté quelque 225 000 personnes.

Lorsque j'ai rencontré Nao Jr. pour la première fois, au tournant du millénaire, il était dans la quarantaine et l'un des neuf seuls membres de son groupe autochtone, le Grand Andamanais, qui parlait encore l'idiome de ses ancêtres ; les jeunes préférant l'hindi. En tant que linguiste passionnée par le décodage de structure, j'avais étudié plus de 80 langues indiennes de cinq familles différentes : indo-européenne (à laquelle appartient l'hindi), dravidienne, austroasiatique, tibéto-birmane et taï-kadaï. J'étais sur les îles pour documenter leurs voix autochtones avant qu'elles ne se transforment en murmures. Le peu que j'ai entendu était si déconcertant que j'y suis retourné plusieurs fois au cours des années suivantes pour essayer de cerner les principes qui sous-tendent les grandes langues andamanaises.

Ici mes principaux professeurs, Nao Jr. et une femme nommée Licho, parlaient un pastiche de langues qui comptaient encore quelque 5 000 locuteurs au milieu du 19e siècle. Le vocabulaire moderne étant très variable, dérivé de plusieurs langues parlées à l'origine sur l'île d'Andaman du Nord. Ce qui m'était vraiment étranger, cependant, c'était leur grammaire, qui ne ressemblait à rien de ce que j'avais jamais rencontré.

Une langue incarne une vision du monde et, alors qu'une civilisation, change et se développe par couches. Les mots ou les phrases fréquemment utilisés se transforment en formes grammaticales de plus en plus abstraites et compressées. Par exemple, le suffixe "-ed", signifiant le passé en anglais moderne, provient de "did" (c'est-à-dire que "did use" est devenu "used") ; Le vieil anglais où in steed et sur gemong sont devenus respectivement "instead" et "among". Ces types de transitions font de la linguistique historique un peu comme l'archéologie. Tout comme un archéologue fouille soigneusement un monticule pour révéler différentes époques d'une cité-État empilées les unes sur les autres, un linguiste peut séparer les couches d'une langue pour découvrir les étapes de son évolution. Il faudra des années à Nao Jr. et Licho endurant patiemment mes interrogatoires et mes tâtonnements pour que j'apprenne enfin la règle fondamentale de leur langue.

Il s'avère que le grand andamanais est exceptionnel parmi les langues du monde de par son anthropocentrisme. Il utilise des catégories dérivées du corps humain pour décrire des concepts abstraits tels que l'orientation spatiale et les relations entre les objets. Bien sûr, en anglais, nous pourrions dire des choses comme "la pièce fait face à la baie", "la jambe de la chaise s'est cassée" et "elle dirige l'entreprise". Mais en Grand Andamanais, de telles descriptions prennent une forme extrême, avec des morphèmes, ou segments sonores significatifs, qui désignent différentes zones du corps s'attachant aux noms, verbes, adjectifs et adverbes - en fait, à chaque partie du discours - pour créer des significations diverses. Parce qu'aucune autre langue connue n'a une grammaire basée sur le corps humain et/ou un partage des mots apparentés -  des mots qui ont une signification et une prononciation similaires, ce qui indique un lien généalogique - avec le grand andamanais, la langue constitue sa propre famille .

L'aspect le plus durable d'une langue est sa structure, qui peut perdurer sur des millénaires. Mes études indiquent que les Grands Andamanais furent effectivement isolés pendant des milliers d'années, au cours desquelles leurs langues ont évolué sans influence perceptible d'autres cultures. La recherche génétique corrobore ce point de vue, montrant que ces peuples autochtones descendent d'un des premiers groupes d'humains modernes qui a migré hors d'Afrique. En suivant le littoral du sous-continent indien, ils ont atteint l'archipel d'Andaman il y a peut-être 50 000 ans et y vivent depuis dans un isolement virtuel. Les principes fondamentaux de leurs langues révèlent que ces humains anciens ont conceptualisé le monde à travers leur corps.

PIÈCES DU CASSE-TÊTE

Lorsque je suis arrivé en 2001 à Port Blair, la principale ville de la région, pour mener une enquête préliminaire sur les langues autochtones, j'ai été dirigé vers Adi Basera, une maison que le gouvernement indien autorisait les Grands Andamanais à utiliser lorsqu'ils étaient en ville. C'était un bâtiment délabré avec de la peinture écaillée et des pièces sales ; enfants et adultes flânaient nonchalamment dans la cour. Quelqu'un m'a apporté une chaise en plastique. J'ai expliqué ma quête en hindi.

