Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 1
Temps de recherche: 0.0243s

mathématiques

En physique nucléaire, un nombre magique (correspondant à la saturation d'une couche nucléaire) est un nombre de protons ou de neutrons pour lequel un noyau atomique est particulièrement stable ; dans le modèle en couches décrivant la structure nucléaire, cela correspond à un arrangement en couches complètes. Les sept nombres magiques vérifiés expérimentalement sont : 2, 8, 20, 28, 50, 82, 126 Les nombres magiques jouent un rôle déterminant dans les stratégies suivies par les différentes équipes en quête de l'îlot de stabilité, un ensemble hypothétique de nucléides super lourds (Z≫100 et N≫250) qui seraient remarquablement stables malgré leur masse élevée (...) Si la situation est relativement claire pour les six premiers nombres magiques ainsi que pour le septième, il semble que ce dernier nombre magique de protons soit peut-être différent de 126 en raison de l'effet du grand nombre de neutrons dans de tels noyaux, ce qui déplace d'autant l'hypothétique îlot de stabilité : La théorie MM (pour Microscopic-Macroscopic) suggère de rechercher un îlot de stabilité concentré autour du flérovium 298, dont le noyau à 114 protons et 184 neutrons serait "doublement sphérique", à la suite du plomb 208

Auteur: wikipedia

Info: Les nombres magiques jouent un rôle déterminant dans les stratégies suivies par les différentes équipes en quête de l'îlot de stabilité, un ensemble hypothétique de nucléides superlourds (Z≫100 et N≫250) qui seraient remarquablement stables malgré leur masse élevée, avec des périodes radioactives excédant peut-être la minute. La tentation première serait de cibler un noyau doublement magique constitué de 126 protons et 184 neutrons, c'est-à-dire l'unbihexium 310, mais les choses ne sont pas si simples. En effet, si la situation est relativement claire pour les six premiers nombres magiques ainsi que pour le septième (et à moindre mesure le huitième) nombre magique de neutrons5, il semble que le septième nombre magique de protons soit peut-être différent de 126 en raison de l'effet du grand nombre de neutrons dans de tels noyaux6, ce qui déplace d'autant l'hypothétique îlot de stabilité : la théorie MM (pour Microscopic-Macroscopic) suggère de rechercher un îlot de stabilité concentré autour du flérovium 298, dont le noyau à 114 protons et 184 neutrons serait "doublement sphérique", à la suite du plomb 208 la théorie de champ moyen relativiste (RMF, pour Relativistic Mean-Field Theory) suggère plutôt un îlot de stabilité diffus autour des noyaux 304Ubn, 306Ubb ou 310Ubh selon les paramètres retenus, c'est-à-dire avec 184 neutrons mais respectivement 120 protons, 122 protons ou 126 protons. Cependant, des calculs fondés sur l'effet tunnel montrent que, si des noyaux doublement magiques ou sphériques seraient, dans ces régions, probablement stables du point de vue de la fission spontanée, ils devraient cependant subir des désintégrations α avec une période radioactive de quelques microsecondes7,8,9. C'est la raison pour laquelle on se concentre plutôt aujourd'hui sur la recherche d'un îlot de relative stabilité centré autour du darmstadtium 293 et défini par Z ∈ [104 ; 116] et N ∈ [176 ; 186].

[ sciences ] [ sept ]

 

Commentaires: 0