Les scientifiques qui étudient le cerveau ont découvert que cet organe opère simultanément jusqu'à 11 dimensions différentes, créant des structures multivers qui présentent "un monde que nous n'avions jamais imaginé".
En utilisant un système mathématique avancé, les chercheurs ont pu montrer des structures architecturales qui apparaissent lorsque le cerveau doit traiter l'information, avant de se désintégrer et disparaitre. Leurs résultats, publiés dans la revue Frontiers in Computational Neuroscience, révèlent les processus extrêmement complexes impliqués dans la création de structures neuronales, ce qui pourrait aider à expliquer pourquoi le cerveau est si difficile à comprendre et à associer sa structure à sa fonction.
L'équipe, dirigée par des scientifiques de l'EPFL en Suisse, effectuait des recherches dans le cadre du projet Blue Brain, une initiative visant à créer une reconstruction biologiquement détaillée du cerveau humain. En travaillant d'abord sur les cerveaux des rongeurs, l'équipe a utilisé des simulations de supercalculateurs pour étudier les interactions complexes dans différentes de ses régions. Dans cette dernière étude, les chercheurs ont pu approfondir les structures du réseau neuronal du cerveau en utilisant la topologie algébrique - un système utilisé pour décrire des réseaux avec des espaces et des structures en constante évolution.
C'est la première fois que cette branche des mathématiques est appliquée aux neurosciences. "La topologie algébrique est comme un télescope et un microscope en même temps. Elle peut zoomer dans les réseaux pour trouver des structures cachées - les arbres dans la forêt - et voir les espaces vides - les clairières - tout en même temps", précise Kathryn Hess. Dans l'étude, les chercheurs ont effectué de multiples tests sur le tissu cérébral virtuel pour découvrir des structures cérébrales qui n'apparaitraient jamais par hasard. Ils ont ensuite effectué les mêmes expériences sur des tissus cérébraux réels afin de confirmer leurs résultats virtuels. Ils ont découvert que lorsqu'on présente un stimulus au tissu virtuel, des groupes de neurones forment une clique. Chaque neurone se connecte à tous les autres neurones de manière très spécifique pour produire un objet géométrique précis. Plus il y a de neurones dans une clique, plus les dimensions sont élevées. Dans certains cas, les chercheurs ont découvert des cliques avec jusqu'à 11 dimensions différentes.
Les structures s'assemblent en des enceintes qui forment des trous à haute dimension que l'équipe a nommé cavités. Une fois que le cerveau a traité l'information, la clique et la cavité disparaissent.
Multivers du cerveau. "L'apparition de ces cavités high-dimensionnelles lorsque le cerveau traite des informations signifie que les neurones du réseau réagissent aux stimuli d'une manière extrêmement organisée", a déclaré l'un des chercheurs, Ran Levi. "C'est comme si le cerveau réagit à un stimulus en construisant puis en rasant une tour de blocs multidimensionnels, en commençant par des tiges (1D), des planches (2D), puis des cubes (3D), puis des géométries plus complexes avec 4D, 5D, etc. La progression de l'activité à travers le cerveau ressemble à un château de sable multidimensionnel qui se matérialise hors du sable puis se désintègre ", a-t-il déclaré. Henry Markram, directeur de Blue Brain Project, avance que les résultats pourraient aider à expliquer pourquoi le cerveau est si difficile à comprendre. "Les mathématiques appliquées habituellement aux réseaux d'étude ne peuvent pas détecter les structures et les espaces à grande dimension que nous voyons maintenant clairement", a-t-il déclaré. "Nous avons découvert un monde que nous n'avions jamais imaginé. Il y a des dizaines de millions de ces objets, même dans un petit segment du cerveau, à travers sept dimensions. Dans certains réseaux, nous avons même trouvé des structures allant jusqu'à onze dimensions". Les résultats indiquent que le cerveau traite les stimuli en créant ces cliques et cavités complexes, de sorte que la prochaine étape sera de savoir si notre capacité à effectuer des tâches compliquées nécessite ou non la création de ces structures multidimensionnelles.
Dans une interview par courrier électronique avec Newsweek, Hess dit que la découverte nous rapproche de la compréhension d' "un des mystères fondamentaux de la neuroscience: le lien entre la structure du cerveau et la façon dont elle traite l'information". En utilisant la topologie algébrique l'équipe a pu découvrir "la structure hautement organisée cachée dans les modèles de tir apparemment chaotiques des neurones, une structure qui était invisible jusqu'à ce que nous l'examinions avec ce filtre mathématique particulier". Hess dit que les résultats suggèrent que lorsque nous examinons l'activité du cerveau avec des représentations à faible dimension, nous n'observons que l'activité réelle qui se déroule. Cela signifie que nous pouvons voir des informations, mais pas l'image complète. "Alors, dans un sens, nos découvertes peuvent expliquer pourquoi il a été si difficile de comprendre la relation entre la structure et la fonction du cerveau", explique-t-elle.
"Le schéma de réponse stéréotypique que nous avons découvert indique que le circuit répond toujours aux stimuli en construisant une séquence de représentations géométriques commençant dans des dimensions faibles et en ajoutant des dimensions progressivement plus élevées, jusqu'à ce que l'accumulation s'arrête soudainement et s'effondre: une signature mathématique pour les réactions à stimuli. "Pour le travail futur, nous avons l'intention d'étudier le rôle de la plasticité - le renforcement et l'affaiblissement des connexions en réponse aux stimuli - avec les outils de topologie algébrique. La plasticité est fondamentale pour le processus mystérieux d'apprentissage, et nous espérons que nous pourrons donner un nouvel aperçu de ce phénomène", a-t-elle ajouté.
Auteur:
Info: https://www.newsweek.com/brain-structure-hidden-architecture-multiverse-dimensions-how-brain-works-6243006/12/17 by Hannah Osborne - Ici FLP regrette sa volonté réitérée de ne pas insérer d'images dans les textes. Elles sont ici très parlantes.
Commentaires: 0