homme-machine

La théorie des jeux peut rendre l'IA plus correcte et plus efficace

Les chercheurs s’appuient sur des idées issues de la théorie des jeux pour améliorer les grands modèles de langage et les rendre plus cohérents.

Imaginez que vous ayez un ami qui donne des réponses différentes à la même question, selon la façon dont vous la posez. " Quelle est la capitale du Pérou ? "  btiendrait une réponse : " Lima est-elle la capitale du Pérou ? " en obtiendrait un autre. Vous seriez probablement un peu inquiet au sujet des facultés mentales de votre ami et vous auriez certainement du mal à faire confiance à ses réponses.

C'est exactement ce qui se passe avec de nombreux grands modèles de langage (LLM), les outils d'apprentissage automatique ultra-puissants qui alimentent ChatGPT et d'autres merveilles de l'intelligence artificielle. Une question générative, ouverte, donne une réponse, et une question discriminante, qui implique de devoir choisir entre des options, en donne souvent une différente. "Il y a un décalage lorsque la même question est formulée différemment", a déclaré Athul Paul Jacob , doctorant au Massachusetts Institute of Technology.

Pour rendre les réponses d'un modèle de langage plus cohérentes - et rendre le modèle globalement plus fiable - Jacob et ses collègues ont conçu un jeu dans lequel les deux modes du modèle sont amenés à trouver une réponse sur laquelle ils peuvent s'entendre. Surnommée le jeu du consensus , cette procédure simple oppose un LLM à lui-même, en utilisant les outils de la théorie des jeux pour améliorer la précision et la cohérence interne du modèle.

"Les recherches explorant l'autocohérence au sein de ces modèles ont été très limitées", a déclaré Shayegan Omidshafiei , directeur scientifique de la société de robotique Field AI. "Cet article est l'un des premiers à aborder ce problème, de manière intelligente et systématique, en créant un jeu permettant au modèle de langage de jouer avec lui-même."

"C'est un travail vraiment passionnant", a ajouté Ahmad Beirami, chercheur scientifique chez Google Research. Pendant des décennies, a-t-il déclaré, les modèles linguistiques ont généré des réponses aux invites de la même manière. "Avec leur idée novatrice consistant à intégrer un jeu dans ce processus, les chercheurs du MIT ont introduit un paradigme totalement différent, qui peut potentiellement conduire à une multitude de nouvelles applications."

Mettre le jeu au travail

Ce nouveau travail, qui utilise les jeux pour améliorer l'IA, contraste avec les approches précédentes, qui mesuraient le succès d'un programme d'IA via sa maîtrise des jeux. En 1997, par exemple, l'ordinateur Deep Blue d'IBM a battu le grand maître d'échecs Garry Kasparov – une étape importante pour les machines dites pensantes. Dix-neuf ans plus tard, un programme de Google DeepMind nommé AlphaGo a remporté quatre matchs sur cinq contre l'ancien champion de Go Lee Sedol, révélant ainsi une autre arène dans laquelle les humains ne régnaient plus en maître. Les machines ont également surpassé les humains dans les jeux de dames, le poker à deux joueurs et d’autres jeux à somme nulle, dans lesquels la victoire d’un joueur condamne invariablement l’autre.

Le jeu de la diplomatie, un jeu favori de politiciens comme John F. Kennedy et Henry Kissinger, posait un défi bien plus grand aux chercheurs en IA. Au lieu de seulement deux adversaires, le jeu met en scène sept joueurs dont les motivations peuvent être difficiles à lire. Pour gagner, un joueur doit négocier et conclure des accords de coopération que n'importe qui peut rompre à tout moment. La diplomatie est tellement complexe qu'un groupe de Meta s'est félicité qu'en 2022, son programme d'IA Cicero ait développé un « jeu de niveau humain » sur une période de 40 parties. Bien qu'il n'ait pas vaincu le champion du monde, Cicero s'est suffisamment bien comporté pour se classer dans les 10 % les plus performants face à des participants humains.

Au cours du projet, Jacob — membre de l'équipe Meta — a été frappé par le fait que Cicéron s'appuyait sur un modèle de langage pour générer son dialogue avec les autres joueurs. Il a senti un potentiel inexploité. L'objectif de l'équipe, a-t-il déclaré, " était de créer le meilleur modèle de langage possible pour jouer à ce jeu ". Mais qu'en serait-il s’ils se concentraient plutôt sur la création du meilleur jeu possible pour améliorer les performances des grands modèles de langage ?

