Quand la plupart des gens pensent aux risques potentiels de l'intelligence artificielle et du machine learning, leur esprit va immédiatement vers "Terminator" - cet avenir où les robots, selon une vision dystopique, marcheraient dans les rues en abattant tous les humains sur leur passage.
Mais en réalité, si l'IA a le potentiel de semer le chaos et la discorde, la manière dont cela peut se produire est moins excitante qu'un "Skynet" réel. Les réseaux d'IA qui peuvent créer de fausses images et de fausses vidéos - connues dans l'industrie sous le nom de "deepfakes" - impossibles à distinguer du réel, qui pourraient engendrer des risques.
Qui pourrait oublier cette vidéo du président Obama ? Inventée et produite par un logiciel d'intelligence artificielle, une vidéo quasi impossible à distinguer de vraies images.
Eh bien, dans une récente présentation des capacités de l'IA dans un avenir pas si lointain, un chroniqueur de TechCrunch a mis en avant une étude présentée à une conférence importante de l'industrie en 2017. Les chercheurs y expliquent comment un réseau d'opposition générationnelle (Generative Adversarial Network) - l'une des deux variétés courantes d'opérateur de machine learning - a résisté aux intentions de ses programmeurs et a commencé à produire des cartes synthétiques après avoir reçu l'ordre de faire correspondre des photographies aériennes aux cartes routières correspondantes.
L'objectif de l'étude était de créer un outil permettant d'adapter plus rapidement les images satellites aux cartes routières de Google. Mais au lieu d'apprendre à transformer les images aériennes en cartes, l'opérateur de machine learning a appris à coder les caractéristiques de la carte sur les données visuelles de la carte topographique.
L'objectif était de permettre à l'opérateur d'interpréter les caractéristiques de l'un ou l'autre type de carte et de les faire correspondre aux caractéristiques de l'autre. Mais ce sur quoi l'opérateur était noté (entre autres choses), c'était la proximité de correspondance d'une carte aérienne par rapport à l'original et la clarté de la carte topographique.
Il n'a donc pas appris à faire l'une à partir de l'autre. Il a appris à coder subtilement les caractéristiques de l'une dans les "modèles de bruit" de l'autre. Les détails de la carte aérienne sont secrètement inscrits dans les données visuelles réelles de la carte des rues : des milliers de petits changements de couleur que l'œil humain ne remarquera pas, mais que l'ordinateur peut facilement détecter.
En fait, l'ordinateur est si bon à glisser ces détails dans les plans qu'il a appris à encoder n'importe quelle carte aérienne dans n'importe quel plan de rues ! Il n'a même pas besoin de faire attention à la "vraie" carte routière - toutes les données nécessaires à la reconstitution de la photo aérienne peuvent être superposées sans danger à une carte routière complètement différente, comme l'ont confirmé les chercheurs :
Cette pratique d'encodage des données en images n'est pas nouvelle ; il s'agit d'une science établie appelée stéganographie, et elle est utilisée tout le temps pour, disons, filigraner des images ou ajouter des métadonnées comme les réglages de caméra. Mais un ordinateur qui crée sa propre méthode stéganographique pour éviter d'avoir à apprendre à exécuter la tâche à accomplir c'est plutôt nouveau.
Au lieu de trouver un moyen d'accomplir une tâche qui dépassait ses capacités, l'opérateur de machine learning a développé sa propre méthode pour tricher.
On pourrait facilement prendre cela comme un pas vers l'idée "les machines deviennent plus intelligentes", mais la vérité est que c'est presque le contraire. La machine, qui n'est pas assez intelligente pour faire le travail difficile de convertir ces types d'images sophistiqués les unes avec les autres, a trouvé un moyen de tricher que les humains ont de la peine à détecter. Cela pourrait être évité avec une évaluation plus rigoureuse des résultats de l'opérateur, et il ne fait aucun doute que les chercheurs vont poursuivre dans cette voie.
Et même si ces chercheurs sophistiqués ont failli ne pas le détecter, qu'en est-il de notre capacité à différencier les images authentiques de celles qui fabriquées par simulation informatique ?
Auteur:
Info: Zero Hedges 4 janvier 2018
Commentaires: 0