"Pourquoi es-tu venu ?" demanda Boro Senior, une femme âgée. "Nous ne nous souvenons pas de notre langue. Nous ne le parlons ni ne le comprenons. Il s'est avéré que toute la communauté conversait principalement en hindi, une langue essentielle pour se débrouiller dans la société indienne et la seule que les enfants apprenaient." Pendant que je le sondais cependant, Nao Jr. a avoué qu'il connaissait le Jero, mais parce qu'il n'avait personne avec qui en parler, il l'oubliait. Boro Sr. s'est avéré être la dernière personne à se souvenir de Khora, et Licho, alors dans la fin de la trentaine, qui était la dernière à parler le sare, la langue de sa grand-mère. Lorsqu'ils conversaient entre eux, ces individus utilisaient ce que j'appelle le Grand Andamanais actuel (PGA), un mélange de Jero, Sare, Bo et Khora - toutes langues des Andaman du Nord.

Lorsque les autorités britanniques ont établi une colonie pénitentiaire à Port Blair en 1858, les forêts tropicales de Great Andaman - comprenant le nord, le centre et le sud d'Andaman, ainsi que quelques petites îles à proximité - étaient habitées par 10 tribus de chasseurs et de cueilleurs qui semblaient culturellement liées. Les habitants du Great Andaman ont résisté aux envahisseurs, mais leurs arcs et leurs flèches n'étaient pas à la hauteur des fusils et, à une occasion, des canons de navires. Encore plus mortels furent les germes apportés par les étrangers, contre lesquels les insulaires n'avaient aucune immunité. Dans les années 1960, époque à laquelle les Andamans appartenaient à l'Inde, il ne restait plus que 19 Grands Andamanais, vivant principalement dans les forêts du nord d'Andaman. Les autorités indiennes les ont alors installés sur la petite île du détroit.

Un autre groupe de chasseurs-cueilleurs, les Jarawa, vivaient dans le sud d'Andaman, et lorsque les Grands Andamanais s'éteignirent , les Jarawa s'installèrent dans leurs territoires évacués du Moyen Andaman. Les Jarawa ont résisté au contact - et aux germes qui l'accompagnent - jusqu'en 1998 et sont maintenant au nombre d'environ 450. Leur culture avait des liens avec celle des Onge, qui vivaient sur Little Andaman et qui ont été sous controle des Britanniques dans les années 1880. Apparemment, les habitants de North Sentinel Island étaient également apparentés aux Jarawa. Ils continuent d'ailleurs de vivre dans un isolement volontaire, qu'ils ont imposé en 2018 en tuant un missionnaire américain.

(photo-schéma avec détails et statistiques des langage des iles adamans)

Mon enquête initiale a établi que les langues des Grands Andamanais n'avaient aucun lien avec celles des Jarawa et des Onge, qui pourraient constituer leur propre famille de langues. Réalisant que je devais documenter le Grand Andamanais avant qu'il ne soit réduit au silence, je suis revenu avec une équipe d'étudiants en 2005. C'était peu de temps après le tsunami, et les autorités avaient évacué les 53 Grands Andamanais vers un camp de secours à côté d'Adi Basera. Ils avaient survécu, mais leurs maisons avaient été inondées et leurs biens perdus, et un sentiment de bouleversement et de chagrin flottait dans l'air. Dans cette situation, Licho a donné naissance à un garçon nommé Berebe, source de joie. J'ai appris que les bébés étaient nommés dans l'utérus. Pas étonnant que les grands noms andamanais soient non sexistes !

Au camp, j'ai rencontré l'octogénaire Boa Senior, dernier locuteur de Bo et gardien de nombreuses chansons. Nous deviendrons très proches. Les grands jeunes andamanais avaient répondu au mépris des Indiens dominants pour les cultures autochtones en se détournant de leur héritage. Boa Sr me tenait la main et ne me laissait pas partir car elle était convaincue que ma seule présence, en tant qu'étranger rare qui valorisait sa langue, motiverait les jeunes à parler le grand andamanais. Pourtant, je l'ai appris principalement de Nao Jr. et Licho, dont l'intérêt pour leurs langues avait été enflammé par le mien. Il s'est avéré que Nao Jr. en savait beaucoup sur l'environnement local et Licho sur l'étymologie, étant souvent capable de me dire quel mot venait de quelle langue. J'ai passé de longues heures avec eux à Adi Basera et sur Strait Island, les accompagnant partout où ils allaient - pour nous prélasser à l'extérieur de leurs huttes, errer dans la jungle ou pêcher sur la plage. Plus ils s'efforçaient de répondre à mes questions, plus ils puisaient dans les profondeurs de la mémoire. J'ai fini par collecter plus de 150 grands noms andamanais pour différentsespèces de poissons et 109 pour les oiseaux .