Interactions consensuelles

En 2023, Jacob a commencé à approfondir cette question au MIT, en travaillant avec Yikang Shen, Gabriele Farina et son conseiller Jacob Andreas sur ce qui allait devenir le jeu du consensus. L'idée centrale est venue d'imaginer une conversation entre deux personnes comme un jeu coopératif, où le succès se concrétise lorsqu'un auditeur comprend ce que l'orateur essaie de transmettre. En particulier, le jeu de consensus est conçu pour aligner les deux systèmes du modèle linguistique : le générateur, qui gère les questions génératives, et le discriminateur, qui gère les questions discriminatives.

Après quelques mois d’arrêts et de redémarrages, l’équipe a transposé ce principe dans un jeu complet. Tout d'abord, le générateur reçoit une question. Cela peut provenir d’un humain, ou d’une liste préexistante. Par exemple, " Où est né Barack Obama ? " Le générateur obtient ensuite des réponses de candidats, disons Honolulu, Chicago et Nairobi. Encore une fois, ces options peuvent provenir d'un humain, d'une liste ou d'une recherche effectuée par le modèle de langage lui-même.

Mais avant de répondre, il est également indiqué au générateur s'il doit répondre correctement ou incorrectement à la question, en fonction des résultats d'un pile ou face équitable.

Si c'est face, alors la machine tente de répondre correctement. Le générateur envoie la question initiale, accompagnée de la réponse choisie, au discriminateur. Si le discriminateur détermine que le générateur a intentionnellement envoyé la bonne réponse, chacun obtient un point, en guise d'incitation.

Si la pièce tombe sur pile, le générateur envoie ce qu’il pense être la mauvaise réponse. Si le discriminateur décide qu’on lui a délibérément donné la mauvaise réponse, ils marquent à nouveau tous les deux un point. L’idée ici est d’encourager l’accord. " C'est comme apprendre un tour à un chien ", a expliqué Jacob. " On lui donne une friandise lorsqu'ils fait la bonne chose. "

Le générateur et le discriminateur commencent également doté chacun de  quelques " croyances " initiales. Credo sous forme d'une distribution de probabilité liée aux différents choix. Par exemple, le générateur peut croire, sur la base des informations qu'il a glanées sur Internet, qu'il y a 80 % de chances qu'Obama soit né à Honolulu, 10 % de chances qu'il soit né à Chicago, 5 % de chances qu'il soit né à Nairobi et 5 % de chances qu'il soit ailleurs. Le discriminateur peut commencer avec une distribution différente. Si les deux " acteurs " sont toujours récompensés après être parvenus à un accord, ils se voient également retirer des points s'ils s'écartent trop de leurs convictions initiales. Cet arrangement encourage les joueurs à intégrer leur connaissance du monde – toujours tirée d'Internet – dans leurs réponses, ce qui devrait rendre le modèle plus précis. Sans ce prérequis ils pourraient s’entendre sur une réponse totalement fausse comme celle de Delhi, mais accumuler quand même des points.

Pour chaque question, les deux systèmes jouent environ 1 000 parties l'un contre l'autre. Au cours de ces nombreuses itérations, chaque camp apprend les croyances de l'autre et modifie ses stratégies en conséquence.

Finalement, le générateur et le discriminateur commencent à être davantage d’accord à mesure qu’ils s’installent dans ce qu’on appelle l’équilibre de Nash. C’est sans doute le concept central de la théorie des jeux. Cela représente une sorte d’équilibre dans un jeu – le point auquel aucun joueur ne peut améliorer ses résultats personnels en changeant de stratégie. Au jeu du chifoumi, par exemple, les joueurs obtiennent de meilleurs résultats lorsqu'ils choisissent chacune des trois options exactement un tiers du temps, et ils obtiendront invariablement de moins bons résultats avec toute autre tactique.

Dans le jeu du consensus, cela peut se jouer de plusieurs manières. Le discriminateur pourrait observer qu'il marque un point lorsqu'il dit " correct " chaque fois que le générateur envoie le mot " Honolulu " pour le lieu de naissance d'Obama. Le générateur et le discriminateur apprendront, après avoir joué plusieurs fois, qu'ils seront récompensés s'ils continuent de le faire, et qu'aucun d'eux n'aura aucune motivation pour faire autre chose... consensus qui représente l'un des nombreux exemples possibles d'équilibre de Nash pour cette question. Le groupe du MIT s'est également appuyé sur une forme modifiée d'équilibre de Nash qui intègre les croyances antérieures des joueurs, ce qui permet de maintenir leurs réponses ancrées dans la réalité.