Les responsables britanniques avaient observé que les langues andamanaises étaient un peu comme les maillons d'une chaîne : les membres des tribus voisines des Grands Andamans se comprenaient, mais les langues parlées aux extrémités opposées de l'archipel, dans les Andamans du Nord et du Sud, étaient mutuellement inintelligibles. En 1887, l'administrateur militaire britannique Maurice Vidal Portman publia un lexique comparatif de quatre langues, ainsi que quelques phrases avec leurs traductions en anglais. Et vers 1920, Edward Horace Man compila un dictionnaire exhaustif de Bea, une langue des Andaman du Sud. C'étaient des enregistrements importants, mais aucun n'a résolu le puzzle que la grammaire posait.

Moi non plus. D'une manière ou d'une autre, ma vaste expérience avec les cinq familles de langue indienne ne m'aidait pas. Une fois, j'ai demandé à Nao Jr. de me dire le mot pour "sang". Il m'a regardé comme si j'étais une imbécile et n'a pas répondu. Quand j'ai insisté, il a dit: "Dis-moi d'où ça vient." J'ai répondu: "De nulle part." Irrité, il répéta : "Où l'as-tu vu ?" Il fallait que j'invente quelque chose, alors j'ai dit : "sur mon doigt. Sa réponse est venue rapidement — "ongtei !" – puis il débita plusieurs mots pour désigner le sang sur différentes parties du corps. Si le sang sortait des pieds ou des jambes, c'était otei ; l'hémorragie interne était etei; et un caillot sur la peau était ertei . Quelque chose d'aussi basique qu'un nom changeait de forme en fonction de l'emplacement.

Chaque fois que j'avais une pause dans mon enseignement et d'autres tâches, je visitais les Andamans, pendant des semaines ou parfois des mois. Il m'a fallu un an d'étude concertée pour entrevoir le modèle de cette langue - et quand je l'ai fait, toutes les pièces éparses du puzzle se sont mises en place. Très excité, je voulus tout de suite tester mes phrases inventées. J'étais à l'Institut Max Planck d'anthropologie évolutive à Leipzig, en Allemagne, mais j'ai téléphoné à Licho et je lui ai dit : "a Joe-engio eole be". Licho a été bouleversé et m'a fait un compliment chéri : "Vous avez appris notre langue, madame !"

Ma phrase était simplement "Joe te voit". Joe était un jeune Grand Andamanais, et -engio était "seulement toi". Ma percée avait été de réaliser que le préfixe e- , qui dérivait à l'origine d'un mot inconnu désignant une partie interne du corps, s'était transformé au fil des éons en un marqueur grammatical signifiant tout attribut, processus ou activité interne. Donc l'acte de voir, ole, étant une activité interne, devait être eole. Le même préfixe pourrait être attaché à -bungoi , ou "beau", pour former ebungoi, signifiant intérieurement beau ou gentil ; de sare , pour "mer", pour former esare, ou "salé", une qualité inhérente ; et au mot racine -biinye, "pensant", pour donner ebiinye , "penser".

LE CODE CORPOREL

La grammaire que j'étais en train de reconstituer était basée principalement sur Jero, mais un coup d'œil dans les livres de Portman et de Man m'a convaincu que les langues du sud du Grand Andamanais avaient des structures similaires. Le lexique se composait de deux classes de mots : libre et lié. Les mots libres étaient tous des noms faisant référence à l'environnement et à ses habitants, tels que ra pour "cochon". Ils pourraient se produire seuls. Les mots liés étaient des noms, des verbes, des adjectifs et des adverbes qui existaient toujours avec des marqueurs indiquant une relation avec d'autres objets, événements ou états. Les marqueurs (spécifiquement, a- ; er- ; ong- ; ot- ou ut- ; e- ou i- ; ara- ; eto- ) dérivaient de sept zones du corps et étaient attaché à un mot racine, généralement sous forme de préfixe, pour décrire des concepts tels que "dedans", "dehors", "supérieur" et "inférieur". Par exemple, le morphème er- , qui qualifiait presque tout ce qui concernait une partie externe du corps, pouvait être collé à -cho pour donner ercho , signifiant "tête". Une tête de porc était ainsi raercho.

(Photo/schéma désignant les 7 zones du corps humain qui font référence ici)

Zone     Marqueur          Parties corps/sémantique       

1              a -                  en rapport avec la bouche/origine 

2              er -                 corps et parties externes supérieures

3              ong -              extrémités (doigts main, pied) 

4              ut/ot -             (cerveau/intellect) produits corporels, partie-tout,

5              e / i -               organes internes

6              ara -                organes sexuels et formes latérales/rondes

7              o -                   jambes/partie basse         

Cette dépendance conceptuelle n'était pas toujours le signe d'un lien physique. Par exemple, si la tête du porc était coupée pour être rôtie, le marqueur t- pour un objet inanimé serait attaché à er- pour donner ratercho ; ce n'était plus vivant mais toujours une tête de cochon. Le suffixe -icho indiquait des possessions véritablement séparables. Par exemple, Boa-icho julu signifiait "les vêtements de Boa".

Tout comme une tête, un nom, ne pouvait pas exister conceptuellement par lui-même, le mode et l'effet d'une action ne pouvaient être séparés du verbe décrivant l'action. Les Grands Andamanais n'avaient pas de mots pour l'agriculture ou la culture mais un grand nombre pour la chasse et la pêche, principalement avec un arc et des flèches. Ainsi, la racine du mot shile , qui signifie "viser", avait plusieurs versions : utshile , viser d'en haut (par exemple, un poisson) ; arashile, viser à distance (comme un cochon); et eshile, visant à percer.

Inséparables également de leurs préfixes, qui les dotaient de sens, étaient les adjectifs et les adverbes. Par exemple, le préfixe er- , pour "externe", a donné l'adjectif erbungoi , pour "beau" ; le verbe eranye, signifiant "assembler" ; et l'adverbe erchek, ou "rapide". Le préfixe ong- , la zone des extrémités, fournissait ongcho , "piquer", quelque chose que l'on faisait avec les doigts, ainsi que l'adverbe ongkochil, signifiant "précipitamment", qui s'appliquait généralement aux mouvements impliquant une main ou un pied. Important aussi était le morphème a-, qui renvoyait à la bouche et, plus largement, aux origines. Il a contribué aux noms aphong, pour "bouche", et Aka-Jero , pour "son langage Jero" ; les adjectifs ajom , "avide", et amu, "muet" ; les verbes atekho, "parler", et aathitul , "se taire" ; et l'adverbe aulu, "avant".

Ces études ont établi que les 10 langues originales du grand andamanais appartenaient à une seule famille. De plus, cette famille était unique en ce qu'elle avait un système grammatical basé sur le corps humain à tous les niveaux structurels. Une poignée d'autres langues autochtones, telles que le papantla totonaque, parlé au Mexique, et le matsés, parlé au Pérou et au Brésil, utilisaient également des termes faisant référence à des parties du corps pour former des mots. Mais ces termes ne s'étaient pas transformés en symboles abstraits, ni ne se sont propagés à toutes les autres parties du discours.

(Photo - tableau - schéma avec exemples de mots - verbes - adverbes, dérivés des  7 parties)

Plus important encore, la famille des langues semble être d'origine vraiment archaïque. Dans un processus d'évolution en plusieurs étapes, les mots décrivant diverses parties du corps s'étaient transformés en morphèmes faisant référence à différentes zones pour fusionner avec des mots basiques pour donner un sens. Parallèlement aux preuves génétiques, qui indiquent que les Grands Andamanais ont vécu isolés pendant des dizaines de milliers d'années, la grammaire suggère que la famille des langues est née très tôt, à une époque où les êtres humains conceptualisaient leur monde à travers leur corps. La structure à elle seule donne un aperçu d'une ancienne vision du monde dans laquelle le macrocosme reflète le microcosme, et tout ce qui est ou qui se passe est inextricablement lié à tout le reste.

ANCÊTRES, OISEAUX

Un matin sur Strait Island, j'ai entendu Boa Sr. parler aux oiseaux qu'elle nourrissait. J'ai écouté pendant un bon moment derrière une porte, puis je me suis montrée pour lui demander pourquoi elle leur parlait.