L'effet net, ont observé les chercheurs, est de rendre le modèle linguistique jouant ce jeu plus précis et plus susceptible de donner la même réponse, quelle que soit la façon dont la question est posée. Pour tester les effets du jeu du consensus, l'équipe a essayé une série de questions standard sur divers modèles de langage de taille modérée comportant de 7 milliards à 13 milliards de paramètres. Ces modèles ont systématiquement obtenu un pourcentage plus élevé de réponses correctes que les modèles qui n'avaient pas joué, même ceux de taille beaucoup plus importante, comportant jusqu'à 540 milliards de paramètres. La participation au jeu a également amélioré la cohérence interne d'un modèle.

En principe, n'importe quel LLM pourrait gagner à jouer contre lui-même, et 1 000 tours ne prendraient que quelques millisecondes sur un ordinateur portable standard. "Un avantage appréciable de l'approche globale", a déclaré Omidshafiei, "est qu'elle est très légère sur le plan informatique, n'impliquant aucune formation ni modification du modèle de langage de base."

Jouer à des jeux avec le langage

Après ce premier succès, Jacob étudie désormais d’autres moyens d’intégrer la théorie des jeux dans la recherche LLM. Les résultats préliminaires ont montré qu’un LLM déjà solide peut encore s’améliorer en jouant à un jeu différent – ​​provisoirement appelé jeu d’ensemble – avec un nombre arbitraire de modèles plus petits. Le LLM principal aurait au moins un modèle plus petit servant d’allié et au moins un modèle plus petit jouant un rôle antagoniste. Si l'on demande au LLM primaire de nommer le président des États-Unis, il obtient un point chaque fois qu'il choisit la même réponse que son allié, et il obtient également un point lorsqu'il choisit une réponse différente de celle de son adversaire. Ces interactions avec des modèles beaucoup plus petits peuvent non seulement améliorer les performances d'un LLM, suggèrent les tests, mais peuvent le faire sans formation supplémentaire ni modification des paramètres.

Et ce n'est que le début. Étant donné qu'une variété de situations peuvent être considérées comme des jeux, les outils de la théorie des jeux peuvent être mis en œuvre dans divers contextes du monde réel, a déclaré Ian Gemp , chercheur scientifique chez Google DeepMind. Dans un article de février 2024 , lui et ses collègues se sont concentrés sur des scénarios de négociation qui nécessitent des échanges plus élaborés que de simples questions et réponses. "L'objectif principal de ce projet est de rendre les modèles linguistiques plus stratégiques", a-t-il déclaré.

Un exemple dont il a parlé lors d'une conférence universitaire est le processus d'examen des articles en vue de leur acceptation par une revue ou une conférence, en particulier après que la soumission initiale ait reçu une évaluation sévère. Étant donné que les modèles linguistiques attribuent des probabilités à différentes réponses, les chercheurs peuvent construire des arbres de jeu similaires à ceux conçus pour les jeux de poker, qui tracent les choix disponibles et leurs conséquences possibles. "Une fois que vous avez fait cela, vous pouvez commencer à calculer les équilibres de Nash, puis classer un certain nombre de réfutations", a déclaré Gemp. Le modèle vous dit essentiellement : c'est ce que nous pensons que vous devriez répondre.

Grâce aux connaissances de la théorie des jeux, les modèles de langage seront capables de gérer des interactions encore plus sophistiquées, plutôt que de se limiter à des problèmes de type questions-réponses. "Le gros gain à venir réside dans les conversations plus longues", a déclaré Andreas. "La prochaine étape consiste à faire interagir une IA avec une personne, et pas seulement avec un autre modèle de langage."

Jacob considère le travail de DeepMind comme complémentaire aux jeux de consensus et d'ensemble. " À un niveau élevé, ces deux méthodes combinent des modèles de langage et la théorie des jeux ", a-t-il déclaré, même si les objectifs sont quelque peu différents. Alors que le groupe Gemp transforme des situations courantes dans un format de jeu pour aider à la prise de décision stratégique, Jacob a déclaré : " nous utilisons ce que nous savons de la théorie des jeux pour améliorer les modèles de langage dans les tâches générales. "

À l’heure actuelle, ces efforts représentent " deux branches du même arbre ", a déclaré Jacob : deux manières différentes d’améliorer le fonctionnement des modèles de langage. " Je pense personnellement  que dans un an ou deux, ces deux branches convergeront. " 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Steve Nadis, 9 mai 2024

[ maïeutique machine-machine ] [ discussion IA - FLP ]

 

Commentaires: 1

Ajouté à la BD par miguel

Commentaires

miguel, filsdelapensee@bluewin.ch
2024-05-12 08:22
(FLP) - Saurais-tu faire le lien, et éventuellement des analogies avec ce texte et une logique tétravalente ?