"Ils sont les seuls à me comprendre", a-t-elle répondu.

"Comment ça se fait?" J'ai demandé.

"Ne sais-tu pas qu'pas sont nos ancêtres ?"

J'ai essayé de réprimer un rire étonné, mais Boa l'a perçu. "Oui, ce sont nos ancêtres", a-t-elle affirmé. "C'est pourquoi nous ne les tuons ni ne les chassons. Tu devrais demander à Nao Jr.; il connaît peut-être l'histoire."

Nao ne s'en souvint pas tout de suite, mais quelques jours plus tard, il raconta l'histoire d'un garçon nommé Mithe qui était allé à la pêche. Il a attrapé un calmar, et en le nettoyant sur la plage, il a été avalé par un Bol , un gros poisson. Ses amis et sa famille sont venus le chercher et ont réalisé qu'un Bol l'avait mangé. Phatka, le plus intelligent des jeunes, a suivi la piste sale laissée par le poisson et a trouvé le Bol en eau peu profonde, la tête dans le sable. C'était un très grand, alors Phatka, Benge et d'autres ont appelé à haute voix Kaulo, le plus fort d'entre eux, qui est arrivé et a tué le poisson.

Mithe est sorti vivant, mais ses membres étaient engourdis. Ils allumèrent un feu sur la plage et le réchauffèrent, et une fois qu'il eut récupéré, ils décidèrent de manger le poisson. Ils le mirent sur le feu pour le faire rôtir. Mais ils avaient négligé de nettoyer correctement le poisson, et il éclata, transformant toutes les personnes présentes en oiseaux. Depuis ce moment-là, les Grands Andamanais conservent une affinité particulière avec Mithe, la Colombe Coucou Andaman ; Phatka, le corbeau indien ; Benge, l'aigle serpent Andaman; Kaulo, l'aigle de mer à ventre blanc ; Celene, le crabe pluvier; et d'autres oiseaux qu'ils considéraient comme des ancêtres.

Dans la vision de la nature des Grands Andamanais, la principale distinction était entre tajio, le vivant, et eleo , le non-vivant. Les créatures étaient tajio-tut-bech, "êtres vivants avec des plumes" - c'est-à-dire de l'air; tajio-tot chor, "êtres vivants à écailles", ou de l'eau ; ou tajio-chola, "êtres vivants de la terre". Parmi les créatures terrestres, il y avait des ishongo, des humains et d'autres animaux, et des tong, des plantes et des arbres. Ces catégories, ainsi que de multiples attributs d'apparence, de mouvement et d'habitudes, constituaient un système élaboré de classification et de nomenclature, que j'ai documenté pour les oiseaux en particulier. Parfois, l'étymologie d'un nom grand andamanais ressemblait à celle de l'anglais. Par exemple, Celene, composé de mots racines pour "crabe" et "épine", a été ainsi nommé parce qu'il craque et mange des crabes avec son bec dur et pointu.

La compréhension extrêmement détaillée de l'environnement naturel détenue par le peuple des Grands Andamanais (Nao Jr. nomma au moins six variétés de bords de mer et plus de 18 types d'odeurs) indique une culture qui a observé la nature avec un amour profond et un intérêt aigu. Considérant la nature comme un tout, ils ont cherché à examiner l'imbrication des forces qui construisent cet ensemble. L'espace était une construction culturelle, définie par le mouvement des esprits, des animaux et des humains le long d'axes verticaux et horizontaux. Dans la vision du monde des Grands Andamanais, l'espace et tous ses éléments naturels - le soleil, la lune, la marée, les vents, la terre et la forêt - constituaient ensemble le cosmos. Dans cette vision holistique, les oiseaux, les autres créatures et les esprits étaient tous interdépendants et faisaient partie intégrante du concept d'espace.

Le temps aussi était relatif, catégorisé en fonction d'événements naturels tels que la floraison des fleurs saisonnières, la disponibilité du miel - le calendrier du miel, pourrait-on l'appeler - le mouvement du soleil et de la lune, la direction des vents, la disponibilité des ressources alimentaires et le meilleur moment pour chasser le poisson ou d'autres animaux. Ainsi, lorsque la fleur de koroiny auro fleurit, les tortues et les poissons sont gras ; lorsque le bop taulo fleurit, les poissons bikhir, liot et bere sont abondants ; lorsque le loto taulo fleurit, c'est le meilleur moment pour attraper les poissons phiku et nyuri ; et quand le chokhoro taulo fleurissent, les cochons sont les plus gras et c'est le meilleur moment pour les chasser.

Même le "matin" et le "soir" étaient relatifs, selon la personne qui les vivait. Pour dire, par exemple, "Je te rendrai visite demain", on utiliserait ngambikhir, pour "ton demain". Mais dans la phrase "je finirai ça demain", le mot serait tambikhir, "mon demain". Le temps dépendait de la perspective de celui qui était impliqué dans l'événement.

Les mythes des Grands Andamanais indiquaient que leurs premiers ancêtres résidaient dans le ciel, comme dans une autre histoire que Nao Jr. m'a racontée. 

Le premier homme, sortant du creux d'un bambou, trouva de l'eau, des tubercules, de l'argile fine et de la résine. Il modela un pot en argile, alluma un feu avec la résine, fit bouillir les tubercules dans le pot et savoura un repas copieux. Puis il fabriqua une figurine en argile et ll laissa sur le feu. À son étonnement et à sa joie, elle se transforma en femme. Ils eurent beaucoup d'enfants et étaient très heureux. Après un long séjour sur Terre, le couple partit pour un endroit au-dessus des nuages, rompant tous les liens avec ce monde.

Des larmes ont coulé sur les joues de Nao Jr. alors qu'il racontait ce conte de création, qui présentait tous les éléments de la vie : l'eau, le feu, la terre, l'espace et l'air. Pour cet homme solitaire - sa femme l'avait quitté il y a des années pour un autre homme -, créer une partenaire selon ses désirs était la fable romantique ultime. Alors que je lui avais demandé des histoires pour la première fois, il avait dit ne pas en avoir entendu depuis 40 ans et qu'il n'en avait pas pour moi faute de mémoire. Mais au cours de nombreuses soirées, avec le gazouillis des grillons et les cris des grenouilles à l'extérieur, il m'a raconté 10 histoires précieuses, presque inédites pour une langue au bord de l'extinction. Peut-être que l'une des raisons pour lesquelles nous nous sommes tellement liés était que nous étions tous les deux raupuch - quelqu'un qui a perdu un frère ou une sœur. Nao Jr. a été choqué d'apprendre que ni l'anglais ni aucune langue indienne n'a un tel mot. "Pourquoi?" Il a demandé. "n'aimez-vous pas vos frères et soeurs"

Nao Jr. a quitté ce monde en février 2009. Avec cette mort prématurée, il a emporté avec lui un trésor de connaissances qui ne pourra jamais être ressuscité et m'a laissé raupuch à nouveau. Boro Sr. est décédé en novembre et Boa Sr. en janvier 2010, laissant sa voix au travers de plusieurs chansons. Licho est décédé en avril 2020. À l'heure actuelle, seules trois personnes - Peje, Golat et Noe - parlent encore une langue de la grande famille andamanaise, dans leur cas le Jero. Ils ont tous plus de 50 ans et souffrent de diverses affections. Toute la famille de ces langues est menacée d'extinction imminente.

Sur les quelque 7 000 langues parlées par les humains aujourd'hui, la moitié se taira d'ici la fin de ce siècle. La survie à l'ère de la mondialisation, de l'urbanisation et des changements climatiques oblige les communautés autochtones à remplacer leurs modes de vie et leurs langues traditionnels par ceux de la société dominante. Quand l'ancienne génération ne peut plus enseigner la langue aux plus jeunes, une langue est condamnée. Et avec chaque langue perdue, nous perdons une mine de connaissances sur l'existence humaine, la perception, la nature et la survie. Pour donner le dernier mot à Boa Sr. : "Tout est parti, il ne reste plus rien – nos jungles, notre eau, notre peuple, notre langue. Ne laissez pas la langue vous échapper ! Tiens bon !"

Auteur: Anvita Abbi

Info: "Whispers from Deep Time" dans Scientific American 328, 6, 62-69 (juin 2023). Trad et adaptation Mg

[ septénaire ] [ conte mythologique ] [ intraduisible ] [ paléolinguistique ] [ ethnolinguistique ] [ chronos ] [ idiome altruiste ] [ couple ]

 

Commentaires: 0

Ajouté à la BD par miguel