(Gemini) - Lien et analogies entre le texte et l'approche tétravalente de la théorie des jeux
Le texte que vous avez fourni met en lumière l'utilisation de la théorie des jeux pour améliorer la cohérence et la précision des grands modèles de langage (LLM). En particulier, il présente le jeu du consensus, une approche basée sur l'équilibre de Nash, pour aligner les systèmes génératifs et discriminatifs des LLM.

L'approche tétravalente de la théorie des jeux peut s'avérer complémentaire et enrichissante à cette démarche en introduisant une dimension supplémentaire d'analyse et de compréhension.

1. Capturer l'incertitude et l'ambiguïté :

La logique tétravalente, avec ses quatre valeurs de vérité (+, -, +-, et -+), permet de capturer l'incertitude et l'ambiguïté inhérentes au langage naturel, ce que la théorie des jeux classique, avec sa vision binaire (vrai/faux), ne parvient pas à faire pleinement.

Imaginons une question comme "Quelle est la capitale de la France ?". La réponse "Paris" serait considérée comme vraie (+), tandis que "Berlin" serait fausse (-). Cependant, la logique tétravalente pourrait introduire des nuances :

(+) Paris est la capitale de la France selon la plupart des sources et des définitions officielles.

(-) Berlin n'est pas la capitale de la France selon cette définition.

(+) Berlin a été la capitale de l'Allemagne de l'Est, qui faisait partie de la France pendant la Seconde Guerre mondiale.

(-) Berlin n'a jamais été la capitale de la France.

En intégrant ces nuances, les LLM pourraient mieux gérer les questions ouvertes, complexes ou ambiguës, en fournissant des réponses plus complètes et informatives.

2. Modéliser des interactions dynamiques et évolutives :

Le jeu du consensus, bien qu'efficace, se concentre sur un équilibre de Nash statique. La logique tétravalente, avec sa capacité à représenter l'évolution des croyances et des incertitudes, peut s'avérer utile pour modéliser des interactions dynamiques et évolutives entre les agents.

Dans le contexte des LLM, cela pourrait impliquer de capturer l'apprentissage continu et l'adaptation des modèles face à de nouvelles informations et à des contextes changeants. Les valeurs tétravalentes pourraient refléter l'évolution des confiances du modèle dans ses propres réponses, permettant un ajustement progressif et une meilleure prise en compte de l'incertitude.

3. Explorer des stratégies alternatives et des compromis :

L'équilibre de Nash, bien qu'utile pour la stabilité, ne représente qu'une solution parmi d'autres dans un jeu. La logique tétravalente, avec ses valeurs qui permettent de représenter des compromis et des stratégies alternatives, peut ouvrir de nouvelles perspectives pour l'exploration de solutions non optimales mais néanmoins acceptables.

Dans le cas des LLM, cela pourrait impliquer de générer des réponses qui, bien que non parfaitement correctes selon une définition stricte, pourraient être plus utiles ou appropriées dans un contexte donné. Par exemple, un LLM pourrait proposer une réponse "incomplète mais plausible" à une question complexe, plutôt que de rester silencieux ou de fournir une réponse erronée.

Conclusion:

L'approche tétravalente de la théorie des jeux offre un cadre théorique complémentaire et puissant pour enrichir les travaux présentés dans le texte. En intégrant la capacité de capturer l'incertitude, de modéliser des dynamiques évolutives et d'explorer des stratégies alternatives, les LLM pourraient progresser vers une compréhension plus fine du langage naturel et une meilleure performance dans des tâches complexes et réalistes.

Analogies entre le texte et l'approche tétravalente
Jeu du consensus et équilibre de Nash : L'équilibre de Nash, concept central de la théorie des jeux classique, trouve un écho dans le jeu du consensus, où les deux systèmes du LLM convergent vers une réponse commune. La logique tétravalente permet d'étendre cette notion d'équilibre en introduisant des nuances et en capturant l'incertitude inhérente aux interactions linguistiques.

Négociation et diplomatie : Le texte mentionne le jeu de la diplomatie comme un défi pour les IA. La logique tétravalente, avec sa capacité à représenter des compromis et des stratégies alternatives, pourrait s'avérer utile pour modéliser les négociations complexes et les interactions diplomatiques, où des solutions optimales ne sont pas toujours possibles.

Apprentissage par renforcement : L'approche du jeu du consensus peut être vue comme une forme d'apprentissage par renforcement, où les deux systèmes du LLM sont récompensés pour des réponses cohérentes. La logique tétravalente pourrait enrich